PORTUGALIAE MATHEMATICA Vol. 58 Fasc. 2 – 2001 Nova Série

ON TOTALLY REAL SUBMANIFOLDS IN A NEARLY KÄHLER MANIFOLD *

ZHONG HUA HOU

Abstract: Let M^m be a totally real submanifold of a nearly Kähler manifold \overline{M}^{2m} . We prove an important relationship between the covariant differential of the second fundamental form of M^m and that of the almost complex structure of \overline{M}^{2m} . And we show an application to the pinching problem on the square of the length of the second fundamental form of M^m .

0 – Introduction

Let $(\overline{M}^{2m}, g, J)$ be an almost Hermitian manifold with Riemannian metric gand almost complex structure J. \overline{M}^{2m} is called a *nearly Kähler* manifold if the almost complex structure J satisfies g(JX, JY) = g(X, Y) and $(\overline{\nabla}_X J)(X) = 0$, for any tangent vector fields X and Y on \overline{M}^{2m} . A Kähler manifold is a nearly Kähler manifold.

The canonical example of non-Kähler nearly Kähler manifold is the six dimensional standard unit sphere S^6 . There are many other non-Kähler nearly Kähler manifolds such as $\mathbb{R}P^7 \times \mathbb{R}P^7$, $F_4/A_2 \times A_2$ and $U(4)/U(2) \times U(1) \times U(1)$ etc. A. Gray in [5] stated that a 3-symmetric space with a naturally reductive *G*-invariant pseudo-Riemannian metric is a nearly Kähler manifold. Many interesting theorems about the topology and the geometry of nearly Kähler manifolds have been proved by many authors (cf. e.g. [4], [6], [8], [10], [11] and [12] etc.).

Received: June 29, 2000.

¹⁹⁸⁰ Mathematics Subject Classification: Primary 53C42; Secondary 32v40.

Keywords and Phrases: Nearly Kähler manifold; Totally real submanifold.

^{*}Work done under partial support by SRF for ROCS, SEM.

^{*} Work done under support by Fundação da Universidade de Lisboa through CMAF, FCT and Programa PRAXIS XXI.

The geometry of submanifolds in an almost Hermitian manifold is a very active topic in the theory of submanifolds. There have been many results on geometry of submanifolds in a Kähler manifold.

The theory of submanifolds in a nearly Kähler manifold say \overline{M}^{2m} was studied by many authors. Let M^m be a totally real submanifold of \overline{M}^{2m} . Denote by A_{ξ} the shape operator on the tangent bundle TM of M in the direction of a unit normal vector field ξ in the normal bundle NM. When \overline{M} is a complex space form, Chen–Ogiue [1] proved that

$$A_{JX}(Y) = A_{JY}(X) ,$$

for any two vector fields X and Y tangent to M. Ejiri [3] showed that the same property holds for a 3-dimensional totally real submanifold in S^6 . In section 1, we shall prove that the same property also holds for a totally real submanifold in a nearly Kähler manifold.

We define a skew-symmetric tensor field G of type (1, 2) by

$$G(X,Y) = (\overline{\nabla}_X J)Y ,$$

where X and Y are vector fields on \overline{M}^{2m} and $\overline{\nabla}$ is the Levi–Civita connection on \overline{M}^{2m} . Ejiri [3] proved that, for a 3-dimensional totally real submanifold M^3 in S^6 , G(X,Y) is orthogonal to M^3 for any vector fields X and Y tangent to M^3 . By applying this fact, he proved that such M^3 is orientable and minimal. In section 2, we shall prove that, for any totally real submanifold M^m in \overline{M}^{2m} , G(X,Y) is orthogonal to M^n for any vector fields X and Y tangent to M^m .

Denote by σ the second fundamental form of M^m . We proceed to show an important relationship between σ and G. Precisely, we shall prove

Proposition 1.4. Let M^m be a Lagrangian submanifold of a nearly Kähler manifold $(\overline{M}^{2m}, g, J)$. Let σ be the second fundamental form of M^m . Define a skew-symmetric tensor field G of type (1,2) by $G(X,Y) = (\overline{\nabla}_X J)Y$ for any vector fields X and Y tangent to M^m , where $\overline{\nabla}$ is the Levi-Civita connection with respect to g. Then

$$g\Big(\nabla\sigma(X,Y,Z),\,JW\Big) = g\Big(\nabla\sigma(X,Y,W),\,JZ\Big) + g\Big(\sigma(Y,Z),\,G(W,X)\Big) \\ - g\Big(\sigma(Y,W),\,G(Z,X)\Big)$$

for any vector fields X, Y, Z and W tangent to M^m .

As an application, we shall prove a pinching theorem on the square of the length of the second fundamental form of a 3-dimensional totally real submanifold M^3 in S^6 . Precisely, we shall prove the following

Proposition 2.1. Let M^3 be a closed 3-dimensional totally real submanifold of S^6 . Denote by S the square of the length of the second fundamental form of M^3 . If S < 5/2, then M^3 is totally geodesic.

Remark 0.1. Simons [9] and Chern-do Carmo-Kobayashi [2] proved that, for a closed *n*-dimensional minimal submanifold M^n in an (n+p)-dimensional unit sphere S^{n+p} , M^n is totally geodesic if S < n/(2-1/p). Moreover S = n/(2-1/p) when and only when p = 1 or n = p = 2. A.M. Li and J.M. Li in [7] improved this result. They proved that if $p \ge 2$ and S < 2n/3, then M^n is totally geodesic. Moreover, S = 2n/3 when and only when n = p = 2. Therefore we wonder whether or not this pinching constant could be improved when $n \ge 3$ and $p \ge 2$. Proposition 2.1 give an affirmative answer to this expectation because $5/2 > 2 = 3 \times (2/3)$.

1 – Geometry of totally real submanifolds in a nearly Kähler manifold

Let $(\overline{M}^{2m}, g, J)$ be an almost Hermitian manifold with Riemannian metric g and almost complex structure J. Let $\{e_1, e_2, ..., e_{2m}\}$ be a local orthonormal frame field on the tangent bundle $T\overline{M}^{2m}$. Let $\{\omega_1, \omega_2, ..., \omega_{2m}\}$ be its coframe field and (ω_{ab}) be the Levi–Civita connection form associated with this coframe field. Then we have the Cartan structure equations:

(1.1)
$$\begin{cases} \nabla e_a = \omega_{ab} e_b ; & \omega_{ab} + \omega_{ba} = 0 ; \\ d\omega_a = \omega_{ab} \wedge \omega_b ; & \bar{\Omega}_{ab} + \bar{\Omega}_{ba} = 0 ; \\ d\omega_{ab} = \omega_{ac} \wedge \omega_{cb} + \bar{\Omega}_{ab} , & \end{cases}$$

where (Ω_{ab}) is the curvature form. The almost complex structure J of \overline{M} satisfies:

(1) $J: T_x \overline{M} \to T_x \overline{M}$ is linear;

/ -

- (2) J(JX) = -X;
- (3) g(JX, JY) = g(X, Y);

for any X, Y in $T_x \overline{M}$. Under the above orthonormal frame field and associated coframe field, J can be expressed as $J = J_{ab} \omega_a e_b$. In this case, $J(X) = J_{ab} X_a e_b$ for any $X = X_a e_a \in T_x \overline{M}$. Moreover conditions (2) and (3) can be represented by

$$(1.2) J_{ac} J_{bc} = \delta_{ab}$$

$$(1.3) J_{ac} J_{cb} = -\delta_{ab} ,$$

where (δ_{ab}) is the Kronecker symbol. From (1.2) and (1.3) we have

$$(1.4) J_{ab} + J_{ba} = 0$$

Put $\tilde{J} = \frac{1}{2} J_{ab} \omega_a \wedge \omega_b$. From (1.4) it follows that \tilde{J} is a 2-form which is called the fundamental form associated the almost complex structure J.

The covariant differential of (J_{ab}) , say $(J_{ab,c})$, is defined to be

(1.5)
$$\nabla J_{ab} := J_{ab,c} \,\omega_c = dJ_{ab} + J_{cb} \,\omega_{ca} + J_{ac} \,\omega_{cb} \;.$$

It follows from (1.3) that

(1.6)
$$J_{ae,c} J_{eb} + J_{ae} J_{eb,c} = 0$$

Definition 1.1. $(\overline{M}^{2m}, g, J)$ is called a nearly Kähler (or Tachibana) manifold if the covariant differential $\overline{\nabla}J$ of J satisfies $(\overline{\nabla}XJ)(X) = 0$ for any tangent vector X.

Remark 1.1. Equation $(\overline{\nabla}_X J)(X) = 0$ for any tangent vector X is equivalent to

(1.7)
$$J_{ab,c} + J_{ac,b} = 0 ,$$

for all a, b and $c. \Box$

Let $(\overline{M}^{2m}, g, J)$ be a nearly Kähler manifold. Let M^m be a totally real submanifold, or a Lagrangian submanifold, of \overline{M}^{2m} . Then it follows that the image of the tangent space $T_x M^m$ under the mapping of the almost complex structure is the normal space $N_x M^m$, at every point $x \in M^n$. From now on, we agree on the following index ranges:

$$1 \le a, b, c, \dots \le 2m$$
, $1 \le i, j, k, \dots \le m$, and $i^* = m + i$ for $1 \le i \le m$.

Choose $\{e_1, e_2, ..., e_m; e_{1^*}, e_{2^*}, ..., e_{m^*}\}$ to be a local orthonormal frame field of the tangent bundle $T\bar{M}^{2m}$ such that e_i lies in TM^m and $e_{i^*} = Je_i$ lies in NM^m , for all $1 \leq i \leq m$. We call such a kind of frame an adapted frame field on \bar{M}^{2m} .

Let $\{\omega_1, \omega_2, ..., \omega_m; \omega_{1^*}, \omega_{2^*}, ..., \omega_{m^*}\}$ be the associated coframe field. Denote (ω_{ab}) to be the associated Levi–Civita connection form. Then (J_{ab}) can be expressed as

(1.8)
$$J_{ab} = \begin{cases} \delta_{ij}, & a = i, \ b = j^*; \\ -\delta_{ij}, & a = i^*, \ b = j; \\ 0, & \text{otherwise}. \end{cases}$$

From (1.5) and (1.8), we infer

(1.9)
$$-\bar{\nabla}J_{i^*j^*} = \bar{\nabla}J_{ij} = \omega_{i^*j} + \omega_{ij^*}, \quad \bar{\nabla}J_{ij^*} = \bar{\nabla}J_{i^*j} = \omega_{i^*j^*} - \omega_{ij}$$

Restricting (1.1) to M^n , we get $\omega_{k^*} = 0$ for all k. The structure equations of M^n are

(1.10)
$$\begin{cases} d\omega_i = \omega_{ij} \wedge \omega_j ; & \Omega_{ij} = \omega_{ik^*} \wedge \omega_{k^*j} + \bar{\Omega}_{ij} ; \\ d\omega_{ij} = \omega_{ik} \wedge \omega_{kj} + \Omega_{ij} ; & \Omega_{i^*j^*} = \omega_{i^*k} \wedge \omega_{kj^*} + \bar{\Omega}_{i^*j^*} ; \\ d\omega_{i^*j^*} = \omega_{i^*k^*} \wedge \omega_{k^*j^*} + \Omega_{i^*j^*} . \end{cases}$$

From (1.1) we have the following relations:

$$\omega_{ij^*} \wedge \omega_i = 0, \quad d\omega_{ij^*} = \omega_{ik} \wedge \omega_{kj^*} + \omega_{il^*} \wedge \omega_{l^*j^*} + \bar{\Omega}_{ij^*}$$

Denote the curvature form $(\bar{\Omega}_{ab})$ by

(1.11)
$$\bar{\Omega}_{ab} = \frac{1}{2} \bar{R}_{abcd} \,\omega_c \wedge \omega_d \,.$$

By Cartan's lemma, we have

(1.12)
$$\omega_{ij^*} = h_{ik}^{j^*} \omega_k , \quad h_{ik}^{j^*} = h_{ki}^{j^*} , \quad h_{ijk}^{l^*} = h_{ikj}^{l^*} + \bar{R}_{l^*ijk} ,$$

where $(h_{ijk}^{l^\ast})$ is the covariant differential of $(h_{ij}^{l^\ast})$ defined by

(1.13)
$$\nabla h_{ij}^{l^*} = h_{ijk}^{l^*} \omega_k = dh_{ij}^{l^*} + h_{kj}^{l^*} \omega_{ki} + h_{ik}^{l^*} \omega_{kj} + h_{ij}^{s^*} \omega_{s^*l^*} .$$

The second fundamental form σ and its covariant differential $\nabla \sigma$ are defined by

(1.14)
$$\sigma = h_{ij}^{k^*} \omega_i \, \omega_j \, e_{k^*} \,, \quad \nabla \sigma = (\nabla h_{ij}^{k^*}) \, \omega_i \, \omega_j \, e_{k^*}$$

From the first equation of (1.9) and (1.12) we derive

(1.15)
$$J_{ij,k} = h_{ik}^{j^*} - h_{jk}^{i^*}.$$

It follows from (1.7) and (1.15) that

(1.16)
$$0 = J_{ij,k} + J_{ik,j} = h_{ik}^{j^*} + h_{ij}^{k^*} - 2h_{kj}^{i^*}$$

(1.17)
$$0 = J_{jk,i} + J_{ji,k} = h_{ji}^{k^*} + h_{jk}^{i^*} - 2h_{ik}^{j^*}.$$

From (1.16) and (1.17), we derive

(1.18)
$$h_{ik}^{j^*} = h_{jk}^{i^*}$$
 or $J_{ij,k} = h_{ik}^{j^*} - h_{jk}^{i^*} = 0$.

It is known that the shape operator $A_{e_{j^*}}$ of M^m with respect to e_{j^*} can be expressed as $A_{e_{j^*}}(e_i) = h_{ik}^{j^*} e_k$. From (1.18) we get the following

Proposition 1.1. Let M^m be a totally real submanifold of a nearly Kähler manifold \overline{M}^{2m} . Denote by A_{ξ} the shape operator of M^m with respect to a normal vector field ξ of M^m . Then

for any two vector fields X and Y tangent to M^m .

Remark 1.2. When \overline{M}^{2m} is chosen to be the 6-dimensional unit sphere S^6 and M^n is a 3-dimensional totally submanifold of S^6 , Ejiri [3] has proved (1.19) in different way. \Box

As an direct application of Proposition 1.1, we have the following

Proposition 1.2. Let M^m be a totally real submanifold of a nearly Kähler manifold \overline{M}^{2m} . Let $\{e_1, e_2, ..., e_m\}$ be a local orthonormal frame field on M^m . Denote $A_{i^*} = (h_{ik}^{i^*})$ to be the coefficient matrix of $A_{e_{i^*}}$ for every *i*. Then

(1.20)
$$\operatorname{Tr}\left(\sum_{i} A_{i^*}^2\right)^2 = \sum_{i,j} (\operatorname{Tr} A_{i^*} A_{j^*})^2$$

Proof:

$$\operatorname{Tr}\left(\sum_{i} A_{i^*}^2\right)^2 = \sum_{i,j} h_{sk}^{i^*} h_{kl}^{j^*} h_{lr}^{j^*} h_{rs}^{j^*} = \sum_{l,s} h_{ik}^{s^*} h_{ki}^{l^*} h_{jr}^{l^*} h_{rj}^{s^*} = \sum_{l,s} (\operatorname{Tr} A_{l^*} A_{s^*})^2 . \blacksquare$$

We define a skew-symmetric tensor field G of type (1,2) by

(1.21)
$$G(X,Y) = (\nabla_X J) Y ,$$

for any vector fields X, Y on \overline{M}^{2m} . Then $G(e_a, e_b) = J_{ab,c} e_c$ for any a and b. Moreover it follows from (1.18) that

(1.22)
$$G(e_i, e_j) = J_{ij,k^*} e_{k^*} \in NM^m ,$$

for any i and j, which implies the following

Proposition 1.3. Let M^m be a totally real submanifold of a nearly Kähler manifold \overline{M}^{2m} . Define a skew-symmetric tensor field G of type (1,2) by $G(X,Y) = (\overline{\nabla}_X J) Y$. Then G(X,Y) is normal to M for any two vector fields X and Y tangent to M^m .

Let us consider the behavior of $(h_{ijk}^{l^*})$. From (1.9), (1.13) and (1.20) we infer

$$\begin{split} \nabla h_{ij}^{l^*} &= h_{ijk}^{l^*} \,\omega_k \\ &= dh_{ij}^{l^*} + h_{kj}^{l^*} \,\omega_{ki} + h_{ik}^{l^*} \,\omega_{kj} + h_{kj}^{k^*} \,\omega_{k^*l^*} \\ &= dh_{lj}^{l^*} + h_{lj}^{k^*} \,\omega_{ki} + h_{lk}^{l^*} \,\omega_{kj} + h_{kj}^{l^*} \,\omega_{k^*l^*} \\ &= dh_{lj}^{l^*} + h_{lk}^{l^*} \,\omega_{kj} + h_{lj}^{l^*} \,(\omega_{k^*i^*} - \bar{\nabla} J_{k^*i}) + h_{kj}^{i^*} (\bar{\nabla} J_{k^*l} + \omega_{kl}) \\ &= (dh_{lj}^{i^*} + h_{kj}^{i^*} \,\omega_{kl} + h_{lk}^{i^*} \,\omega_{kj} + h_{lj}^{k^*} \,\omega_{k^*i^*}) - h_{lj}^{s^*} J_{s^*i,k} \,\omega_k + h_{sj}^{i^*} J_{s^*l,k} \,\omega_k \\ &= \nabla h_{lj}^{i^*} + h_{sj}^{i^*} J_{s^*l,k} \,\omega_k - h_{lj}^{s^*} J_{s^*i,k} \,\omega_k \;. \end{split}$$

After sorting the above equality, we get

(1.23)
$$h_{ijk}^{l^*} - h_{ljk}^{i^*} = h_{ij}^{s^*} J_{s^*l,k} - h_{lj}^{s^*} J_{s^*i,k} .$$

It follows from (1.14), (1.22) and (1.23) that

(1.24)
$$g\Big(\nabla\sigma(e_k, e_j, e_i), e_{l^*}\Big) = g\Big(\nabla\sigma(e_k, e_j, e_l), e_{i^*}\Big) + g\Big(\sigma(e_j, e_i), G(e_l, e_k)\Big) - g\Big(\sigma(e_j, e_l), G(e_i, e_k)\Big).$$

From (1.24) we have, for any $X = X_k e_k$, $Y = Y_j e_j$, $Z = Z_i e_i$ and $W = W_l e_l$,

$$g\Big(\nabla\sigma(X,Y,Z),\,JW\Big) = g\Big(\nabla\sigma(X,Y,W),\,JZ\Big) + g\Big(\sigma(Y,Z),\,G(W,X)\Big) \\ - g\Big(\sigma(Y,W),\,G(Z,X)\Big) \ .$$

Therefore we get the following

Proposition 1.4. Let M^m be a Lagrangian submanifold of a nearly Kähler manifold $(\overline{M}^{2m}, g, J)$. Let σ be the second fundamental form of M^m . Define a skew-symmetric tensor field G of type (1,2) by $G(X,Y) = (\overline{\nabla}_X J)Y$ for any vector fields X and Y tangent to M^m , where $\overline{\nabla}$ is the Levi-Civita connection with respect to g. Then

(1.25)
$$g\Big(\nabla\sigma(X,Y,Z),\,JW\Big) = g\Big(\nabla\sigma(X,Y,W),\,JZ\Big) + g\Big(\sigma(Y,Z),\,G(W,X)\Big) \\ -g\Big(\sigma(Y,W),\,G(Z,X)\Big) ,$$

for any vector fields X, Y, Z and W tangent to M^m .

In the next section, we shall give an application to Proposition 1.4.

2 - A pinching problem on totally real submanifolds in S^6

In this section, we proceed to show an application of Propositions 1.1 and 1.4 to the theory of submanifold. Suppose that \bar{M}^{2m} is a nearly Kähler manifold of constant curvature 1. Then the curvature tensor of \bar{M}^{2m} can be represented by

(2.1)
$$\bar{R}_{abcd} = \delta_{ad} \,\delta_{bc} - \delta_{ac} \,\delta_{bd}$$

In this case, we have from (1.12) that

(2.2)
$$h_{ijk}^{l^*} - h_{ikj}^{l^*} = \bar{R}_{l^*ijk} = 0 .$$

It is known that the Laplacian of h_{ij}^{α} is

(2.3)
$$\Delta h_{ij}^{l^*} = h_{ijkk}^{l^*} = (\operatorname{Tr} A_{l^*})_{,ij} + (A_{r^*}A_{l^*}A_{r^*})_{ij} - (\operatorname{Tr} A_{l^*}A_{r^*})h_{ij}^{r^*} + (\operatorname{Tr} A_{r^*})(A_{l^*}A_{r^*})_{ij} - (A_{l^*}A_{r^*}A_{r^*})_{ij} + (A_{r^*}A_{l^*}A_{r^*})_{ij} - (A_{r^*}A_{r^*}A_{r^*})_{ij} + nh_{ij}^{l^*} - (\operatorname{Tr} A_{l^*})\delta_{ij}.$$

Multiplying $h_{ij}^{l^*}$ on both-sides of (2.3) and taking sum with i, j and l, we derive

(2.4)
$$\sum_{i,j,l} h_{ij}^{l^*} \Delta h_{ij}^{l^*} = h_{ij}^{l^*} (n H_{l^*})_{,ij} + (\operatorname{Tr} A_{i^*}) \operatorname{Tr} (A_{j^*} A_{j^*} A_{i^*}) + n S - (\operatorname{Tr} A_{i^*})^2 \\ - \sum_{i,j} \left\{ N(A_{i^*} A_{j^*} - A_{j^*} A_{i^*}) + (S_{i^*j^*})^2 \right\},$$

where we denote $S = \sum_{i,j,k} (h_{ij}^{k^*})^2$ the square of the length of the second fundamental form of M^n , $S_{i^*j^*} = \operatorname{Tr}(A_{i^*}A_{j^*})$ and $N(A_{i^*}A_{j^*}-A_{j^*}A_{i^*}) = -\operatorname{Tr}(A_{i^*}A_{j^*}-A_{j^*}A_{i^*})^2$. Assume that M^m is minimal in \overline{M}^{2m} . Then $\operatorname{Tr} A_{i^*} = 0$ for all *i*. And (2.4) becomes

(2.5)
$$\sum_{i,j,k} h_{ij}^{k^*} \Delta h_{ij}^{k^*} = n S - \sum_{i,j} \left\{ N(A_{i^*}A_{j^*} - A_{j^*}A_{i^*}) + (S_{i^*j^*})^2 \right\}.$$

The Laplacian of S satisfies

(2.6)
$$\frac{1}{2}\Delta S = \sum_{i,j,k,l} (h_{ijk}^{l^*})^2 + \sum_{i,j,k} h_{ij}^{k^*} \Delta h_{ij}^{k^*}$$

From now on, we assume \overline{M} to be the 6-dimensional unit sphere with the standard induced metric from 7-dimensional Euclidean space \mathbb{R}^7 . It is known that we can identify \mathbb{R}^7 with the set of all purely imaginary Cayley numbers.

Then S^6 can be equipped with an almost complex structure by the cross product of Cayley numbers. Moreover S^6 is nearly Kählerian but non-Kählerian. This enables us to study the pinching problem on the square of the length of the second fundamental form of 3-dimensional totally real submanifolds in S^6 in new viewpoint.

The main technique is to give a lower estimate to the right-hand side of (2.6). Up to now, the best estimation on the second part of the right-hand side of (2.5) was given by A.M. Li and J.M. Li [7].

Lemma 2.1 (Li's [7]). Let $A_1, A_2, ..., A_p$ be symmetric $n \times n$ -degree matrices, where $p \geq 2$. Denote $S_{\alpha\beta} = \text{Tr}(A_{\alpha}^T A_{\beta})$ and $S = S_{11} + S_{22} + \cdots + S_{pp}$. Then

(2.7)
$$\sum_{\alpha,\beta} \left\{ N(A_{\alpha}A_{\beta} - A_{\beta}A_{\alpha}) + (S_{\alpha\beta})^2 \right\} \leq \frac{3}{2}S^2 ,$$

where the equality holds if and only if one of the following conditions holds:

- (1) $A_1 = A_2 = \dots = A_p = 0;$
- (2) Only two of A_{α} 's are different from zero. If we assume $A_1 \neq 0$, $A_2 \neq 0$ and $A_3 = \cdots = A_p = 0$, then $S_{11} = S_{22}$. Furthermore there exists an orthogonal $n \times n$ -degree matrix U such that

$$UA_1 U^T = \sqrt{\frac{S}{4}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & \vdots \\ 0 & \cdots & 0 \end{pmatrix}, \qquad UA_2 U^T = \sqrt{\frac{S}{4}} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & \vdots \\ 0 & \cdots & 0 \end{pmatrix}.$$

In the rest of this section, we shall give a lower estimate to $|\nabla \sigma|^2 = \sum_{i,j,k,l} (h_{ijk}^{l^*})^2$. It is easy to see that $JG(e_i, e_j)$ lies in $T_x M^3$ and is perpendicular to e_i and e_j for any $i \neq j$. So we can choose e_1 , e_2 and e_3 such that (cf. Ejiri [3])

(2.8)
$$JG(e_1, e_2) = e_3, \quad JG(e_2, e_3) = e_1, \quad JG(e_3, e_1) = e_2.$$

It follows from (2.8) that

(2.9)
$$J_{12,3^*} = J_{23,1^*} = J_{31,2^*} = -1;$$
 and $J_{ij,k^*} = 0,$ otherwise.

Fixing e_1 and choosing e_2 and e_3 suitably, we can assume $h_{23}^{1*} = 0$. Denote

(2.10)
$$h_{12}^{1*} = x_1, \quad h_{13}^{1*} = x_2, \quad h_{22}^{1*} = x_3, \quad h_{33}^{1*} = x_4, \quad h_{23}^{2*} = x_5, \quad h_{33}^{2*} = x_6.$$

Then it follows from (1.18) that A_{i^*} 's can be expressed as

$$A_{1*} = \begin{pmatrix} -x_3 - x_4 & x_1 & x_2 \\ x_1 & x_3 & 0 \\ x_2 & 0 & x_4 \end{pmatrix},$$
$$A_{2*} = \begin{pmatrix} x_1 & x_3 & 0 \\ x_3 & -x_1 - x_6 & x_5 \\ 0 & x_5 & x_6 \end{pmatrix},$$
$$A_{3*} = \begin{pmatrix} x_2 & 0 & x_4 \\ 0 & x_5 & x_6 \\ x_4 & x_6 & -x_2 - x_5 \end{pmatrix}.$$

And the square of the length of σ , say S, is expressed as

(2.12)
$$S = 4 \left(x_1^2 + x_2^2 + x_3^2 + x_4^2 + x_5^2 + x_6^2 \right) + 2 \left(x_3 x_4 + x_1 x_6 + x_2 x_5 \right) .$$

Let us consider the representations of $\{h_{ijk}^{l^*}\}.$ Put

(2.13)
$$\begin{aligned} h_{123}^{1*} &= y_1 \,, \quad h_{122}^{1*} &= y_2 \,, \quad h_{133}^{1*} &= y_3 \,, \quad h_{112}^{1*} &= y_4 \,, \\ h_{233}^{1*} &= y_5 \,, \quad h_{113}^{1*} &= y_6 \,, \quad h_{223}^{1*} &= y_7 \,. \end{aligned}$$

Since M^3 is minimal implies $h_{11k}^{l^*} + h_{22k}^{l^*} + h_{33k}^{l^*} = 0$ for any k, we have

(2.14)
$$h_{111}^{1*} = -y_2 - y_3, \quad h_{222}^{1*} = -y_4 - y_5, \quad h_{333}^{1*} = -y_6 - y_7.$$

So we have

$$(2.15) \qquad \sum_{i,j,k} (h_{ijk}^{1^*})^2 = \sum_i (h_{iii}^{1^*})^2 + 3\sum_{i \neq j} (h_{iij}^{1^*})^2 + 6(h_{123}^{1^*})^2 = \\ = 6y_1^2 + 4(y_2^2 + y_3^2 + y_4^2 + y_5^2 + y_6^2 + y_7^2) + 2(y_2y_3 + y_4y_5 + y_6y_7) .$$

On the other hand, it follows from (1.23) that

(2.16)
$$\begin{array}{c} h_{111}^{2^*} = y_4 + x_2, \quad h_{112}^{2^*} = y_2, \quad h_{113}^{2^*} = y_1 + x_4, \\ h_{122}^{2^*} = -y_4 - y_5 + x_5, \quad h_{123}^{2^*} = y_7 + x_6, \quad h_{133}^{2^*} = y_5 - x_2 - x_5 \end{array}$$

Putting

(2.17)
$$h_{233}^{2^*} = y_8, \quad h_{223}^{2^*} = y_9,$$

then we have

(2.18)
$$h_{222}^{2^*} = -y_2 - y_8, \quad h_{333}^{2^*} = -x_4 - y_1 - y_9.$$

Therefore we infer from (2.16), (2.17) and (2.18),

$$(2.19) \qquad \sum_{i,j,k} (h_{ijk}^{2^*})^2 = \sum_i (h_{iii}^{2^*})^2 + 3 \sum_{i \neq j} (h_{iij}^{2^*})^2 + 6 (h_{123}^{2^*})^2 = = 4 y_1^2 + 4 y_2^2 + 4 y_4^2 + 6 y_5^2 + 6 y_7^2 + 4 y_8^2 + 4 y_9^2 + 2 y_1 y_9 + 2 y_2 y_8 + 6 y_4 y_5 + 8 x_4 y_1 + (2 x_2 - 6 x_5) y_4 - (6 x_2 + 12 x_5) y_5 + 12 x_6 y_7 + 2 x_4 y_9 + 4 x_2^2 + 4 x_4^2 + 6 x_5^2 + 6 x_6^2 + 6 x_2 x_5 .$$

By the same procedure, we obtain

$$h_{111}^{3^*} = y_6 - x_1, \quad h_{112}^{3^*} = y_1 - x_3, \quad h_{113}^{3^*} = y_3,$$

$$(2.20) \quad h_{122}^{3^*} = y_7 + x_1 + x_6, \quad h_{123}^{3^*} = y_5 - x_5, \quad h_{133}^{3^*} = -x_6 - y_6 - y_7,$$

$$h_{222}^{3^*} = y_9 + x_3, \quad h_{223}^{3^*} = y_8, \quad h_{233}^{3^*} = -y_1 - y_9, \quad h_{333}^{3^*} = -y_3 - y_8.$$

Therefore we infer from (2.20) that

$$(2.21) \qquad \sum_{i,j,k} (h_{ijk}^{3^*})^2 = \sum_i (h_{iii}^{3^*})^2 + 3\sum_{i \neq j} (h_{iij}^{3^*})^2 + 6(h_{123}^{3^*})^2 = = 6y_1^2 + 4y_3^2 + 6y_5^2 + 4y_6^2 + 6y_7^2 + 4y_8^2 + 4y_9^2 + 2y_3y_8 + 6y_1y_9 + 6y_6y_7 - 2x_1y_6 + 2x_3y_9 + 6x_1y_7 + 6x_6y_6 - 6x_3y_1 + 12x_6y_7 - 12x_5y_5 + 4x_1^2 + 4x_3^2 + 6x_5^2 + 6x_6^2 + 6x_1x_6 .$$

Denote $F = |\nabla \sigma|^2$. Then

$$F = \sum_{i,j,k,l} (h_{ijk}^{l^*})^2 = \sum_{i,j,k} (h_{ijk}^{l^*})^2 + \sum_{i,j,k} (h_{ijk}^{2^*})^2 + \sum_{i,j,k} (h_{ijk}^{3^*})^2 .$$

It follows from (2.15), (2.19) and (2.21) that

$$F = 16 y_1^2 + 8 y_2^2 + 8 y_3^2 + 8 y_4^2 + 16 y_5^2 + 8 y_6^2 + 16 y_7^2 + 8 y_8^2 + 8 y_9^2 + 2 y_2 y_3 + 2 y_2 y_8 + 2 y_3 y_8 + 8 y_1 y_9 + 8 y_4 y_5 + 8 y_6 y_7 (2.22) + (8 x_4 - 6 x_3) y_1 + (2 x_2 - 6 x_5) y_4 - (6 x_2 + 24 x_5) y_5 + (6 x_6 - 2 x_1) y_6 + (6 x_1 + 24 x_6) y_7 + (2 x_4 + 2 x_3) y_9 + 4 x_1^2 + 4 x_2^2 + 4 x_3^2 + 4 x_4^2 + 12 x_5^2 + 12 x_6^2 + 6 x_1 x_6 + 6 x_2 x_5 .$$

It is not difficult to check that the only critical point of F with respect to $(y_1, y_2, ..., y_9)$ is $P_0 = (y_1^0, y_2^0, ..., y_9^0)$, where

(2.23)
$$y_1^0 = \frac{1}{4} (x_3 - x_4), \quad y_2^0 = 0, \quad y_3^0 = 0,$$
$$y_4^0 = -\frac{1}{4} x_2, \quad y_5^0 = \frac{1}{4} (x_2 + 3 x_5), \quad y_6^0 = \frac{1}{4} x_1,$$
$$y_7^0 = -\frac{1}{4} (x_1 + 3 x_6), \quad y_8^0 = 0, \quad y_9^0 = -\frac{1}{4} x_3.$$

Furthermore we can see that P_0 is the minimum point of F. Substituting (2.23) into (2.22) and recalling (2.12), we obtain the minimum value of F:

(2.24)

$$F_{min} = 3x_1^2 + 3x_2^2 + 3x_3^2 + 3x_4^2 + 3x_5^2 + 3x_6^2 + \frac{3}{2}x_5x_2 + \frac{3}{2}x_6x_1 + \frac{3}{2}x_3x_4 = \frac{3}{4}S.$$

Therefore we get the following lower estimate to $|\nabla \sigma|^2$:

(2.25)
$$|\nabla \sigma|^2 = \sum_{i,j,k,l} (h_{ijk}^{l^*})^2 \ge \frac{3}{4}S.$$

It follows from (2.5), (2.6), (2.7) and (2.25) that

(3.26)
$$\Delta S \geq 3S\left(\frac{5}{2}-S\right).$$

Inequality (3.26) implies the following

Proposition 2.1. Let M^3 be a closed 3-dimensional totally real submanifold of S^6 . Denote by S the square of the length of the second fundamental form of M^3 . If S < 5/2, then M^3 is totally geodesic.

ACKNOWLEDGEMENTS – The author is very grateful to Professor A. Machado for his kind help and good advice. He would like to express his heartfelt gratitude to faculty and staffs of CMAF/UL for their hospitality during his stay and study in Portugal. And he wish to thank referee for his (her) earnest recommendation.

REFERENCES

- CHEN, B.Y. and OGIUE, K. On totally real submanifolds, Trans. Amer. Math. Soc., 193 (1974), 257–266.
- [2] CHERN, S.S.; CARMO, M.P. and KOBAYASHI, S. Minimal submanifolds of a sphere with second fundamental form of constant length, in "Functional Analysis and Related Fields" (Proc. Conf. for M. Stone, Univ. Chicago, Chicago, Ill., 1968), Springer-Verlag, New York, 1970, 59–75.
- [3] EJIRI, N. Totally real submanifolds in a 6-sphere, Proc. Amer. Math. Soc., 83(4) (1981), 759–763.
- [4] GRAY, A. Nearly Kähler Manifolds, J. Diff. Geom., 4 (1970), 283–309.
- [5] GRAY, A. Riemannian manifolds with geodesic symmetries of order 3, J. Diff. Geom., 7 (1972), 343–369.
- [6] GRAY, A. The Structure of Nearly Kähler Manifolds, Math. Ann., 223 (1976), 233–248.
- [7] LI, A.M. and LI, J.M. An intrinsic rigidity theorem for minimal submanifolds in a sphere, Arch. Math., 58 (1992), 582–594.
- [8] MATSUMOTO, M. On 6-dimensional almost Tachibana space, Tensor, N. S., 23 (1972), 250–252.
- [9] SIMONS, J. Minimal varieties in riemannian manifolds, Ann. of Math., 88 (1968), 62–105.
- [10] TAKAMATSU, K. Some properties of 6-dimensional K-space, Kodai Math. Sem. Rep., 23 (1971), 215–232.
- [11] WATANABE, Y. and TAKAMATSU, K. On a K-space of constant holomorphic sectional curvature, Kodai Math. Sem. Rep., 25 (1973), 297–306.
- [12] YAMAGUCHI, S.; CHUMAN, G. and MATSUMOTO, M. On a special almost Tachibana space, *Tensor*, N. S., 24 (1972), 351–354.

Zhong Hua Hou,

Department of Applied Mathematics, Dalian University of Technology, Dalian 116024, Liaoning – PEOPLE'S REPUBLIC OF CHINA

E-mail: zhhou@dlut.edu.cn

and

CMAF, Universidade de Lisboa, Av. Prof. Gama Pinto, 2, 1649-003 Lisboa - PORTUGAL E-mail: zhhou@lmc.fc.ul.pt