ON TOTALLY REAL SUBMANIFOLDS IN A NEARLY KÄHLER MANIFOLD *

Zhong Hua Hou

Abstract

Let M^{m} be a totally real submanifold of a nearly Kähler manifold $\bar{M}^{2 m}$. We prove an important relationship between the covariant differential of the second fundamental form of M^{m} and that of the almost complex structure of $\bar{M}^{2 m}$. And we show an application to the pinching problem on the square of the length of the second fundamental form of M^{m}.

0 - Introduction

Let $\left(\bar{M}^{2 m}, g, J\right)$ be an almost Hermitian manifold with Riemannian metric g and almost complex structure $J . \bar{M}^{2 m}$ is called a nearly Kähler manifold if the almost complex structure J satisfies $g(J X, J Y)=g(X, Y)$ and $\left(\bar{\nabla}_{X} J\right)(X)=0$, for any tangent vector fields X and Y on $\bar{M}^{2 m}$. A Kähler manifold is a nearly Kähler manifold.

The canonical example of non-Kähler nearly Kähler manifold is the six dimensional standard unit sphere S^{6}. There are many other non-Kähler nearly Kähler manifolds such as $\mathbb{R} P^{7} \times \mathbb{R} P^{7}, F_{4} / A_{2} \times A_{2}$ and $U(4) / U(2) \times U(1) \times U(1)$ etc. A. Gray in [5] stated that a 3 -symmetric space with a naturally reductive G-invariant pseudo-Riemannian metric is a nearly Kähler manifold. Many interesting theorems about the topology and the geometry of nearly Kähler manifolds have been proved by many authors (cf. e.g. [4], [6], [8], [10], [11] and [12] etc.).

[^0]The geometry of submanifolds in an almost Hermitian manifold is a very active topic in the theory of submanifolds. There have been many results on geometry of submanifolds in a Kähler manifold.

The theory of submanifolds in a nearly Kähler manifold say $\bar{M}^{2 m}$ was studied by many authors. Let M^{m} be a totally real submanifold of $\bar{M}^{2 m}$. Denote by A_{ξ} the shape operator on the tangent bundle $T M$ of M in the direction of a unit normal vector field ξ in the normal bundle $N M$. When \bar{M} is a complex space form, Chen-Ogiue [1] proved that

$$
A_{J X}(Y)=A_{J Y}(X)
$$

for any two vector fields X and Y tangent to M. Ejiri [3] showed that the same property holds for a 3 -dimensional totally real submanifold in S^{6}. In section 1 , we shall prove that the same property also holds for a totally real submanifold in a nearly Kähler manifold.

We define a skew-symmetric tensor field G of type $(1,2)$ by

$$
G(X, Y)=\left(\bar{\nabla}_{X} J\right) Y
$$

where X and Y are vector fields on $\bar{M}^{2 m}$ and $\bar{\nabla}$ is the Levi-Civita connection on $\bar{M}^{2 m}$. Ejiri [3] proved that, for a 3-dimensional totally real submanifold M^{3} in $S^{6}, G(X, Y)$ is orthogonal to M^{3} for any vector fields X and Y tangent to M^{3}. By applying this fact, he proved that such M^{3} is orientable and minimal. In section 2, we shall prove that, for any totally real submanifold M^{m} in $\bar{M}^{2 m}$, $G(X, Y)$ is orthogonal to M^{n} for any vector fields X and Y tangent to M^{m}.

Denote by σ the second fundamental form of M^{m}. We proceed to show an important relationship between σ and G. Precisely, we shall prove

Proposition 1.4. Let M^{m} be a Lagrangian submanifold of a nearly Kähler manifold $\left(\bar{M}^{2 m}, g, J\right)$. Let σ be the second fundamental form of M^{m}. Define a skew-symmetric tensor field G of type $(1,2)$ by $G(X, Y)=\left(\bar{\nabla}_{X} J\right) Y$ for any vector fields X and Y tangent to M^{m}, where $\bar{\nabla}$ is the Levi-Civita connection with respect to g. Then

$$
\begin{aligned}
g(\nabla \sigma(X, Y, Z), J W)= & g(\nabla \sigma(X, Y, W), J Z)+g(\sigma(Y, Z), G(W, X)) \\
& -g(\sigma(Y, W), G(Z, X))
\end{aligned}
$$

for any vector fields X, Y, Z and W tangent to M^{m}.

As an application, we shall prove a pinching theorem on the square of the length of the second fundamental form of a 3-dimensional totally real submanifold M^{3} in S^{6}. Precisely, we shall prove the following

Proposition 2.1. Let M^{3} be a closed 3-dimensional totally real submanifold of S^{6}. Denote by S the square of the length of the second fundamental form of M^{3}. If $S<5 / 2$, then M^{3} is totally geodesic.

Remark 0.1. Simons [9] and Chern-do Carmo-Kobayashi [2] proved that, for a closed n-dimensional minimal submanifold M^{n} in an $(n+p)$-dimensional unit sphere S^{n+p}, M^{n} is totally geodesic if $S<n /(2-1 / p)$. Moreover $S=n /(2-1 / p)$ when and only when $p=1$ or $n=p=2$. A.M. Li and J.M. Li in [7] improved this result. They proved that if $p \geq 2$ and $S<2 n / 3$, then M^{n} is totally geodesic. Moreover, $S=2 n / 3$ when and only when $n=p=2$. Therefore we wonder whether or not this pinching constant could be improved when $n \geq 3$ and $p \geq 2$. Proposition 2.1 give an affirmative answer to this expectation because $5 / 2>2=$ $3 \times(2 / 3)$.

1 - Geometry of totally real submanifolds in a nearly Kähler manifold

Let $\left(\bar{M}^{2 m}, g, J\right)$ be an almost Hermitian manifold with Riemannian metric g and almost complex structure J. Let $\left\{e_{1}, e_{2}, \ldots, e_{2 m}\right\}$ be a local orthonormal frame field on the tangent bundle $T \bar{M}^{2 m}$. Let $\left\{\omega_{1}, \omega_{2}, \ldots, \omega_{2 m}\right\}$ be its coframe field and $\left(\omega_{a b}\right)$ be the Levi-Civita connection form associated with this coframe field. Then we have the Cartan structure equations:

$$
\begin{cases}\bar{\nabla} e_{a}=\omega_{a b} e_{b} ; & \omega_{a b}+\omega_{b a}=0 \tag{1.1}\\ d \omega_{a}=\omega_{a b} \wedge \omega_{b} ; & \bar{\Omega}_{a b}+\bar{\Omega}_{b a}=0 \\ d \omega_{a b}=\omega_{a c} \wedge \omega_{c b}+\bar{\Omega}_{a b}, & \end{cases}
$$

where $\left(\Omega_{a b}\right)$ is the curvature form. The almost complex structure J of \bar{M} satisfies:
(1) $J: T_{x} \bar{M} \rightarrow T_{x} \bar{M}$ is linear;
(2) $J(J X)=-X$;
(3) $g(J X, J Y)=g(X, Y)$;
for any X, Y in $T_{x} \bar{M}$. Under the above orthonormal frame field and associated coframe field, J can be expressed as $J=J_{a b} \omega_{a} e_{b}$. In this case, $J(X)=J_{a b} X_{a} e_{b}$ for any $X=X_{a} e_{a} \in T_{x} \bar{M}$. Moreover conditions (2) and (3) can be represented by

$$
\begin{align*}
& J_{a c} J_{b c}=\delta_{a b} \tag{1.2}\\
& J_{a c} J_{c b}=-\delta_{a b} \tag{1.3}
\end{align*}
$$

where $\left(\delta_{a b}\right)$ is the Kronecker symbol. From (1.2) and (1.3) we have

$$
\begin{equation*}
J_{a b}+J_{b a}=0 \tag{1.4}
\end{equation*}
$$

Put $\tilde{J}=\frac{1}{2} J_{a b} \omega_{a} \wedge \omega_{b}$. From (1.4) it follows that \tilde{J} is a 2 -form which is called the fundamental form associated the almost complex structure J.

The covariant differential of $\left(J_{a b}\right)$, say $\left(J_{a b, c}\right)$, is defined to be

$$
\begin{equation*}
\bar{\nabla} J_{a b}:=J_{a b, c} \omega_{c}=d J_{a b}+J_{c b} \omega_{c a}+J_{a c} \omega_{c b} \tag{1.5}
\end{equation*}
$$

It follows from (1.3) that

$$
\begin{equation*}
J_{a e, c} J_{e b}+J_{a e} J_{e b, c}=0 . \tag{1.6}
\end{equation*}
$$

Definition 1.1. $\left(\bar{M}^{2 m}, g, J\right)$ is called a nearly Kähler (or Tachibana) manifold if the covariant differential $\bar{\nabla} J$ of J satisfies $\left(\bar{\nabla}_{X} J\right)(X)=0$ for any tangent vector X.

Remark 1.1. Equation $\left(\bar{\nabla}_{X} J\right)(X)=0$ for any tangent vector X is equivalent to

$$
\begin{equation*}
J_{a b, c}+J_{a c, b}=0, \tag{1.7}
\end{equation*}
$$

for all a, b and c. \square
Let $\left(\bar{M}^{2 m}, g, J\right)$ be a nearly Kähler manifold. Let M^{m} be a totally real submanifold, or a Lagrangian submanifold, of $\bar{M}^{2 m}$. Then it follows that the image of the tangent space $T_{x} M^{m}$ under the mapping of the almost complex structure is the normal space $N_{x} M^{m}$, at every point $x \in M^{n}$. From now on, we agree on the following index ranges:

$$
1 \leq a, b, c, \ldots \leq 2 m, \quad 1 \leq i, j, k, \ldots \leq m, \quad \text { and } \quad i^{*}=m+i \quad \text { for } 1 \leq i \leq m
$$

Choose $\left\{e_{1}, e_{2}, \ldots, e_{m} ; e_{1^{*}}, e_{2^{*}}, \ldots, e_{m^{*}}\right\}$ to be a local orthonormal frame field of the tangent bundle $T \bar{M}^{2 m}$ such that e_{i} lies in $T M^{m}$ and $e_{i^{*}}=J e_{i}$ lies in $N M^{m}$, for all $1 \leq i \leq m$. We call such a kind of frame an adapted frame field on $\bar{M}^{2 m}$.

Let $\left\{\omega_{1}, \omega_{2}, \ldots, \omega_{m} ; \omega_{1^{*}}, \omega_{2^{*}}, \ldots, \omega_{m^{*}}\right\}$ be the associated coframe field. Denote $\left(\omega_{a b}\right)$ to be the associated Levi-Civita connection form. Then $\left(J_{a b}\right)$ can be expressed as

$$
J_{a b}= \begin{cases}\delta_{i j}, & a=i, \quad b=j^{*} ; \tag{1.8}\\ -\delta_{i j}, & a=i^{*}, \quad b=j ; \\ 0, & \text { otherwise } .\end{cases}
$$

From (1.5) and (1.8), we infer

$$
\begin{equation*}
-\bar{\nabla} J_{i^{*} j^{*}}=\bar{\nabla} J_{i j}=\omega_{i^{*} j}+\omega_{i j^{*}}, \quad \bar{\nabla} J_{i j^{*}}=\bar{\nabla} J_{i^{*} j}=\omega_{i^{*} j^{*}}-\omega_{i j} \tag{1.9}
\end{equation*}
$$

Restricting (1.1) to M^{n}, we get $\omega_{k^{*}}=0$ for all k. The structure equations of M^{n} are
(1.10) $\quad \begin{cases}d \omega_{i}=\omega_{i j} \wedge \omega_{j} ; & \Omega_{i j}=\omega_{i k^{*}} \wedge \omega_{k^{*} j}+\bar{\Omega}_{i j} ; \\ d \omega_{i j}=\omega_{i k} \wedge \omega_{k j}+\Omega_{i j} ; & \Omega_{i^{*} j^{*}}=\omega_{i^{*} k} \wedge \omega_{k j^{*}}+\bar{\Omega}_{i^{*} j^{*}} ; \\ d \omega_{i^{*} j^{*}}=\omega_{i^{*} k^{*}} \wedge \omega_{k^{*} j^{*}}+\Omega_{i^{*} j^{*}} . & \end{cases}$

From (1.1) we have the following relations:

$$
\omega_{i j^{*}} \wedge \omega_{i}=0, \quad d \omega_{i j^{*}}=\omega_{i k} \wedge \omega_{k j^{*}}+\omega_{i l^{*}} \wedge \omega_{l^{*} j^{*}}+\bar{\Omega}_{i j^{*}}
$$

Denote the curvature form $\left(\bar{\Omega}_{a b}\right)$ by

$$
\begin{equation*}
\bar{\Omega}_{a b}=\frac{1}{2} \bar{R}_{a b c d} \omega_{c} \wedge \omega_{d} \tag{1.11}
\end{equation*}
$$

By Cartan's lemma, we have

$$
\begin{equation*}
\omega_{i j^{*}}=h_{i k}^{j^{*}} \omega_{k}, \quad h_{i k}^{j^{*}}=h_{k i}^{j^{*}}, \quad h_{i j k}^{l^{*}}=h_{i k j}^{l^{*}}+\bar{R}_{l^{*} i j k} \tag{1.12}
\end{equation*}
$$

where $\left(h_{i j k}^{l^{*}}\right)$ is the covariant differential of $\left(h_{i j}^{l^{*}}\right)$ defined by

$$
\begin{equation*}
\nabla h_{i j}^{l^{*}}=h_{i j k}^{l^{*}} \omega_{k}=d h_{i j}^{l^{*}}+h_{k j}^{l^{*}} \omega_{k i}+h_{i k}^{l^{*}} \omega_{k j}+h_{i j}^{s^{*}} \omega_{s^{*} l^{*}} \tag{1.13}
\end{equation*}
$$

The second fundamental form σ and its covariant differential $\nabla \sigma$ are defined by

$$
\begin{equation*}
\sigma=h_{i j}^{k^{*}} \omega_{i} \omega_{j} e_{k^{*}}, \quad \nabla \sigma=\left(\nabla h_{i j}^{k^{*}}\right) \omega_{i} \omega_{j} e_{k^{*}} \tag{1.14}
\end{equation*}
$$

From the first equation of (1.9) and (1.12) we derive

$$
\begin{equation*}
J_{i j, k}=h_{i k}^{j^{*}}-h_{j k}^{i^{*}} \tag{1.15}
\end{equation*}
$$

It follows from (1.7) and (1.15) that

$$
\begin{align*}
& 0=J_{i j, k}+J_{i k, j}=h_{i k}^{j^{*}}+h_{i j}^{k^{*}}-2 h_{k j}^{i^{*}} \tag{1.16}\\
& 0=J_{j k, i}+J_{j i, k}=h_{j i}^{k^{*}}+h_{j k}^{i^{*}}-2 h_{i k}^{j^{*}} \tag{1.17}
\end{align*}
$$

From (1.16) and (1.17), we derive

$$
\begin{equation*}
h_{i k}^{j^{*}}=h_{j k}^{i^{*}} \quad \text { or } \quad J_{i j, k}=h_{i k}^{j^{*}}-h_{j k}^{i^{*}}=0 \tag{1.18}
\end{equation*}
$$

It is known that the shape operator $A_{e_{j^{*}}}$ of M^{m} with respect to $e_{j^{*}}$ can be expressed as $A_{e_{j^{*}}}\left(e_{i}\right)=h_{i k}^{j^{*}} e_{k}$. From (1.18) we get the following

Proposition 1.1. Let M^{m} be a totally real submanifold of a nearly Kähler manifold $\bar{M}^{2 m}$. Denote by A_{ξ} the shape operator of M^{m} with respect to a normal vector field ξ of M^{m}. Then

$$
\begin{equation*}
A_{J X}(Y)=A_{J Y}(X) \tag{1.19}
\end{equation*}
$$

for any two vector fields X and Y tangent to M^{m}.
Remark 1.2. When $\bar{M}^{2 m}$ is chosen to be the 6 -dimensional unit sphere S^{6} and M^{n} is a 3-dimensional totally submanifold of S^{6}, Ejiri [3] has proved (1.19) in different way. व

As an direct application of Proposition 1.1, we have the following
Proposition 1.2. Let M^{m} be a totally real submanifold of a nearly Kähler manifold $\bar{M}^{2 m}$. Let $\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$ be a local orthonormal frame field on M^{m}. Denote $A_{i^{*}}=\left(h_{j k}^{i_{k}^{*}}\right)$ to be the coefficient matrix of $A_{e_{i^{*}}}$ for every i. Then

$$
\begin{equation*}
\operatorname{Tr}\left(\sum_{i} A_{i^{*}}^{2}\right)^{2}=\sum_{i, j}\left(\operatorname{Tr} A_{i^{*}} A_{j^{*}}\right)^{2} . \tag{1.20}
\end{equation*}
$$

Proof:

$$
\operatorname{Tr}\left(\sum_{i} A_{i^{*}}^{2}\right)^{2}=\sum_{i, j} h_{s k}^{i^{*}} h_{k l}^{i^{*}} h_{l r}^{j^{*}} h_{r s}^{j^{*}}=\sum_{l, s} h_{i k}^{s^{*}} h_{k i}^{l^{*}} h_{j r}^{l^{*}} h_{r j}^{s^{*}}=\sum_{l, s}\left(\operatorname{Tr} A_{l^{*}} A_{s^{*}}\right)^{2}
$$

We define a skew-symmetric tensor field G of type $(1,2)$ by

$$
\begin{equation*}
G(X, Y)=\left(\bar{\nabla}_{X} J\right) Y, \tag{1.21}
\end{equation*}
$$

for any vector fields X, Y on $\bar{M}^{2 m}$. Then $G\left(e_{a}, e_{b}\right)=J_{a b, c} e_{c}$ for any a and b. Moreover it follows from (1.18) that

$$
\begin{equation*}
G\left(e_{i}, e_{j}\right)=J_{i j, k^{*}} e_{k^{*}} \in N M^{m}, \tag{1.22}
\end{equation*}
$$

for any i and j, which implies the following

Proposition 1.3. Let M^{m} be a totally real submanifold of a nearly Kähler manifold $\bar{M}^{2 m}$. Define a skew-symmetric tensor field G of type $(1,2)$ by $G(X, Y)=$ $\left(\bar{\nabla}_{X} J\right) Y$. Then $G(X, Y)$ is normal to M for any two vector fields X and Y tangent to M^{m}.

Let us consider the behavior of $\left(h_{i j k}^{l^{*}}\right)$. From (1.9), (1.13) and (1.20) we infer

$$
\begin{aligned}
\nabla h_{i j}^{l^{*}} & =h_{i j k}^{l^{*}} \omega_{k} \\
& =d h_{i j}^{l^{*}}+h_{k j}^{l^{*}} \omega_{k i}+h_{i k}^{l^{*}} \omega_{k j}+h_{i j}^{k^{*}} \omega_{k^{*} l^{*}} \\
& =d h_{l j}^{i^{*}}+h_{l j}^{k^{*}} \omega_{k i}+h_{l k}^{i^{*}} \omega_{k j}+h_{k j}^{i^{*}} \omega_{k^{*} l^{*}} \\
& =d h_{l j}^{i^{*}}+h_{l k}^{i^{*}} \omega_{k j}+h_{l j}^{k^{*}}\left(\omega_{k^{*} i^{*}}-\bar{\nabla} J_{k^{*} i}\right)+h_{k j}^{i^{*}}\left(\bar{\nabla} J_{k^{*} l}+\omega_{k l}\right) \\
& =\left(d h_{l j}^{i^{*}}+h_{k j}^{i^{*}} \omega_{k l}+h_{l k}^{i^{*}} \omega_{k j}+h_{l j}^{k^{*}} \omega_{k^{*} i^{*}}\right)-h_{l j}^{s^{*}} J_{s^{*} i, k} \omega_{k}+h_{s j}^{i^{*}} J_{s^{*} l, k} \omega_{k} \\
& =\nabla h_{l j}^{i^{*}}+h_{s j}^{i^{*}} J_{s^{*} l, k} \omega_{k}-h_{l j}^{s^{*}} J_{s^{*} i, k} \omega_{k}
\end{aligned}
$$

After sorting the above equality, we get

$$
\begin{equation*}
h_{i j k}^{l^{*}}-h_{l j k}^{i^{*}}=h_{i j}^{s^{*}} J_{s^{*} l, k}-h_{l j}^{s^{*}} J_{s^{*} i, k} \tag{1.23}
\end{equation*}
$$

It follows from (1.14), (1.22) and (1.23) that

$$
\begin{align*}
g\left(\nabla \sigma\left(e_{k}, e_{j}, e_{i}\right), e_{l^{*}}\right)= & g\left(\nabla \sigma\left(e_{k}, e_{j}, e_{l}\right), e_{i^{*}}\right)+g\left(\sigma\left(e_{j}, e_{i}\right), G\left(e_{l}, e_{k}\right)\right) \tag{1.24}\\
& -g\left(\sigma\left(e_{j}, e_{l}\right), G\left(e_{i}, e_{k}\right)\right)
\end{align*}
$$

From (1.24) we have, for any $X=X_{k} e_{k}, Y=Y_{j} e_{j}, Z=Z_{i} e_{i}$ and $W=W_{l} e_{l}$,

$$
\begin{aligned}
g(\nabla \sigma(X, Y, Z), J W)= & g(\nabla \sigma(X, Y, W), J Z)+g(\sigma(Y, Z), G(W, X)) \\
& -g(\sigma(Y, W), G(Z, X))
\end{aligned}
$$

Therefore we get the following
Proposition 1.4. Let M^{m} be a Lagrangian submanifold of a nearly Kähler manifold $\left(\bar{M}^{2 m}, g, J\right)$. Let σ be the second fundamental form of M^{m}. Define a skew-symmetric tensor field G of type $(1,2)$ by $G(X, Y)=\left(\bar{\nabla}_{X} J\right) Y$ for any vector fields X and Y tangent to M^{m}, where $\bar{\nabla}$ is the Levi-Civita connection with respect to g. Then

$$
\begin{align*}
g(\nabla \sigma(X, Y, Z), J W)= & g(\nabla \sigma(X, Y, W), J Z)+g(\sigma(Y, Z), G(W, X)) \tag{1.25}\\
& -g(\sigma(Y, W), G(Z, X))
\end{align*}
$$

for any vector fields X, Y, Z and W tangent to M^{m}.

In the next section, we shall give an application to Proposition 1.4.

2 - A pinching problem on totally real submanifolds in S^{6}

In this section, we proceed to show an application of Propositions 1.1 and 1.4 to the theory of submanifold. Suppose that $\bar{M}^{2 m}$ is a nearly Kähler manifold of constant curvature 1. Then the curvature tensor of $\bar{M}^{2 m}$ can be represented by

$$
\begin{equation*}
\bar{R}_{a b c d}=\delta_{a d} \delta_{b c}-\delta_{a c} \delta_{b d} \tag{2.1}
\end{equation*}
$$

In this case, we have from (1.12) that

$$
\begin{equation*}
h_{i j k}^{l^{*}}-h_{i k j}^{l^{*}}=\bar{R}_{l^{*} i j k}=0 \tag{2.2}
\end{equation*}
$$

It is known that the Laplacian of $h_{i j}^{\alpha}$ is

$$
\begin{align*}
\Delta h_{i j}^{l^{*}}=h_{i j k k}^{l^{*}}= & \left(\operatorname{Tr} A_{l^{*}}\right)_{, i j}+\left(A_{r^{*}} A_{l^{*}} A_{r^{*}}\right)_{i j}-\left(\operatorname{Tr} A_{l^{*}} A_{r^{*}}\right) h_{i j}^{r^{*}} \\
& +\left(\operatorname{Tr} A_{r^{*}}\right)\left(A_{l^{*}} A_{r^{*}}\right)_{i j}-\left(A_{l^{*}} A_{r^{*}} A_{r^{*}}\right)_{i j}+\left(A_{r^{*}} A_{l^{*}} A_{r^{*}}\right)_{i j} \tag{2.3}\\
& -\left(A_{r^{*}} A_{r^{*}} A_{l^{*}}\right)_{i j}+n h_{i j}^{l^{*}}-\left(\operatorname{Tr} A_{l^{*}}\right) \delta_{i j}
\end{align*}
$$

Multiplying $h_{i j}^{l^{*}}$ on both-sides of (2.3) and taking sum with i, j and l, we derive

$$
\begin{align*}
\sum_{i, j, l} h_{i j}^{l^{*}} \Delta h_{i j}^{l^{*}}= & h_{i j}^{l^{*}}\left(n H_{l^{*}}\right)_{, i j}+\left(\operatorname{Tr} A_{i^{*}}\right) \operatorname{Tr}\left(A_{j^{*}} A_{j^{*}} A_{i^{*}}\right)+n S-\left(\operatorname{Tr} A_{i^{*}}\right)^{2} \tag{2.4}\\
& -\sum_{i, j}\left\{N\left(A_{i^{*}} A_{j^{*}}-A_{j^{*}} A_{i^{*}}\right)+\left(S_{i^{*} j^{*}}\right)^{2}\right\}
\end{align*}
$$

where we denote $S=\sum_{i, j, k}\left(h_{i j}^{k^{*}}\right)^{2}$ the square of the length of the second fundamental form of $M^{n}, S_{i^{*} j^{*}}=\operatorname{Tr}\left(A_{i^{*}} A_{j^{*}}\right)$ and $N\left(A_{i^{*}} A_{j^{*}}-A_{j^{*}} A_{i^{*}}\right)=-\operatorname{Tr}\left(A_{i^{*}} A_{j^{*}}-\right.$ $\left.A_{j^{*}} A_{i^{*}}\right)^{2}$. Assume that M^{m} is minimal in $\bar{M}^{2 m}$. Then $\operatorname{Tr} A_{i^{*}}=0$ for all i. And (2.4) becomes

$$
\begin{equation*}
\sum_{i, j, k} h_{i j}^{k^{*}} \Delta h_{i j}^{k^{*}}=n S-\sum_{i, j}\left\{N\left(A_{i^{*}} A_{j^{*}}-A_{j^{*}} A_{i^{*}}\right)+\left(S_{i^{*} j^{*}}\right)^{2}\right\} \tag{2.5}
\end{equation*}
$$

The Laplacian of S satisfies

$$
\begin{equation*}
\frac{1}{2} \Delta S=\sum_{i, j, k, l}\left(h_{i j k}^{l^{*}}\right)^{2}+\sum_{i, j, k} h_{i j}^{k^{*}} \Delta h_{i j}^{k^{*}} \tag{2.6}
\end{equation*}
$$

From now on, we assume \bar{M} to be the 6-dimensional unit sphere with the standard induced metric from 7 -dimensional Euclidean space \mathbb{R}^{7}. It is known that we can identify \mathbb{R}^{7} with the set of all purely imaginary Cayley numbers.

Then S^{6} can be equipped with an almost complex structure by the cross product of Cayley numbers. Moreover S^{6} is nearly Kählerian but non-Kählerian. This enables us to study the pinching problem on the square of the length of the second fundamental form of 3-dimensional totally real submanifolds in S^{6} in new viewpoint.

The main technique is to give a lower estimate to the right-hand side of (2.6). Up to now, the best estimation on the second part of the right-hand side of (2.5) was given by A.M. Li and J.M. Li [7].

Lemma 2.1 (Li’s [7]). Let $A_{1}, A_{2}, \ldots, A_{p}$ be symmetric $n \times n$-degree matrices, where $p \geq 2$. Denote $S_{\alpha \beta}=\operatorname{Tr}\left(A_{\alpha}^{T} A_{\beta}\right)$ and $S=S_{11}+S_{22}+\cdots+S_{p p}$. Then

$$
\begin{equation*}
\sum_{\alpha, \beta}\left\{N\left(A_{\alpha} A_{\beta}-A_{\beta} A_{\alpha}\right)+\left(S_{\alpha \beta}\right)^{2}\right\} \leq \frac{3}{2} S^{2} \tag{2.7}
\end{equation*}
$$

where the equality holds if and only if one of the following conditions holds:
(1) $A_{1}=A_{2}=\cdots=A_{p}=0 ;$
(2) Only two of A_{α} 's are different from zero. If we assume $A_{1} \neq 0, A_{2} \neq 0$ and $A_{3}=\cdots=A_{p}=0$, then $S_{11}=S_{22}$. Furthermore there exists an orthogonal $n \times n$-degree matrix U such that

$$
U A_{1} U^{T}=\sqrt{\frac{S}{4}}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & \vdots \\
0 & \cdots & 0
\end{array}\right), \quad U A_{2} U^{T}=\sqrt{\frac{S}{4}}\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & \vdots \\
0 & \cdots & 0
\end{array}\right)
$$

In the rest of this section, we shall give a lower estimate to $|\nabla \sigma|^{2}=\sum_{i, j, k, l}\left(h_{i j k}^{l^{*}}\right)^{2}$.
It is easy to see that $J G\left(e_{i}, e_{j}\right)$ lies in $T_{x} M^{3}$ and is perpendicular to e_{i} and e_{j} for any $i \neq j$. So we can choose e_{1}, e_{2} and e_{3} such that (cf. Ejiri [3])

$$
\begin{equation*}
J G\left(e_{1}, e_{2}\right)=e_{3}, \quad J G\left(e_{2}, e_{3}\right)=e_{1}, \quad J G\left(e_{3}, e_{1}\right)=e_{2} \tag{2.8}
\end{equation*}
$$

It follows from (2.8) that

$$
\begin{equation*}
J_{12,3^{*}}=J_{23,1^{*}}=J_{31,2^{*}}=-1 ; \quad \text { and } \quad J_{i j, k^{*}}=0, \quad \text { otherwise } \tag{2.9}
\end{equation*}
$$

Fixing e_{1} and choosing e_{2} and e_{3} suitably, we can assume $h_{23}^{1^{*}}=0$. Denote

$$
\begin{equation*}
h_{12}^{1^{*}}=x_{1}, \quad h_{13}^{1^{*}}=x_{2}, \quad h_{22}^{1^{*}}=x_{3}, \quad h_{33}^{1^{*}}=x_{4}, \quad h_{23}^{2^{*}}=x_{5}, \quad h_{33}^{2^{*}}=x_{6} \tag{2.10}
\end{equation*}
$$

Then it follows from (1.18) that $A_{i^{*}}$'s can be expressed as

$$
\begin{aligned}
A_{1^{*}} & =\left(\begin{array}{ccc}
-x_{3}-x_{4} & x_{1} & x_{2} \\
x_{1} & x_{3} & 0 \\
x_{2} & 0 & x_{4}
\end{array}\right), \\
A_{2^{*}} & =\left(\begin{array}{ccc}
x_{1} & x_{3} & 0 \\
x_{3} & -x_{1}-x_{6} & x_{5} \\
0 & x_{5} & x_{6}
\end{array}\right), \\
A_{3^{*}} & =\left(\begin{array}{ccc}
x_{2} & 0 & x_{4} \\
0 & x_{5} & x_{6} \\
x_{4} & x_{6} & -x_{2}-x_{5}
\end{array}\right)
\end{aligned}
$$

And the square of the length of σ, say S, is expressed as

$$
\begin{equation*}
S=4\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}+x_{5}^{2}+x_{6}^{2}\right)+2\left(x_{3} x_{4}+x_{1} x_{6}+x_{2} x_{5}\right) \tag{2.12}
\end{equation*}
$$

Let us consider the representations of $\left\{h_{i j k}^{l^{*}}\right\}$. Put

$$
\begin{array}{llll}
h_{123}^{1^{*}}=y_{1}, & h_{122}^{1^{*}}=y_{2}, & h_{133}^{1^{*}}=y_{3}, & h_{112}^{1^{*}}=y_{4} \\
h_{233}^{1^{*}}=y_{5}, & h_{113}^{1^{*}}=y_{6}, & h_{223}^{1^{*}}=y_{7} \tag{2.13}
\end{array}
$$

Since M^{3} is minimal implies $h_{11 k}^{l^{*}}+h_{22 k}^{l^{*}}+h_{33 k}^{l^{*}}=0$ for any k, we have

$$
\begin{equation*}
h_{111}^{1^{*}}=-y_{2}-y_{3}, \quad h_{222}^{1^{*}}=-y_{4}-y_{5}, \quad h_{333}^{1^{*}}=-y_{6}-y_{7} \tag{2.14}
\end{equation*}
$$

So we have

$$
\begin{align*}
& \sum_{i, j, k}\left(h_{i j k}^{1^{*}}\right)^{2}=\sum_{i}\left(h_{i i i}^{1^{*}}\right)^{2}+3 \sum_{i \neq j}\left(h_{i i j}^{1^{*}}\right)^{2}+6\left(h_{123}^{1^{*}}\right)^{2}= \tag{2.15}\\
& \quad=6 y_{1}^{2}+4\left(y_{2}^{2}+y_{3}^{2}+y_{4}^{2}+y_{5}^{2}+y_{6}^{2}+y_{7}^{2}\right)+2\left(y_{2} y_{3}+y_{4} y_{5}+y_{6} y_{7}\right)
\end{align*}
$$

On the other hand, it follows from (1.23) that

$$
\begin{align*}
h_{111}^{2^{*}}=y_{4}+x_{2}, & h_{112}^{2^{*}}=y_{2}, \quad h_{113}^{2^{*}}=y_{1}+x_{4} \tag{2.16}\\
h_{122}^{2^{*}}=-y_{4}-y_{5}+x_{5}, & h_{123}^{2^{*}}=y_{7}+x_{6}, \quad h_{133}^{2^{*}}=y_{5}-x_{2}-x_{5}
\end{align*}
$$

Putting

$$
\begin{equation*}
h_{233}^{2^{*}}=y_{8}, \quad h_{223}^{2^{*}}=y_{9}, \tag{2.17}
\end{equation*}
$$

then we have

$$
\begin{equation*}
h_{222}^{2^{*}}=-y_{2}-y_{8}, \quad h_{333}^{2^{*}}=-x_{4}-y_{1}-y_{9} \tag{2.18}
\end{equation*}
$$

Therefore we infer from (2.16), (2.17) and (2.18),

$$
\begin{align*}
& \sum_{i, j, k}\left(h_{i j k}^{2^{*}}\right)^{2}=\sum_{i}\left(h_{i i i}^{2^{*}}\right)^{2}+3 \sum_{i \neq j}\left(h_{i i j}^{2^{*}}\right)^{2}+6\left(h_{123}^{2^{*}}\right)^{2}= \tag{2.19}\\
= & 4 y_{1}^{2}+4 y_{2}^{2}+4 y_{4}^{2}+6 y_{5}^{2}+6 y_{7}^{2}+4 y_{8}^{2}+4 y_{9}^{2}+2 y_{1} y_{9}+2 y_{2} y_{8}+6 y_{4} y_{5} \\
& +8 x_{4} y_{1}+\left(2 x_{2}-6 x_{5}\right) y_{4}-\left(6 x_{2}+12 x_{5}\right) y_{5}+12 x_{6} y_{7}+2 x_{4} y_{9} \\
& +4 x_{2}^{2}+4 x_{4}^{2}+6 x_{5}^{2}+6 x_{6}^{2}+6 x_{2} x_{5} .
\end{align*}
$$

By the same procedure, we obtain

$$
\begin{align*}
& h_{111}^{3^{*}}=y_{6}-x_{1}, \quad h_{112}^{3^{*}}=y_{1}-x_{3}, \quad h_{113}^{3^{*}}=y_{3} \\
& h_{122}^{3^{*}}=y_{7}+x_{1}+x_{6}, \quad h_{123}^{3^{*}}=y_{5}-x_{5}, \quad h_{133}^{3^{*}}=-x_{6}-y_{6}-y_{7} \tag{2.20}\\
& h_{222}^{3^{*}}=y_{9}+x_{3}, \quad h_{223}^{3^{*}}=y_{8}, \quad h_{233}^{3^{*}}=-y_{1}-y_{9}, \quad h_{333}^{3^{*}}=-y_{3}-y_{8}
\end{align*}
$$

Therefore we infer from (2.20) that

$$
\begin{align*}
& \sum_{i, j, k}\left(h_{i j k}^{3^{*}}\right)^{2}=\sum_{i}\left(h_{i i i}^{3^{*}}\right)^{2}+3 \sum_{i \neq j}\left(h_{i i j}^{3^{*}}\right)^{2}+6\left(h_{123}^{3^{*}}\right)^{2}= \tag{2.21}\\
= & 6 y_{1}^{2}+4 y_{3}^{2}+6 y_{5}^{2}+4 y_{6}^{2}+6 y_{7}^{2}+4 y_{8}^{2}+4 y_{9}^{2}+2 y_{3} y_{8}+6 y_{1} y_{9}+6 y_{6} y_{7} \\
& -2 x_{1} y_{6}+2 x_{3} y_{9}+6 x_{1} y_{7}+6 x_{6} y_{6}-6 x_{3} y_{1}+12 x_{6} y_{7}-12 x_{5} y_{5} \\
& +4 x_{1}^{2}+4 x_{3}^{2}+6 x_{5}^{2}+6 x_{6}^{2}+6 x_{1} x_{6} .
\end{align*}
$$

Denote $F=|\nabla \sigma|^{2}$. Then

$$
F=\sum_{i, j, k, l}\left(h_{i j k}^{l^{*}}\right)^{2}=\sum_{i, j, k}\left(h_{i j k}^{1^{*}}\right)^{2}+\sum_{i, j, k}\left(h_{i j k}^{2^{*}}\right)^{2}+\sum_{i, j, k}\left(h_{i j k}^{3^{*}}\right)^{2}
$$

It follows from (2.15), (2.19) and (2.21) that

$$
\begin{align*}
F= & 16 y_{1}^{2}+8 y_{2}^{2}+8 y_{3}^{2}+8 y_{4}^{2}+16 y_{5}^{2}+8 y_{6}^{2}+16 y_{7}^{2}+8 y_{8}^{2}+8 y_{9}^{2} \\
& +2 y_{2} y_{3}+2 y_{2} y_{8}+2 y_{3} y_{8}+8 y_{1} y_{9}+8 y_{4} y_{5}+8 y_{6} y_{7} \\
& +\left(8 x_{4}-6 x_{3}\right) y_{1}+\left(2 x_{2}-6 x_{5}\right) y_{4}-\left(6 x_{2}+24 x_{5}\right) y_{5} \tag{2.22}\\
& +\left(6 x_{6}-2 x_{1}\right) y_{6}+\left(6 x_{1}+24 x_{6}\right) y_{7}+\left(2 x_{4}+2 x_{3}\right) y_{9} \\
& +4 x_{1}^{2}+4 x_{2}^{2}+4 x_{3}^{2}+4 x_{4}^{2}+12 x_{5}^{2}+12 x_{6}^{2}+6 x_{1} x_{6}+6 x_{2} x_{5} .
\end{align*}
$$

It is not difficult to check that the only critical point of F with respect to $\left(y_{1}, y_{2}, \ldots, y_{9}\right)$ is $P_{0}=\left(y_{1}^{0}, y_{2}^{0}, \ldots, y_{9}^{0}\right)$, where

$$
\begin{align*}
y_{1}^{0} & =\frac{1}{4}\left(x_{3}-x_{4}\right), \quad y_{2}^{0}=0, \quad y_{3}^{0}=0 \\
y_{4}^{0} & =-\frac{1}{4} x_{2}, \quad y_{5}^{0}=\frac{1}{4}\left(x_{2}+3 x_{5}\right), \quad y_{6}^{0}=\frac{1}{4} x_{1} \tag{2.23}\\
y_{7}^{0} & =-\frac{1}{4}\left(x_{1}+3 x_{6}\right), \quad y_{8}^{0}=0, \quad y_{9}^{0}=-\frac{1}{4} x_{3}
\end{align*}
$$

Furthermore we can see that P_{0} is the minimum point of F. Substituting (2.23) into (2.22) and recalling (2.12), we obtain the minimum value of F :

$$
\begin{align*}
F_{\min }= & 3 x_{1}^{2}+3 x_{2}^{2}+3 x_{3}^{2}+3 x_{4}^{2}+3 x_{5}^{2}+3 x_{6}^{2} \\
& +\frac{3}{2} x_{5} x_{2}+\frac{3}{2} x_{6} x_{1}+\frac{3}{2} x_{3} x_{4} \tag{2.24}\\
= & \frac{3}{4} S
\end{align*}
$$

Therefore we get the following lower estimate to $|\nabla \sigma|^{2}$:

$$
\begin{equation*}
|\nabla \sigma|^{2}=\sum_{i, j, k, l}\left(h_{i j k}^{l^{*}}\right)^{2} \geq \frac{3}{4} S \tag{2.25}
\end{equation*}
$$

It follows from $(2.5),(2.6),(2.7)$ and (2.25) that

$$
\begin{equation*}
\Delta S \geq 3 S\left(\frac{5}{2}-S\right) \tag{3.26}
\end{equation*}
$$

Inequality (3.26) implies the following
Proposition 2.1. Let M^{3} be a closed 3-dimensional totally real submanifold of S^{6}. Denote by S the square of the length of the second fundamental form of M^{3}. If $S<5 / 2$, then M^{3} is totally geodesic.

ACKNOWLEDGEMENTS - The author is very grateful to Professor A. Machado for his kind help and good advice. He would like to express his heartfelt gratitude to faculty and staffs of CMAF/UL for their hospitality during his stay and study in Portugal. And he wish to thank referee for his (her) earnest recommendation.

REFERENCES

[1] Chen, B.Y. and Ogiue, K. - On totally real submanifolds, Trans. Amer. Math. Soc., 193 (1974), 257-266.
[2] Chern, S.S.; Carmo, M.P. and Kobayashi, S. - Minimal submanifolds of a sphere with second fundamental form of constant length, in "Functional Analysis and Related Fields" (Proc. Conf. for M. Stone, Univ. Chicago, Chicago, Ill., 1968), Springer-Verlag, New York, 1970, 59-75.
[3] Ejiri, N. - Totally real submanifolds in a 6-sphere, Proc. Amer. Math. Soc., 83(4) (1981), 759-763.
[4] Gray, A. - Nearly Kähler Manifolds, J. Diff. Geom., 4 (1970), 283-309.
[5] Gray, A. - Riemannian manifolds with geodesic symmetries of order 3, J. Diff. Geom., 7 (1972), 343-369.
[6] Gray, A. - The Structure of Nearly Kähler Manifolds, Math. Ann., 223 (1976), 233-248.
[7] Li, A.M. and Li, J.M. - An intrinsic rigidity theorem for minimal submanifolds in a sphere, Arch. Math., 58 (1992), 582-594.
[8] Matsumoto, M. - On 6-dimensional almost Tachibana space, Tensor, N. S., 23 (1972), 250-252.
[9] Simons, J. - Minimal varieties in riemannian manifolds, Ann. of Math., 88 (1968), 62-105.
[10] Takamatsu, K. - Some properties of 6-dimensional K-space, Kodai Math. Sem. Rep., 23 (1971), 215-232.
[11] Watanabe, Y. and Takamatsu, K. - On a K-space of constant holomorphic sectional curvature, Kodai Math. Sem. Rep., 25 (1973), 297-306.
[12] Yamaguchi, S.; Chūman, G. and Matsumoto, M. - On a special almost Tachibana space, Tensor, N. S., 24 (1972), 351-354.

Zhong Hua Hou,

Department of Applied Mathematics, Dalian University of Technology,
Dalian 116024, Liaoning - PEOPLE'S REPUBLIC OF CHINA
E-mail: zhhou@dlut.edu.cn and
CMAF, Universidade de Lisboa, Av. Prof. Gama Pinto, 2, 1649-003 Lisboa - PORTUGAL

E-mail: zhhou@lmc.fc.ul.pt

[^0]: Received: June 29, 2000.
 1980 Mathematics Subject Classification: Primary 53C42; Secondary 32v40.
 Keywords and Phrases: Nearly Kähler manifold; Totally real submanifold.

 * Work done under partial support by SRF for ROCS, SEM.
 * Work done under support by Fundação da Universidade de Lisboa through CMAF, FCT and Programa PRAXIS XXI.

