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INTEGER POINTS UNUSUALLY CLOSE TO
ELLIPTIC CURVES

M. Vâjâitu and A. Zaharescu

Abstract: We consider an elliptic curve Eα,β given by the equation Y 2 = X3 +

αX + β, where α, β are real numbers, and look for integer points close to the curve. In

case the diophantine type of α is larger than 4 we find infinitely many integer points

unusually close to Eα,β or to the curve E−α,β .

1 – Introduction

For any real numbers α, β such that 4α3 + 27β2 6= 0 we denote by Eα,β the

elliptic curve given by the equation:

(1) Y 2 = X3 + αX + β .

In case β = 0 we write Eα for Eα,0. From Siegel’s integer point theorem we

know that the set of integer points on the curve Eα,β is finite. There are however

infinitely many integer points near the curve Eα,β . To be precise, let us denote

by θ(Eα,β) ∈ R ∪ {−∞} the lower bound of those θ ∈ R for which the inequality

(2) |Y 2 −X3 − αX − β | ≤ Xθ

has infinitely many solutions X,Y ∈ Z. By choosing X = n ∈ N and Y =

[
√

n3 + αn+ β], where [ · ] denotes the integer part function, one sees imme-

diately that θ(Eα,β) ≤ 3/2. Reasoning heuristically we would expect that as

n takes the values 1, 2, ..., N , some of the fractional parts {
√

n3 + αn+ β} are

smaller than 1/N 1−ε, which leads us to conjecture that

(3) θ(Eα,β) ≤ 1/2
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for any α, β ∈ R. A general method to produce small fractional parts is to

provide upper bounds for the corresponding exponential sums and then to use

the Erdös–Turán inequality to obtain information on the discrepancy of the above

set of fractional parts, see [Mo], Chapter 1. This method has been applied to

produce small fractional parts of polynomials, see [Sc] and [Ba], which in turn

provide integer points close to curves Y = P (X) with P (X) ∈ R[X]. In principle,

a result based on exponential sums only, will not surpass the so called “square

root type barrier” which is right in the middle between the “trivial upper bound”

and the “expected upper bound”. In order to break the square root type barrier

one needs to find an alternative method. This is done in [Za] in the case of

fractional parts of αn2, where α ∈ R, i.e. in the case of integer points close to the

parabola Y = αX2. Another class of algebraic curves for which the square root

type barrier is broken is the class of hyperelliptic curves C given by an equation

of the form

Y 2 = X2d+1 + P (X)

where P (X) is a polynomial of degree d with real coefficients, see [VZ]. In par-

ticular when d = 1 we have the class of elliptic curves defined in (1). Here the

square root barrier is θ = 1, in the middle between the “trivial upper bound”

θ(Eα,β) ≤ 3/2 and the “expected upper bound” given by (3). Theorem 1 of [VZ]

states in this case that

(4) θ(Eα,β) ≤ 2/3

for any α, β ∈ R and a proof of this result will be given in the appendix. In this

paper we are interested in elliptic curves Eα,β for which there are infinitely many

integer points unusually close to Eα,β . Precisely, by this we mean elliptic curves

Eα,β for which θ(Eα,β) < 1/2. There are such curves, in fact the set of pairs

(α, β) for which θ(Eα,β) < 1/2 is dense in R2. We prove the following stronger

result:

Theorem 1. For any β ∈ R there exists a dense subset Aβ of R such that

for any α ∈ Aβ one has θ(Eα,β) = −∞.

For certain elliptic curves Eα,β one has θ(Eα,β) < 1/2 because of the existence

of a rational curve defined over Q which is unusually close to Eα,β . One such

curve was discovered by Stark, see [La]. He found the parametrization

(5)

{

X = t6 + 2 t2

Y = t9 + 3 t5 + 3/2 t
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which produces integer points unusually close to E1, showing that θ(E1) ≤ 1/3.

By an appropriate modification of (5) one sees that θ(Eα,β) ≤ 1/3 for any rational

number α. Note that when both α, β are rational one also has the lower bound

θ(Eα,β) ≥ 0. If α is rational while β is an irrational number of diophantine type

k then one has the lower bound θ(Eα,β) ≥ 1 − k. The diophantine type of α is

defined as the upper bound of those σ ∈ R for which

(6) |α− a/q| < 1/qσ

for infinitely many rational numbers a/q. For any rational number α, Vojta’s

General Conjecture, see [Vo], implies that the integer points responsible for the

inequality θ(Eα) < 1 lie on the union of a finite set of rational curves. In the

particular case α = 0 one has the more precise conjecture of Hall, which states

that there are only finitely many integer points (X,Y ) such that

0 < |Y 2 −X3| <
√
X .

Hall’s Conjecture is essentially best possible as follows from the work of Danilov

[Da] who proved that there are infinitely many pairs (X,Y ) of integers for which

0 < |Y 2 −X3| ≤ 433
√
2 |X|1/2 .

Returning to the case α rational, α 6= 0 we saw that Vojta’s Conjecture does

not imply any nontrivial lower bound for θ(Eα) because of the possible existence

of several rational curves exceptionally close to Eα. Such a lower bound follows

from the Hall–Lang–Stark Conjecture on integer points on elliptic curves [La],

[Vo]. The conjecture states that for any elliptic curve E given by the equation

Y 2 = X3 + aX + b

with a, b ∈ Z, any integer point (X,Y ) on E satisfies:

|X| ¿ε max
{

|a|3, |b|2
}5/3+ε

.

Lang originally posed the conjecture with an unknown exponent, then Stark

suggested on probabilistic grounds that the exponent should be 5/3. The Hall–

Lang–Stark Conjecture provides us with a lower bound for θ(E), namely

θ(Eα) ≥ 3/10

for any nonzero rational number α. We now consider the case α irrational. Using

Stark’s parametrization one can show that given ε > 0 there exists k(ε) such that

for any α of diophantine type k > k(ε) one has

(7) θ(Eα) < 1/3 + ε .
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A sharper upper bound is provided by the following

Theorem 2. For any irrational number α of diophantine type k > 4 one has

(8) min
{

θ(Eα), θ(E−α)
}

≤ 1/6 + 2/(3 k) .

The Right Hand Side of (8) is < 1/3 for any k > 4. A little bit surprising, for

k > 5 it is < 3/10, an upper bound which should not be obtainable for nonzero

rational numbers α by the Hall–Lang–Stark Conjecture.

2 – Proof of Theorem 1

Fix α0, β ∈ R and ε0 > 0. We need to find an α ∈ (α0− ε0, α0 + ε0) for which

θ(Eα,β) = −∞. Let 2/3 < θ < 1. By (4) it follows that there exists an integer

point (X0, Y0) with X1−θ
0 > 2/ε0 such that

|Y 2
0 −X3

0 − α0 X0 − β | ≤ Xθ
0 .

Note that if one defines α1 by

Y 2
0 = X3

0 + α1 X0 + β ,

one has α1 ∈ (α0 − ε0/2, α0 + ε0/2). Next, choose ε1 > 0 such that (α1 − ε1,

α1 + ε1) ⊂ (α0 − ε0/2, α0 + ε0/2) and such that

(9) |Y 2
0 −X3

0 − αX0 − β | ≤ 1/X0

for any α ∈ [α1 − ε1, α1 + ε1]. We now repeat the above reasoning with α0, β

and ε0 replaced by α1, β and ε1. There are α2 ∈ (α1 − ε1/2, α1 + ε1/2), ε2 > 0

and an integer point (X1, Y1) such that

Y 2
1 = X3

1 + α2 X1 + β ,

(α2 − ε2, α2 + ε2) ⊂ (α1 − ε1/2, α1 + ε1/2) and such that instead of (9) one has

|Y 2
1 −X3

1 − αX1 − β | ≤ 1/X2
1

for any α ∈ [α2 − ε2, α2 + ε2]. By repeating the same reasoning we obtain four

sequences {αk}k∈N, {εk}k∈N, {Xk}k∈N and {Yk}k∈N such that for any k ≥ 1 one

has: εk > 0, Xk, Yk ∈ N, (αk − εk, αk + εk) ⊆ (αk−1 − εk−1/2, αk−1 + εk−1/2),

Y 2
k = X3

k + αk+1 Xk + β
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and

(10) |Y 2
k −X3

k − αXk − β | ≤ 1/Xk+1
k

for any α ∈ [αk+1 − εk+1, αk+1 + εk+1]. The sequence {αk}k∈N is convergent.

Denote by α its limit and consider the elliptic curve Eα,β . By (10) it follows that

for any θ ∈ R there are infinitely many integer points satisfying (2), namely the

points (Xk, Yk) with k ≥ −θ − 1. Therefore θ(Eα,β) = −∞ and Theorem 1 is

proved.

3 – Proof of Theorem 2

Let α be an irrational number of type k > 4 and fix a small number 0 < δ <

k− 4. There are infinitely many pairs of integers (an, qn) such that for any n one

has

(11) |α− an/qn| < 1/qk−δn .

Replacing if necessary α by −α we may assume in the following that βn = α −
an/qn is positive for infinitely many n. Let us fix an n with βn > 0 and use

Stark’s parametrization to find integer points close to the curve Ean/qn
. With X,

Y given by (5) one has

Y 2 = X3 +X + t2/4 .

We now replace (5) by the parametrization

(12)

{

X = (an/qn)
2 t6 + 2 (an/qn) t

2

Y = (an/qn)
3 t9 + 3 (an/qn)

2 t5 + 3/2 (an/qn) t

and obtain

(13) Y 2 = X3 + an/qnX + a2
n t

2/4 q2
n .

Here if we let t be a relatively small positive integer which is divisible by 2 qn then

on one hand X and Y given by (12) will be integers and on the other hand the

point (X,Y ) will be close to the curve Ean/qn
by (13). Since this curve is close

to Eα we get an integer point (X,Y ) close to Eα. This line of reasoning proves

(7) only. Now the main point in the proof of Theorem 2 is to use the error βn
which appears in the approximation (11) in order to cancel or at least decrease

the contribution of the last term in (13). The details are as follows.
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We set t = 2 qnu with u ∈ N to be chosen later. This will ensure that X,Y

given by (12) are integers. Next, we write (13) in the form

(14) Y 2 = X3 + αX + a2
n u

2 − 64βn a
2
n q

4
n u

6 − 8βn an qn u
2 .

Here we want to make the quantity

|a2
n u

2 − 64βn a
2
n q

4
n u

6
n| = 64βn a

2
n q

4
n u

2 |1/(64βn q4
n)− u4|

as small as possible and for this reason we let

u = un =
[

1/(2
√
2 qn β

1/4
n )

]

.

Then set t = tn = 2 qn un and define X = Xn and Y = Yn by (12). Note that

un ≈ 1/(qn β
1/4
n ) > q

(k−4−δ)/4
n which goes to infinity as n→∞. We derive

(15) 1/(64 q4
n βn) = u4

n +O(u3
n) = u4

n +O
(

1/(q4
n βn un)

)

from which we obtain

(16) |a2
n u

2
n − 64βn a

2
n q

4
n u

6
n| = O(a2

n un) = Oα(q
2
n un) .

By (15) the last term in (14) satisfies

(17)
8βn qn an u

2
n = Oα(βn q

2
n u

−2
n u4

n)

= Oα(βn q
2
n u

−2
n q−4

n β−1
n ) = Oα

(

1/(q2
nu

2
n)
)

.

From (14), (16) and (17) we get

(18) Y 2
n = X3

n + αXn +Oα(q
2
n un) .

Here one has

(19) qn un ≈ tn ≈ X1/6
n

from which we deduce

(20) qn = (qn q
(k−4−δ)/4
n )4/(k−δ) ¿ (qn un)

4/(k−δ) ≈ X2/3(k−δ)
n .

By (18), (19) and (20) we have

(21) Y 2
n = X3

n + αXn +Oα,δ(X
1/6+2/3(k−δ)
n ) .
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Since (21) holds true for infinitely many integer points (Xn, Yn) it follows that

min
{

θ(Eα), θ(E−α)
}

≤ 1/6 + 2/3 (k − δ) .

We now let δ → 0 and obtain (8), which concludes the proof of Theorem 2.

4 – Appendix

Proposition. θ(Eα,β) ≤ 2/3.

Proof: The equation Y 2 = X3+αX+β defines implicitly Y as a function of

X. One needs to find integer values for X such that the fractional part of Y (X)

is small. We take this algebraic function Y (X) and look at its expansion at ∞.

We have

Y (X) = (X3 + αX + β)1/2 = X3/2 + α/2X−1/2 +O(X−3/2) .

The statement will be proved if we show that the inequality

‖X3/2 + α/2X−1/2‖ ¿ε X−5/6+ε

holds true for infinitely many integers X, where ‖·‖ stands for the distance to the

nearest integer. We split up X as X = u2 + v, where u, v ∈ N and v is bounded

by u2/3+ε. Since X ≈ u2, what we need to show is that one has

(22)
∥

∥

∥(u2 + v)3/2 + α/2(u2 + v)−1/2
∥

∥

∥ ¿ε u−5/3+ε

for infinitely many pairs (u, v) ∈ N2. We have

(u2 + v)−1/2 = u−1 − v u−3/2 +O(u−3) = u−1 +O(u−7/3+ε)

and

(u2 + v)3/2 = u3 + 3/2 v u+ 3/8 v2 u−1 − 1/16 v3 u−3 +Oε(u
−7/3+4ε) .

Therefore, if we choose u and v such that v2 is divisible by 8u then we get

‖Y (X)‖ = ‖− 1/16 v3 u−3 + α/2u−1‖+Oε(u
−7/3+4ε) .

If α 6= 0 is rational we achieve (22) by arranging u and v such that

(23) −1/16 v3 u−3 + α/2u−1 = 0 .

To do this, we take any large integer w divisible by the denominator of α and set

(24) u = 8αw3 , v = 8αw2 .
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Then (23) holds true, u, v are integers and moreover v2 is divisible by 8u as

required. This solves the case α rational, in the stronger form: θ(Eα,β) ≤ 1/3.

If α is irrational we take the convergents bn/qn to the continued fraction of

α and for each n we replace α by bn/qn in (24). We choose w = wn ∈ N∗ to be

a small multiple of qn. This wn produces a pair (un, vn) which gives us further

an integer point (Xn, Yn). Using the inequality |α − bn/qn| < q−2
n we see that

|− 1/16 v3
n u

−3
n + α/2un| ¿ 1/(un q

2
n). Now qn ≈ wn, w

3
n ≈ un, u

2
n ≈ Xn and

we find that ‖Y (Xn)‖ ¿ X
−5/6
n . This gives θ(Eα,β) ≤ 2/3 which completes the

proof.
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