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Abstract: For distributions defined on open sets of Rn, we define and study

notions of superior limit, inferior limit, and a consequent concept of value at a point,

that is more general than that introduced by S. Lojasiewicz and considered in various

works of Mikusinski, Sebastião e Silva and the present author.

1 – Introduction

In this work we give definitions of the notions of superior limit and inferior

limit of a real distribution of n variables at a point of its domain and study

some properties of these notions, showing that they are well connected with the

fundamental algebraic operations of distribution theory. For distributions of one

variable these questions were studied in [4], the aim of the present work being

essentially to extend to the case of several variables some results of that paper.

The concepts of superior and inferior limit generate naturally a notion of value of

a (real or complex) distribution at a point. This notion, keeping all the essential

properties of the homonymous concept considered in [3], [11], [12] and [14], is

much more general than this one (as can be seen in [4] and [8]). The extension

to the case of distributions defined on open sets of Rn of other subjects treated

in [4] — namely applications to the integration of distributions — and also of

some questions studied in other papers ([3], [5] to [9] and [13]) will be the object

of future works.
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2 – Superior and inferior limits and value for strictly bounded distri-

butions

Let n be a positive integer, I1, I2, ..., In open (non empty) intervals of R,
I = I1× · · ·×In, a = (a1, ..., an) a point in I and Ia = (I1\{a1})× · · ·×(In\{an}).

We shall denote by BC(Ia) the (real) vector space of all bounded continuous real

functions defined on Ia. For F ∈ BC(Ia), F (a) and F (a) will be, respectively,

the upper and the lower limit of the function F at the point a; so, if ‖ · ‖ is (for

instance) the euclidean norm on Rn, we shall have:

F (a) = lim
ε→0+

sup
{
F (x) : ‖x− a‖ < ε, x ∈ Ia

}
,

F (a) = lim
ε→0+

inf
{
F (x) : ‖x− a‖ < ε, x ∈ Ia

}
.

For each j ∈ {1, ..., n} let ρj be the operator such that, for F ∈ BC(Ia) and

x ∈ Ia,

(ρj F )(x) =
1

xj − aj

∫ xj

aj

F (x1, ..., xj−1, ξ, xj+1, ..., xn) dξ .

Then we have:

Proposition 2.1. ρj is a linear injection of BC(Ia) into itself; for each

F ∈ BC(Ia), putting G = ρj F , we have: F (a) ≤ G(a) ≤ G(a) ≤ F (a).

Proof: It is clear that G : Ia → R is a continuous function and that (since
each value G(x) is a certain kind of mean value of the function F ) it is also

bounded on Ia. To see that G(a) ≤ F (a) notice that, if λ is a real number

greater than F (a), there exists ε > 0 such that, for x ∈ Ia and ‖x − a‖ < ε, we

have F (x) < λ; then, for the same values of x,

1

xj − aj

∫ xj

aj

F (x1, ..., xj−1, ξ, xj+1, ..., xn) dξ < λ

and so G(a) < λ; so we have G(a) ≤ F (a). The relation F (a) ≤ G(a) is obtained

in a similar way. Finally, since we have, for each x ∈ Ia

F (x) =
∂

∂xj

[
(xj − aj)G(x)

]
,

we see that ρj is injective.
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It is clear that each function F ∈ BC(Ia) (being defined almost everywhere on

I and locally integrable on this interval) can be identified with a (real) distribution

defined on I; it is also clear that the distributions that correspond to two distinct

functions of the space BC(Ia) are always distinct distributions. So, denoting by

D′
R(I) the space of the real distributions defined on I, we can write BC(Ia) ⊂

D′
R(I). Now, let us denote by ∂j (for j ∈ {1, ..., n}) the operator defined on D

′
R(I)

and such that

∂j(g) = f iff f = Dj

[
(x̂j − aj) g

]
,

where the symbolDj denotes derivation in order to xj in the sense of distributions

and the accent over a variable means that it is a dummy variable.

It is obvious that, for each F ∈ BC(Ia) and each j, ∂j(ρj F ) = F and also that

two operators, ∂i and ∂j , are always interchangeable. We shall put ∂ = ∂1∂2 · · · ∂n
and, for each p ∈ N, ∂p= ∂

p
1∂

p
2 · · · ∂

p
n. Now we can introduce the following defini-

tion: The distribution f is said to be strictly bounded at the point a — and we

can write f ∈ B∗
a(I) — if there exists F ∈ BC(Ia) and p ∈ N such that f = ∂pF .

It is clear that, if p < q (p, q ∈ N) and f = ∂pF with F ∈ BC(Ia), there exists

F1 ∈ BC(Ia) such that f = ∂qF1: it is sufficient to take F1 = ρq−pF , where

ρq−p = ρ
q−p
1 · · · ρq−pn . From this it follows easily that B∗

a(I) is a subspace of the

real vector space D′
R(I).

Obviously BC(Ia) ⊂ B
∗
a(I). But a distribution that, on the set Ia, is identical

to a function that does not belong to BC(Ia) may well be an element of the

space B∗
a(I). For instance — with n = 1, I = R and a = 0 — the distribution

sin 1
x
−D(x sin 1

x
), that coincides with the function 1

x
cos 1

x
in the set R\{0}, is

strictly bounded at the origin.

Now, let us introduce a result that is essential in the sequel:

Theorem 2.2. For each j ∈ {1, ..., n}, the operator ∂j , restricted to the

space B∗
a(I), is an automorphism of this vector space.

Before the proof of this theorem (and even before introducing the lemma that

will precede that proof) it is convenient to remember the definition of the notion

of pseudo-polynomial.

Let J = J1×J2× · · ·×Jn be a (non degenerate) interval of Rn and r =

(r1, r2, ..., rn) ∈ Nn. A pseudo-polynomial defined on J and of degree less than r

is any function P that can be put in the form:

P = P1 + P2 + · · ·+ Pn ,

where, for each j ∈ {1, ..., n}, Pj is a “polynomial” in xj of degree less than rj
and with “coefficients” that are (real or complex) continuous functions defined
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on J and independent of xj , that is

Pj(x) = Pj(x1, ..., xn) =

rj−1∑

k=0

ajk(x1, ..., xj−1, xj+1, ..., xn)x
k
j ,

where the functions ajk are continuous on J .

It is well known that, if F is a continuous function defined on J , the equality

DrF = Dr1
1 Dr2

2 · · ·D
rn
n F = 0

(where Dj denotes, as usual, the operator of derivation in order to xj in the sense

of distributions) is verified iff the function F is a pseudopolynomial of degree less

than r defined on J .

Now we can prove the following lemma:

Lemma 2.3. Let J1, J2, ..., Jn be n intervals of R unbounded on the left

and J = J1× · · ·×Jn. If the pseudo-polynomial P (x1, ..., xn) defined on J , has

the limit zero when each one of the variables xj tends to −∞ (the other n − 1

variables being fixed in arbitrary points of their domains) then P (x1, ..., xn) is

identically zero.

Proof (of the lemma): We shall use induction on the number of variables, n;

since the result is obvious for n = 1, we shall accept its truth in the case where

the number of variables is n − 1 and we shall prove it for a pseudopolynomial

P (x1, ..., xn) in the conditions of the hypothesis of the lemma. We can suppose

that the “polynomials” in x1, x2, ..., xn, of which P (x1, ..., xn) is the sum, are all

of the same “degree” p− 1, since it would always be possible to reduce ourselves

to that case adding, if necessary, some terms with a null coefficient.

So, let us suppose that we have

(1) P (x1, ..., xn) =
n∑

j=1

p−1∑

k=0

ajk(x1, ..., xj−1, xj+1, ..., xn)x
k
j

and, chosen p distinct points ξ0, ξ1, ..., ξp−1 in the interval Jn, let us consider

the system (with p equations in the unknowns an,0(x1, ..., xn−1), ...,

an,p−1(x1, ..., xn−1)):

n−1∑

j=1

p−1∑

k=0

ajk(x1, ..., xj−1, xj+1, ..., xn−1, ξl)x
k
j +

p−1∑

k=0

ank(x1, ..., xn−1) ξ
k
l =

= P (x1, ..., xn−1, ξl) (l = 0, ..., p− 1) ,
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whose determinant is the Vandermonde determinant of (ξ0, ..., ξp−1). We can

easily see that the solution of that system can be put in the form

ank(x1, ..., xn−1) =

=
p−1∑

l=0

βkl P (x1, ..., xn−1, ξl) +
n−1∑

j=1

p−1∑

l=0

bjkl(x1, ..., xj−1, xj+1, ..., xn−1)x
l
j

(k = 0, ..., p− 1) ,

where the βkl are constants and the functions bjkl are independent of xj and of

xn.

If we substitute these values in the equality (1) we obtain a new equality of

the form:

n−1∑

j=1

p−1∑

l=0

cjl(x1, ..., xj−1, xj+1, ..., xn)x
l
j =

= P (x1, ..., xn) −
p−1∑

k=0

p−1∑

l=0

βkl P (x1, ..., xn−1, ξl)x
k
n .

According to the hypothesis of the lemma, if the variable xj tends to −∞, all

the other variables being fixed, the second member will tend to zero (for every

value of j). So, for any value of xn in the interval Jn, the first member (that is

a pseudo-polynomial in x1, ..., xn−1 if xn is fixed) tends to zero whenever any of

its variables tends to −∞. Then it follows from the induction hypothesis that we

must have

P (x1, ..., xn) =
p−1∑

k=0

p−1∑

l=0

βkl P (x1, ..., xn−1, ξl)x
k
n .

Now, taking into account that the first member — and then also the second, that

is a “polynomial” in xn — has the limit zero when xn→ −∞, we can conclude

that P (x1, ..., xn) is identically zero.

Proof (of Theorem 2.2): It is easily seen that the restriction of ∂j to the

space B∗
a(I) (restriction that will be denoted by the same symbol, ∂j) is a linear

operator from this space onto itself; it is also clear that, to prove that ∂j is one-

to-one, it will be enough to show that, from one equality of the form ∂pF = 0

(with F ∈ BC(Ia) and p ∈ N), it follows necessarily F = 0.

Suppose then that we have ∂pF = 0 and denote by K1 the set of all points

x = (x1, ..., xn) of the interval I such that xj > aj for every value of j; it is clear

that K1 is one of the connected components of the set Ia. Denote also by F1 the

restriction of the function F to the set K1.



144 J. CAMPOS FERREIRA

Now, starting from the equality ∂pF1 = 0 (that follows immediately from

the hypothesis ∂pF = 0), let us change the variables x1, ..., xn to new variables

u1, ..., un, by means of the formulas:

uj = log(xj − aj) (j ∈ {1, ..., n}) .

We shall obtain (on one interval J1, that is the cartesian product of n intervals

unbounded on the left) an equality of the form

(2) DpG1(u1, ..., un) = 0

where

G1(u1, ..., un) = eu1+···+un F1(a1 + eu1 , ..., an + eun) .

Taking into account the equality (2) and the fact that G1 is a continuous

function on J1, we see that G1 is a pseudo-polynomial defined on this interval;

since the function F is bounded we see also that G1 tends to zero when each

one of the variables uj tends to −∞, the other variables staying fixed. Now the

lemma allows us to conclude that G1 = 0 and so that F = 0 on K1.

We should prove analogously that F is equal to zero in each one of the other

connected components of Ia (the change of variables to consider would be defined

in each case by the system uj = log |xj − aj |, j ∈ {1, ..., n}). So we can conclude

that F is the null function on Ia.

For each j, let ∂−1
j be the inverse (of the restriction to B∗

a(I)) of the operator

∂j ; for each p ∈ N, put ∂−p = ∂
−p
1 · · · ∂−pn . Moreover, if f is a distribution of the

space B∗
a(I), put fp = ∂−pf . Then it is clear that we have fp ∈ B

∗
a(I) for every

value of p and also fp ∈ BC(Ia) if the value of p is sufficiently large.

For f ∈ B∗
a(I) we shall call degree of f at the point a — dega f — the least

value of p ∈ N such that fp ∈ BC(Ia). Then , for each f ∈ B∗
a(I), we can consider

two sequences: {fp(a)} and {fp(a)} (with p ∈ N, p ≥ dega f), where fp(a) [resp.

fp(a)] denotes as before the upper limit [resp. lower limit] of the function fp at

the point a.

From Proposition 2.1 it follows that, for p ≥ dega f , we have:

fp(a) ≤ fp+1(a) ≤ fp+1(a) ≤ fp(a) .

So we can introduce the following definitions:

Let f ∈ B∗
a(I) and, for each p ≥ dega f , let fp = ∂−pf ; then, the limit of the

sequence fp(a) [resp. fp(a)] will be called superior limit [resp. inferior limit] of

the distribution f at the point a and will be denoted by lim sup
a

f [resp. lim inf
a

f ].
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For any distribution f ∈ B∗
a(I) we have clearly: lim infa

f ≤ lim sup
a

f . If the

equality is verified, we say that the distribution f is strictly continuous at the

point a and the common value of the superior and inferior limits, denoted by

f(a), is called the value of f at the point a.

We shall use the symbol V∗
a(I) to denote the set of all distributions that are

strictly continuous at a.

It is convenient to observe that, when f is a function in the space BC(Ia),

the equalities

f(a) = lim sup
a

f , f(a) = lim inf
a

f

are not generally satisfied. For instance, with n = 1, I = R, a = 0 and h(x) =

sin 1
x
, we have, as it is easily verified,

lim sup
0

h(x) = lim inf
0

h(x) = 0

and h(0) = 1, h(0) = −1.

In any case it is clear that, for f ∈ BC(Ia), we always have:

(3) f(a) ≤ lim inf
a

f ≤ lim sup
a

f ≤ f(a) .

So, in a sense, the notions of superior and inferior limit of a distribution at

a point do not precisely generalize the usual homonymous notions for functions,

although, as we shall see in the next chapter, they share with them a lot of

significant properties.

On the other hand, it follows immediately from the inequalities (3) that, if

the function f has a limit at the point a in the usual sense, then it belongs to

the space V∗
a(I) and the value f(a) coincides with that limit.

3 – Superior and inferior limits and value: the general case

Let A be an open set of Rn, a a point in A and f a real distribution defined

in A.

We shall say that f is bounded at the point a, and we shall write f ∈ Ba(A),

iff there exists an open interval I of Rn such that

i) a ∈ I ⊂ A, and

ii) f|I ∈ B
∗
a(I),

(where f|I denotes the restriction of f to the interval I).
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Now, we easily recognize the coherence of the following definitions: If f ∈

Ba(A) and if I is an interval such that conditions i) and ii) are satisfied, the real

number lim sup
a

f|I [resp. lim inf
a

f|I ] will be called superior limit [resp. inferior

limit] of f at the point a, and will be denoted by lim sup
a

f [resp. lim inf
a

f ]. If

lim sup
a

f = lim inf
a

f , we shall say that f is continuous at the point a, with the

value f(a) = lim sup
a

f = lim inf
a

f . The set of distributions defined in A and

continuous at the point a will be denoted by Va(A).

Suppose now that the open set A coincides with an interval I containing the

point a: then we have obviously B∗
a(I) ⊂ Ba(I) and V

∗
a(I) ⊂ Va(I), and these

inclusions are strict. For instance, if I is an unbounded open interval of Rn, it

is easy to see that each one of the coordinate functions fj(x) = xj defined on

I, although obviously continuous at each point of this interval, is not strictly

bounded at any one of these points. It is also clear that the superior and inferior

limits of a distribution that is strictly bounded at the point a are the same if the

distribution is considered as an element of B∗
a(I) or as an element of Ba(I) (and

analogously for the value at the point a of an element of the space V∗
a(I)).

We shall state now some general properties of the concepts just defined. In

many cases their proofs are so easy that we have decided to omit them.

Proposition 3.1. Let a ∈ Rn and A,A′ be two open sets of Rn such

that a ∈ A′ ⊂ A; let also f ∈ D′
R(A). Then f ∈ Ba(A) [resp. f ∈ Va(A)] iff

f|A′ ∈ Ba(A
′) [resp. f|A′ ∈ Va(A

′)] and in that case

lim sup
a

f = lim sup
a

f|A′ , lim inf
a

f = lim inf
a

f|A′ [resp. f(a) = f|A′(a)] .

In all the following propositions up to Corollary 3.11 A will continue to be an

open set of Rn, and a a point in A.

Proposition 3.2. Let f ∈ Ba(A) [resp. f ∈ Va(A)], g ∈ D′
R(A) and j ∈

{1, 2, ..., n}; if there is an interval I such that a ∈ I ⊂ A and g|I = ∂jf|I , then

g ∈ Ba(A) [resp. g ∈ Va(A)] and

lim sup
a

g = lim sup
a

f, lim inf
a

g = lim inf
a

f [resp. g(a) = f(a)] .

Proposition 3.3. Let f, g ∈ Ba(A), h = f + g and denote by α and β,

respectively, the smallest and the largest of the two numbers:

lim inf
a

f + lim sup
a

g and lim inf
a

g + lim sup
a

f .
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Then h ∈ Ba(A) and

lim inf
a

f + lim inf
a

g ≤ lim inf
a

h ≤ α ,

β ≤ lim sup
a

h ≤ lim sup
a

f + lim sup
a

g .

Corollary 3.4. If f ∈ Va(A), g ∈ Ba(A) and h = f + g, then:

lim inf
a

h = f(a) + lim inf
a

g , lim sup
a

h = f(a) + lim sup
a

g .

Corollary 3.5. If f, g ∈ Va(A) and h = f + g, then h ∈ Va(A) and

h(a) = f(a) + g(a).

Proposition 3.6. Let f ∈ Ba(A), λ ∈ R and g = λ f ; then g ∈ Ba(A) and

lim sup
a

g = λ lim sup
a

f, lim inf
a

g = λ lim inf
a

f, if λ ≥ 0 ,

lim sup
a

g = λ lim inf
a

f, lim inf
a

g = λ lim sup
a

f, if λ < 0 .

Corollary 3.7. If f ∈ Va(A), λ ∈ R and g = λ f , then g ∈ Va(A) and

g(a) = λ f(a).

Corollary 3.8. Ba(A) is a vector subspace of the space D′
R(A) of all real

distributions defined on A and Va(A) is a vector subspace of Ba(A). The map

f 7→ f(a), of the space Va(A) onto R, is linear.

Now we shall prove the following result:

Theorem 3.9. Let(1) f ∈ Ba(A), ϕ ∈ C∞
R (A) and suppose that ϕ(a) = 0;

then ϕf ∈ Va(A) and (ϕf)(a) = 0.

Proof: Denote by K the set of all distributions h ∈ Ba(A) such that, for

every ϕ ∈ C∞
R (A) with ϕ(a) = 0, we have ϕh ∈ Va(A) and (ϕh)(a) = 0. We

must prove that K= Ba(A).

First note that, if g ∈ D′
R(A) and if there exists an interval I such that

a ∈ I ⊂ A and g|I ∈ BC(Ia), then clearly g ∈ K. So, to conclude the proof, it

will be sufficient to show that, for any f, g ∈ D′
R(A) and every j ∈ {1, ..., n}, if we

(1) We denote by C∞R (A) [resp. C∞(A)] the space of all real [resp. complex] infinitely dif-
ferentiable functions defined on A.
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have g ∈ K and if there is an interval I (with a ∈ I ⊂ A) such that f|I = ∂j(g|I),

then f ∈ K. Suppose then that g, I and j satisfy the conditions just stated and

that we have f|I = ∂j(g|I); if ϕ ∈ C∞
R (A) and ϕ(a) = 0 we shall have:

(4) ϕf|I = ϕDj

[
(x̂j − aj) g|I

]
= ∂j(ϕg|I)− (x̂j − aj)

∂ϕ

∂xj
g|I .

As g ∈ K, it follows from the definition of this set that we have ϕg ∈ Va(A)

and (ϕg)(a) = 0. So, Proposition 3.1 shows the distribution ϕg|I is an element

of the space Va(I) with value zero at the point a; then by Proposition 3.2 we have

also ∂j(ϕg|I) ∈ Va(I), and ∂j(ϕg|I)(a) = 0. On the other hand, as (x̂j − aj)
∂ϕ
∂xj

belongs to the space C∞
R (A) with value 0 at the point a, we shall have in a

similar way (x̂j − aj)
∂ϕ
∂xj

g|I ∈ Va(I), with value zero at the same point. Then,

by means of the equality (4), Corollaries 3.5 and 3.7 and Proposition 3.1, we can

conclude that ϕf ∈ Va(A) and (ϕf)(a) = 0, which means that f ∈ K, finishing

the proof.

Proposition 3.10. Let f ∈ Ba(A), ϕ ∈ C∞
R (A). Then ϕf ∈ Ba(A) and

lim sup
a

(ϕf) = ϕ(a) lim sup
a

f, lim inf
a
(ϕf) = ϕ(a) lim inf

a
f if ϕ(a) ≥ 0 ,

lim sup
a

(ϕf) = ϕ(a) lim inf
a

f, lim inf
a
(ϕf) = ϕ(a) lim sup

a
f if ϕ(a) < 0 .

To verify this result it is sufficient to consider the equality

ϕf = ϕ(a) f + (ϕ− ϕ(a)) f ,

and take into account Proposition 3.6, Theorem 3.9 and Corollary 3.4. From

Proposition 3.10 it follows immediately:

Corollary 3.11. If f ∈ Va(A) and ϕ ∈ C∞
R (A), then ϕf ∈ Va(A) and

(ϕf)(a) = ϕ(a) f(a).

The following properties concerning the tensor product, are also very natural:

Theorem 3.12. Let m and n be two positive integers, A [resp. B] be an

open set in Rm [resp. Rn], a ∈ A, b ∈ B, f ∈ Ba(A), g ∈ Bb(B) and h = f ⊗ g.

Then h ∈ B(a,b)(A×B) and, putting

α∗ = lim inf
a

f , α∗ = lim sup
a

f , β∗ = lim inf
b

g , β∗ = lim sup
b

g ,



GENERAL NOTIONS OF SUPERIOR LIMIT, INFERIOR LIMIT... 149

we have:
lim inf

(a,b)
h = min

{
α∗ β∗, α∗ β

∗, α∗β∗, α∗β∗
}

,

lim sup
(a,b)

h = max
{
α∗ β∗, α∗β

∗, α∗β∗, α∗β∗
}

.

Proof: From f ∈ Ba(A) it follows the existence of an open interval I such

that a ∈ I ⊂ A and f|I ∈ B
∗
a(I); then, for p ≥ dega f|I , we shall have fp =

∂−px f|I ∈ BC(Ia) (where, for every h ∈ B∗
a(I), we put

∂xh = Dx1
· · ·Dxn

[
(x̂1 − a1) · · · (x̂n − an)h

]
,

∂x being an automorphism of B
∗
a(I) according to Theorem 2.2). Analogously, as

g ∈ Bb(B), there exists one open interval J such that b ∈ J ⊂ B and, supposing

p > degb g|J , gp = ∂−py g|J ∈ BC(Jb) (where ∂y has the obvious meaning).

So, for p ≥ max{dega f|I , degb g|J} we shall have also, putting K= I×J (and

then K(a,b) = Ia×Jb), h|K = f|I ⊗ g|J ∈ B
∗
(a,b)(K) since fp ⊗ gp ∈ BC(K(a,b))

and, with an obvious notation,

∂
p
(x,y)(fp ⊗ gp) = ∂px(fp)⊗ ∂py(gp) = h|K .

So we see that h ∈ B(a,b)(A×B) (and also that deg(a,b) h|K ≤ p).

Putting hp = fp ⊗ gp, we deduce easily that:

hp(a, b) = min
{
fp(a) gp(b), fp(a) gp(b), fp(a) gp(b), fp(a) gp(b)

}
,

hp(a, b) = max
{
fp(a) gp(b), fp(a) gp(b), fp(a) gp(b), fp(a) gp(b)

}
.

Now, to complete the proof it is sufficient to let p→ +∞.

As immediate consequences we have the following two corollaries:

Corollary 3.13. With the same notation of Theorem 3.12, if f ∈ Va(A)

then:

lim inf
(a,b)

h = f(a) lim inf
b

g, lim sup
(a,b)

h = f(a) lim sup
b

g, if f(a) ≥ 0 ,

lim inf
(a,b)

h = f(a) lim sup
b

g, lim sup
(a,b)

h = f(a) lim inf
b

g, if f(a) < 0 .

Corollary 3.14. With the same notation of Theorem 3.12, if f ∈ Va(A) and

g ∈ Vb(B), h ∈ V(a,b)(A×B) and h(a, b) = f(a) g(b).
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Now, we are going to analyse some relations between the chief concepts that

we are studying and the operation of composition. As we shall see, the changes

of variables that are “well related” to those concepts possess some particular

properties, which are convenient to consider immediately.

So, let A and B be two open sets in Rn and µ a map from A to B; for each

x = (x1, ..., xn) ∈ A let µ(x) = y = (y1, ..., yn) and suppose that the map µ can

be expressed by means of the system

yj = pj(x) = pj(x1, ..., xn) (j ∈ {1, ..., n}) ,

where pj∈C∞
R (A). Let also a=(a1, ..., an) be a fixed point in A, b=(b1, ..., bn)=

µ(a) and suppose that the jacobian Jµ =
∂(p1,...,pn)
∂(x1,...,xn) does not vanish at the point a.

Finally, suppose that there exists one open interval I (with a ∈ I ⊂ A) satisfying

the conditions:

i) the restriction of µ to I, µ|I , is a diffeomorphism from I to the set µ(I);

ii) the jacobian Jµ is different from 0 at each point of I;

iii) for each j ∈ {1, ..., n} and each x = (x1, ..., xn) ∈ I the conditions

pj(x1, ..., xn) = bj and xj = aj

are equivalent(2).

From this we deduce easily that, for each j, there exists a function ϕj ∈ C∞
R (I),

taking on I values that are all strictly positive or all strictly negative, and such

that, in each point x ∈ I we have

yj − bj = pj(x)− bj = (xj − aj)ϕj(x) .

In order to get this result it is sufficient to observe that

yj − bj = pj(x1, ..., xj−1, xj , xj+1, ..., xn)− pj(x1, ..., xj−1, aj , xj+1, ..., xn)

=

∫ xj

aj

∂pj

∂xj
(x1, ..., xj−1, uj , xj+1, ..., xn) duj ,

or, putting uj − aj = (xj − aj)u
∗
j ,

yj − bj = (xj − aj)

∫ 1

0

∂pj

∂xj

(
x1, ..., xj−1, aj + (xj − aj)u

∗
j , xj+1, ..., xn

)
du∗j ,

(2) It is easy to see that, to assure the existence of an interval I satisfying i), ii) and iii) it
is sufficient to suppose that, in some neighbourhood of a (and for each j ∈ {1, ..., n}) we have
pj(x1, ..., xn) = bj if xj = aj .
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where the function defined by the integral, that we shall denote by ϕj , is clearly

of class C∞.

Besides, it is obvious that ϕj cannot be zero at any point x ∈ I where pj(x) 6=

bj ; but ϕj cannot also be zero at any point x where we have pj(x) = bj — and so,

by iii), xj = aj — because then the jacobian Jµ would be zero at the same point,

in contradiction with ii). Being different from zero at each point of I, ϕj must

have a fixed sign on this interval. So we see that each one of the 2n connected

components of the set Ia = {x ∈ I : (x1 − a1) (x2 − a2) · · · (xn − an) 6= 0} is

mapped by µ into a connected component of µ(Ia). For commodity, we shall

suppose in the sequel that the functions ϕj are all positive; without any loss of

generality we shall also suppose that, at every point x ∈ I, the inequalities

1

2
ϕj(a) < ϕj(x) < 2ϕj(a) (j ∈ {1, 2, ..., n})

are satisfied.

Before obtaining the chief result relating the superior and inferior limits with

the change of variables, we shall state and prove four lemmas.

Lemma 3.15. Let x be a point in the set Ia such that the open interval J ′
y,

determined(3) by the points b and y = µ(x) is contained in µ(I); let also Jx be

the interval determined by the points a and x, and let Ax = µ−1(J ′
y). Then for

every λ ∈ ]0, 1[ there exists ε > 0 such that, putting

J1−λ
x = λa+ (1− λ) Jx and J1+λ

x = −λa+ (1 + λ) Jx ,

we have J1−λ
x ⊂ Ax ⊂ J1+λ

x if ‖x− a‖ < ε.

Proof: First observe that, without loss of generality, we can suppose that

the point a is the center of the interval I (since this interval could always be

substituted by a subinterval centered at that point); observe also that, to prove

the lemma, it is sufficient to consider the case where, for every j, we have xj > aj
(if some of the values xj − aj were negative, we could reduce ourselves to the

first case by means of the change of variables (x1, ..., xn) 7→ (x′1, ..., x
′
n) with

x′j − aj = |xj − aj |, for every j). In these conditions we shall have clearly:

Jx =
{
u = (u1, ..., un) : ∀ j 0 < uj − aj < xj − aj

}

and

Ax =
{
u = (u1, ..., un) : ∀ j 0 < (uj − aj)ϕj(u) < (xj − aj)ϕj(x)

}
.

(3) We say that the interval K ⊂ Rn is determined by the points u = (u1, u2, ..., un) and
v = (v1, v2, ..., vn) iff K = {w = (w1, ..., wn) : ∀ j,min{uj , vj} < wj < max{uj , vj}}.
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Finally observe that if u ∈ Jx we have ‖u − a‖ < ‖x− a‖ (where ‖ · ‖ is still

the euclidean norm in Rn) and that, if u ∈ Ax then ‖u − a‖ < 4 ‖x − a‖ (as we

easily see taking into account that, for every x ∈ I and every j, we have assumed
1
2 ϕj(a) < ϕj(x) < 2ϕj(a)).

Now, given λ ∈ ]0, 1[ we can determine γ in such a way that 0 < γ <

min{ϕ1(a), ..., ϕn(a)} and also, for every j,

ϕj(a) + γ

ϕj(a)− γ
<

1

1− λ

and then ε′ > 0 such that, for ‖x− a‖ < ε′ and j ∈ {1, ..., n},

ϕj(a)− γ < ϕj(x) < ϕj(a) + γ .

Then, if u ∈ J1−λ
x and ‖x− a‖ < ε′ we have also, for every j,

ϕj(a)− γ < ϕj(u) < ϕj(a) + γ

(since J1−λ
x ⊂ Jx and ‖u− a‖ < ‖x− a‖ for u ∈ Jx) and therefore:

uj − aj

xj − aj

ϕj(u)

ϕj(x)
<

uj − aj

xj − aj

ϕj(a) + γ

ϕj(a)− γ
<

1

1− λ

uj − aj

xj − aj
< 1 .

From this it follows immediately that, for ‖x− a‖ < ε′, we have J1−λ
x ⊂ Ax.

To obtain the other inclusion referred in the lemma, let us suppose again that

a number λ ∈ ]0, 1[ was given and use it to determine γ ′ > 0 such that, for every

j,

ϕj(a)− γ′

ϕj(a) + γ′
>

1

1 + λ
.

Next, determine ε′′ > 0 such that, for ‖x− a‖ < ε′′, we have

ϕj(a)− γ′ < ϕj(x) < ϕj(a) + γ′ (for j ∈ {1, ..., n}) .

Now, if u ∈ Ax and ‖x − a‖ < ε′′

4 , we shall have (by one of our previous

observations) ‖u− a‖ < ε′′ and so, for every j:

ϕj(a)− γ′ < ϕj(u) < ϕj(a) + γ′ .
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From this it follows

1

1 + λ

uj − aj

xj − aj
<

uj − aj

xj − aj

ϕj(a)− γ′

ϕj(a) + γ′
<

uj − aj

xj − aj

ϕj(u)

ϕj(x)
< 1

and then u ∈ J1+λ
x . So, given λ ∈ ]0, 1[, we shall have J1−λ

x ⊂ Ax ⊂ J1+λ
x for

every x such that ‖x− a‖ < ε = min{ε′, ε
′′

4 }.

Lemma 3.16. Let x, Jx and Ax be like in the preceding lemma and let

F ∈ BC(Ia) with supx∈Ia F (x) =M and infx∈Ia F (x) = m > 0. Then

lim
x→a

∫

Ax

F (u) du
∫

Jx

F (u) du
= 1 .

Proof: Given δ > 0, determine λ ∈ ]0, 1[ such that

M

m

[
1− (1−λ)n

]
< δ and

M

m

[
(1+λ)n − 1

]
< δ

and then ε > 0 such that, for ‖x − a‖ < ε, we have (with the notation used in

Lemma 3.15) J1−λ
x ⊂ Ax ⊂ J1+λ

x .

Then, if ‖x− a‖ < ε,
∫

J1−λ
x

F (u) du ≤

∫

Ax

F (u) du ≤

∫

J1+λ
x

F (u) du

and so, since we have (denoting by ν, for instance, Jordan measure):
∫

Jx\J
1−λ
x

F (u) du
∫

Jx

F (u) du
≤

M ν(Jx\J
1−λ
x )

mν(Jx)
=

M ν(Jx) [1− (1− λ)n]

mν(Jx)
< δ

and analogously
∫

J1+λ
x \Jx

F (u) du
∫

Jx

F (u) du
≤

M
[
(1 + λ)n − 1

]

m
< δ

we can conclude that, for ‖x− a‖ < ε,

1− δ < 1−

∫

Jx\J
1−λ
x

F (u) du
∫

Jx

F (u) du
≤

∫

Ax

F (u) du
∫

Jx

F (u) du
≤ 1+

∫

J1+λ
x \Jx

F (u) du
∫

Jx

F (u) du
< 1+ δ .
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Now, let us recall and complete some of the notation that will be used in the

following results. A and B will still be two open sets of Rn, µ a map from A to

B, a ∈ A, b = µ(a), J will be an interval such that b ∈ J ⊂ B, I an interval and

ϕj : I→ R (j ∈ {1, ..., n}) n functions satisfying the conditions referred to before
Lemma 3.15. Without loss of generality we can suppose that I ⊂ µ−1(J).

We shall also put Ia = {x ∈ I : (x1 − a1) · · · (xn − an) 6= 0}, Jb = {y ∈ J :

(y1 − b1) · · · (yn − bn) 6= 0} and, for each Φ ∈ BC(Ia) [resp. Ψ ∈ BC(Jb)] and

each x ∈ Ia [resp. y ∈ Jb]:

(ρa,xΦ)(x) =
1

(x1 − a1) · · · (xn − an)

∫ x1

a1

· · ·

∫ xn

an

Φ(u1, ..., un) du1 · · · dun

=
1

|x1 − a1| · · · |xn − an|

∫

Jx

Φ(u) du

[
resp. (ρb,yΨ)(y) =

1

(y1 − b1) · · · (yn − bn)

∫ y1

b1

· · ·

∫ yn

bn

Ψ(v1, ..., vn) dv1 · · · dvn

=
1

|y1 − b1| · · · |yn − bn|

∫

J ′y

Ψ(v) dv

]
.

Now we can state:

Lemma 3.17. Denoting by µ|Ia the restriction of µ to the set Ia, let G be

a function in the space BC(Jb) with positive infimum and F = G ◦ µ|Ia . Then

F ∈ BC(Ia) and putting

Fp = ρpa,xF , Gp = ρ
p
b,yG and G∗

p = Gp ◦ µ|Ia ,

for each p there exists a continuous function λp : Ia → R such that G∗
p = λp Fp

and limx→a λp(x) = 1.

Proof: It is obvious F ∈ BC(Ia) (and that F (a) = G(a), F (a) = G(a) > 0).

To prove the lemma we shall use induction on p. As the case p = 0 (where we

can take λ0 = 1) is trivial, let us suppose that there exists a function λp in the

required conditions and consider the equality (where we denote as before by J ′
y

the interval determined by the points b and y ∈ Jb):

Gp+1(y) =
1

|y1 − b1| · · · |yn − bn|

∫

J ′y

Gp(v) dv .

Changing variables by means of µ|Ia we obtain

G∗
p+1(x) =

1

|x1 − a1| · · · |xn − an|ϕ1(x) · · ·ϕn(x)

∫

Ax

G∗
p(u) Jµ(u) du ,
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where Ax = µ−1(J ′
y). Now, by the induction hypothesis

G∗
p+1(x) =

1

|x1 − a1| · · · |xn − an|ϕ1(x) · · ·ϕn(x)

∫

Ax

λp(u)Fp(u) Jµ(u) du

or, since Ax is connected and Fp positive in Ax,

G∗
p+1(x) =

1

|x1 − a1| · · · |xn − an|ϕ1(x) · · ·ϕn(x)
λp(x) Jµ(x)

∫

Ax

Fp(u) du ,

where x is a point in Ax that tends to a when x does. So, if we put

τp(x) =

∫

Ax

Fp(u) du
∫

Jx

Fp(u) du
and λp+1(x) =

1

ϕ1(x) · · ·ϕn(x)
λp(x) Jµ(x) τp(x) ,

we get finally G∗
p+1 = λp+1 Fp+1, where we easily see, taking into account Lemma

3.16, that limx→a λp+1(x) = 1.

Lemma 3.18. If G ∈ BC(Jb) and F = G ◦ µ|Ia , then

lim inf
a

F = lim inf
b

G , lim sup
a

F = lim sup
b

G .

Proof: If the infimum of G is strictly positive, Lemma 3.17 implies immedi-

ately that, for each p, Gp(b) = Fp(a) and Gp(b) = Fp(a). Then:

lim sup
b

G = lim
p→∞

Gp(b) = lim
p→∞

Fp(a) = lim sup
a

F

and the same for the inferior limits. Ifm = infy∈Jb G(y) ≤ 0, let us take a constant

c such that c > |m| and put Ψ(y) = G(y)+ c (for y ∈ Jb) and Φ = Ψ ◦µ|Ia . Then

Ψ will be a function in the space BC(Jb) with infimum strictly greater than zero

and so, from what we have just seen, we shall have Φ ∈ BC(Ia) and

lim inf
a

Φ = lim inf
b

Ψ , lim sup
a

Φ = lim sup
b

Ψ .

Since Φ(x)=F (x)+c for each x ∈ Ia, it follows, taking into account Corollary 3.4,

lim sup
a

F = lim sup
a

Φ− c = lim sup
b

Ψ− c = lim sup
b

G

and analogously for the inferior limits.
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Theorem 3.19. Let A, B, µ, a and b be like in the preceding lemmas,

g ∈ Bb(B) and f = g ◦ µ. Then f ∈ Ba(A) and

lim inf
a

f = lim inf
b

g , lim sup
a

f = lim sup
b

g .

Proof: Denote by L the set of all distributions l ∈ Bb(B) such that l ◦ µ ∈

Ba(A) and

lim sup
a

(l ◦ µ) = lim sup
b

l , lim inf
a
(l ◦ µ) = lim inf

b
l .

We have to prove that L = Bb(B).

Let g ∈ Bb(B). If, for some interval J , with b ∈ J ⊂ B, we have g|J ∈ BC(Jb)

then, denoting by I an interval such that a ∈ I ⊂ A and I ⊂ µ−1(J), we shall

clearly have f|I = g|J ◦ µ|I ∈ BC(Ia) and, by Lemma 3.18,

lim sup
a

f|I = lim sup
b

g|J , lim inf
a

f|I = lim inf
b

g|J ;

from this it follows immediately f ∈ Ba(A) and

lim sup
a

f = lim sup
b

g , lim inf
a

f = lim inf
b

g

that is, g ∈ L.

So, to conclude the proof, it will be sufficient to show that, if a distribution h

belongs to L and if k ∈ D′
R(B) is such that, for some j ∈ {1, ..., n} and on some

interval J (with b ∈ J ⊂ B) we have k|J = ∂yj (h|J) = Dyj [(ŷj − bj)h|J ], then

k ∈ L.

Suppose then that h, k, j and J satisfy the conditions just stated and let I be

an interval such that a ∈ I ⊂ A and I ⊂ µ−1(J); suppose also, as usually, that

the restriction of µ to I, µ|I , can be expressed by means of the system

yi − bi = (xi − ai)ϕi(x) ,

with the ϕi strictly positive and of class C∞. Then, putting h∗ = h ◦ µ and

k∗ = k ◦ µ we shall have:

k∗|I = k ◦ µ|I =
{
Dyj

[
(ŷj − bj)h|J

]}
◦ µ|I =

(
n∑

i=1

∂xi
∂yj

Dxi

)[
(x̂j − aj)ϕj h

∗
|I

]
.

But we easily see that, if i 6= j, we have in I:

∂xi
∂yj

= (x̂i − ai)ωij ,



GENERAL NOTIONS OF SUPERIOR LIMIT, INFERIOR LIMIT... 157

where the functions ωij : I → R are of class C∞; and also that,

(5)
∂xj

∂yj
(a) =

1

ϕj(a)
.

So, we have:

(6) k∗|I =
n∑

i=1
i6=j

(x̂j − aj)ω(ij)(x̂i − ai)Dxi(ϕj h
∗
|I) +

∂xj

∂yj
Dxj

[
(x̂j − aj)ϕj h

∗
|I

]
.

Now, as we have by hypothesis h∗ ∈ Ba(A), we see (by Propositions 3.1, 3.10, 3.2

and Corollary 3.4) that, for i 6= j, the distribution

(x̂i − ai)Dxi(ϕj h
∗
|I) = ∂xi(ϕj h

∗
|I)− ϕj h

∗
|I

belongs to the space Ba(I) and then (by Theorem 3.9 and Corollary 3.5) we can

conclude that the first term of the second member of (6) is continuous and has

value zero at the point a. On the other hand, taking into account equality (5)

and Propositions 3.2 and 3.10, we see that the distribution
∂xj
∂yj

∂xj (ϕj h
∗
|I) has at

the point a the same superior and the same inferior limits as h∗. From this it

follows easily that k∗ ∈ Ba(A) and that

lim sup
a

k∗ = lim sup
a

k∗|I = lim sup
a

h∗ = lim sup
b

h = lim sup
b

k

and analogously for the inferior limits. This means that k ∈ L, concluding the

proof.

As an immediate consequence we have:

Corollary 3.20. With the same notation of Theorem 3.19 suppose now that

g ∈ Vb(B). Then f = g ◦ µ ∈ Va(A) and f(a) = g(b).

As we saw, all the preceding definitions and results stated in this work concern

only real distributions; but it is quite clear that some of them are immediately

extensible to (complex) distributions. To prepare the obvious definitions we recall

that, as it is well known, if f is a (complex) distribution defined in an open set

A of Rn, there exist two real distributions f1, f2 ∈ D
′
R(A), uniquely determined,

such that f = f1 + i f2. Then we shall say that f is bounded [resp. continuous]

at the point a ∈ A — and we shall write f ∈ Ba(A) [resp. f ∈ Va(A)] — iff we
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have f1, f2 ∈ Ba(A) [resp. f1, f2 ∈ Va(A)]. If we have f ∈ Va(A), we call value of

f at the point a the number f(a) = f1(a) + i f2(a).

Now it is very easy to verify that many propositions previously stated —

namely Corollaries 3.5, 3.7 (with the hypothesis λ ∈ R changed to λ ∈ C), 3.8
(with D′

R(A) changed to D
′(A) and R to C), Theorem 3.9 and Corollary 3.11

(with C∞
R (A) changed to C∞(A)) and Corollaries 3.14 and 3.20 — are still valid

in this new context.
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tiales dans la théorie des distributions, Rev. Fac. Ciências, Lisboa, (1964).

[10] Hoskins, R. and Sousa Pinto, J. – Distributions, Ultradistributions and Other
Generalised Functions, Ellis Horwood, 1994.

[11] Lojasiewicz, S. – Sur la valeur et la limite d’une distribution en un point, Studia
Math., 16 (1957).

[12] Lojasiewicz, S. – Sur la fixation de variables dans une distribution, Studia Math.,
17 (1958).
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