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FOR HYPERBOLIC CONSERVATION LAWS
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Abstract: In this paper, we introduce a generalization of Liu–Yang’s weighted

norm to linear and to nonlinear hyperbolic equations. Following an approach due to the

second author for piecewise constant solutions, we establish sharp L1 continuous depen-

dence estimates for general solutions of bounded variation. Two different strategies are

successfully investigated. On one hand, we justify passing to the limit in an L1 estimate

valid for piecewise constant wave-front tracking approximations. On the other hand, we

use the technique of generalized characteristics and, following closely an approach by

Dafermos, we derive the sharp L1 estimate directly from the equation.

1 – Introduction

We are interested in the continuous dependence of entropy solutions to hy-

perbolic conservation laws

(1.1) ∂tu+ ∂xf(u) = 0 , u(x, t) ∈ R, x ∈ R, t > 0 ,

where the flux f : R→R is a smooth and convex function. After works by Liu

and Yang [22] and Dafermos [9], we aim at deriving sharp L1 estimates of the

form

(1.2) ‖uII(t)−uI(t)‖w(t)+
∫ t

s
M(τ ;uI, uII) dτ ≤ ‖uII(s)−uI(s)‖w(s) , 0≤s≤ t ,

for any two entropy solutions of bounded variation uI and uII of (1.1), where

‖ · ‖w(t) is a weighted L1-norm equivalent to the standard L1 norm on the real
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line. In (1.2), the positive termM(τ ;uI, uII) is intended to provide a sharp bound

on the strict decrease of the L1 norm. The estimate with w ≡ 1 and M ≡ 0 is of

course well-known.

Recall that the fundamental problem of the continuous dependence of solu-

tions for hyperbolic systems of conservation laws was solved recently by Bressan,

Crasta and Piccoli [2]. A major contribution came from Liu and Yang [22, 23]

who introduced a decreasing L1 functional ensuring (1.2) for scalar conservation

laws and systems of two equations. This research culminated in papers published

simultaneously by Bressan, Liu and Yang [4], Hu and LeFloch [14], and Liu and

Yang [24], which contain particularly simple proofs of the continuous dependence

of entropy solutions for systems.

In the present paper, we restrict attention to scalar conservation laws and,

following the approach developed by the second author (Hu and LeFloch [14]

and LeFloch [18, 19]), we investigate the stability issue from the standpoint of

Holmgren’s and Haar’s methods ([21] and the references therein). The problem

under consideration is (essentially) equivalent to showing the uniqueness and L1

stability for the following hyperbolic equation with discontinuous coefficient:

(1.3) ∂tψ + ∂x(aψ) = 0 , ψ(x, t) ∈ R, x ∈ R, t > 0 .

That is, for solutions with bounded variation we aim at deriving an estimate like

(1.4) ‖ψ(t)‖w(t) +
∫ t

s
M̃(τ ; a, ψ) dτ ≤ ‖ψ(s)‖w(s) , 0 ≤ s ≤ t .

For the application to (1.1) one should define a by

(1.5) a = a(uI , uII) =
f(uII)− f(uI)

uII − uI
.

One may also consider the equation (1.3) for more general coefficients a.

Recall that the existence and uniqueness of solutions to the Cauchy problem

associated with (1.3) was established in LeFloch [16] in the class of bounded

measures, under the assumption ax ≤ E for some constant E. The latter holds

when a is given by (1.5) (at least when uI and uII contain no rarefaction center

on the line t = 0 which holds “generically”). See also [6, 18, 19, 21] for further

existence results.

It must be observed that we restrict attention here to more regular solutions,

having bounded total variation, as this is natural in view of the application to

the conservation law (1.1). In this direction, recall that an L1 stability result like

(1.4) was established in [14] (see, therein, Section 5, and our Theorem 2.2 below)
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in the class of piecewise Lipschitz continuous solutions, with M̃ ≡ 0 however.

This uniqueness and stability result was achieved under the assumption that the

coefficient a does not contain any rarefaction shock (see Section 2 below for the

definition). In [14], the following essential observation was made:

(1.6)
The linearized equation (1.3)–(1.5) based on two entropy

solutions of (1.1) does not exhibit rarefaction shocks.

(This is also true for systems of conservation laws, as far as solutions with small

amplitude are concerned.) One of our aims here is to extend the L1 stability

result for (1.3) in [14] to arbitrary solutions of bounded variation.

The present paper relies also heavily on the contribution by Liu and Yang

[22] who, for approximate solutions constructed by the Glimm scheme, discov-

ered a weighted norm having a sharp decay of the form (1.2). Subsequently, the

Liu–Yang’s functional was extended by Dafermos ([9], Chapter 11) to arbitrary

functions of bounded variation (BV) and, using the notion of generalized charac-

teristics, Dafermos derived precisely an estimate of the form (1.2) valid for BV

solutions.

The aim of this paper is to provide a new derivation and some generalization

of this L1 functional. Toward the derivation of bounds like (1.2) or (1.4), we

make the following preliminary observations:

(1) As pointed out by Hu and LeFloch [14], the geometrical properties of

the propagating discontinuities in a (Lax, fast or slow undercompressive,

rarefaction shock, according to the terminology in [14]) play an essential

role. It turns out that the (jump of the) weight w(x, t) should be assigned

precisely on each undercompressive discontinuity . On the other hand,

Lax discontinuities are very stable and do not require weight, while (in

exact entropy soutions) rarefaction shocks do not arise, according to (1.6).

(2) Certain (invariance) properties on the coefficient a are necessary to define

the weight globally in space; see (2.9)–(2.10) in Section 2.

(3) The weight however is far from being unique and we believe that this

flexibility in choosing the weight may be helpful in certain applications.

The content of this paper is as follows.

In Section 2, we consider piecewise constant solutions of (1.3) and introduce

a class of weighted norms satisfying a sharp bound of the form (1.4). See The-

orem 2.3 below. All undercompressive and Lax discontinuities contribute to the

decrease of the L1 norm. For the sake of comparison, we also consider the L1 norm

without weight; see Theorem 2.2.
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In Section 3, we point out that the setting of Section 2 covers the case of the

conservation law (1.1). Passing to the limit in wave front tracking approxima-

tions, in Theorem 3.5 we arrive to the sharp bound (1.2) for general BV solutions.

The proof is based on fine convergence properties established earlier by Bressan

and LeFloch [3] and on a technique of stability of nonconservative products de-

veloped by DalMaso, LeFloch, and Murat [10] and LeFloch and Liu [20].

Next, in Sections 4 and 5 we return to the equation (1.3) studied in Section 2

but, now, we deal with general BV solutions. We follow closely ideas developed

by Dafermos [8, 9] for solutions of (1.1), and extend them to the linear equation

(1.3). Using generalized characteristics we establish first a maximum principle in

Theorem 4.5. Finally, in Theorem 5.1 using the technique of generalized charac-

teristics, we establish the sharp L1 stability property (1.4) directly, for general

BV solutions of (1.3). The result applies in particular to the conservation law

(1.1) and allows us to recover (1.2).

Throughout the paper, we always assume that all functions of bounded vari-

ation under consideration are normalized to be defined everywhere as right-

continuous functions.

Finally let us recall that the undercompressive waves studied here also arise

in [1, 5, 17, 19].

2 – Decreasing weighted norms for piecewise constant solutions

Given a piecewise constant function a : R×R+→ R, let us consider the linear

hyperbolic equation

(2.1) ∂tψ + ∂x(aψ) = 0 , ψ(x, t) ∈ R ,

and restrict attention to piecewise constant solutions. By definition, the function

a admits a set of jump points J (a), consisting of finitely many straightlines

defined on open time intervals, together with a finite set of interaction points

I(a), consisting of the end points of the lines in J (a). The function a is constant

in each connected component of the complement C(a) of I(a)∪J (a). At a point

(x, t) ∈ J (a) we denote by λa = λa(x, t) the speed of the discontinuity and

a± = a±(x, t) = a(x±, t) the left- and right-hand traces. It is tacitly assumed

that the discontinuity speeds λa remain uniformly bounded. Finally the function

is normalized to be right-continuous. A similar notation is used for the function

ψ.

The geometrical property of the coefficient a play a central role for the analysis

of (2.1), so we recall the following terminology [14]:
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Definition 2.1. A point (x, t) ∈ J (a) is called a Lax discontinuity iff

a−(x, t) > λa(x, t) > a+(x, t) ,

a slow undercompressive discontinuity iff

λa(x, t) ≤ min
(

a−(x, t), a+(x, t)
)

,

a fast undercompressive discontinuity iff

λa(x, t) ≥ max
(

a−(x, t), a+(x, t)
)

,

and a rarefaction-shock discontinuity iff

a−(x, t) < λa(x, t) < a+(x, t) .

For each t > 0, we denote by L(a), S(a), F(a), and R(a) the set of points

(x, t) ∈ J (a) corresponding to Lax, slow undercompressive, fast undercompres-

sive, and rarefaction-shock discontinuities, respectively.

Theorem 2.2. Consider a piecewise constant speed a = a(x, t). Let ψ be

any piecewise constant solution of (2.1). Then we have for all 0 ≤ s ≤ t

(2.2) ‖ψ(t)‖L1(R) +

∫ t

s

∑

(x,τ)∈L(a)

2
(

a−(x, τ)− λ
a(x, τ)

)

|ψ−(x, τ)| dτ

= ‖ψ(s)‖L1(R) +

∫ t

s

∑

(x,τ)∈R(a)

2
(

λa(x, τ)− a−(x, τ)
)

|ψ−(x, τ)| dτ .

In (2.2), the left-hand traces are chosen for definiteness only. Indeed it will

be noticed in the proof below that for all (x, τ) ∈ L(a) ∪R(a)

(

λa(x, τ)− a−(x, τ)
)

|ψ−(x, τ)| = −
(

λa(x, τ)− a+(x, τ)
)

|ψ+(x, τ)| .

Observe that the Lax discontinuities contribute to the decrease of the L1 norm,

while the rarefaction-shocks increase it. On the other hand, the undercompressive

discontinuities don’t modify the L1 norm. When a contains no rarefaction shocks

(this is the case when (2.1) is a linearized equation derived from entropy solutions

of a conservation law, as discovered in Hu and LeFloch [14]), Theorem 5.1 yields

(2.3) ‖ψ(t)‖L1(R) ≤ ‖ψ(s)‖L1(R) , 0 ≤ s ≤ t ,
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where we neglected the favorable contribution of the Lax discontinuities appearing

in the left-hand side of (2.2). In particular, (2.3) implies that the Cauchy problem

for (2.1) admits a unique solution (in the class of piecewise constant functions at

this stage), provided a has no rarefaction-shock discontinuities.

On the other hand, it is clear that the sign of the function ψ is important for

the sake of deriving the L1 stability of the solutions ψ of (2.1). For instance, if

ψ has a constant sign for all (x, t), then (2.3) holds as an equality

‖ψ(t)‖L1(R) = ‖ψ(s)‖L1(R) , 0 ≤ s ≤ t ,

which implies that the Cauchy problem for (2.1) admits at most one solution ψ

of a given sign.

Proof: Denote by P(E) the projection of a subset E of the (x, t)-plane on

the t-axis. By definition, any piecewise Lipschitz continuous solution ψ is also

Lipschitz continuous in time with values in L1(R). So, it is enough to derive (2.2)

for all t /∈ E :=P(I(a) ∪ I(ψ)). The latter is just a finite set. The following is

valid in each open interval I such that I ∩ E = ∅.

We denote by xj(t) for t ∈ I and j = 1, ...,m the discontinuity lines where

the function ψ(·, t) changes sign, with the convention that

(2.4) (−1)j ψ(x, t) ≥ 0 for x ∈ [xj(t), xj+1(t)] .

Set ψ±j (t) = ψ±(xj(t), t), λj(t) = λa(xj(t), t), etc. Then by using that ψ solves

(2.1) we find (for all t in the interval I)

d

dt

∫

R
|ψ(x, t)| dx =

d

dt

m
∑

j=1

(−1)j
∫ xj+1(t)

xj(t)
ψ(x, t) dx

=
m
∑

j=1

(−1)j
(

∫ xj+1(t)

xj(t)
∂tψ(x, t) dx + λj+1(t)ψ

−
j+1(t) − λj(t)ψ

+
j (t)

)

=
m
∑

j=1

(−1)j
(

∫ xj+1(t)

xj(t)
−∂x

(

a(x, t)ψ(x, t)
)

dx + λj+1(t)ψ
−
j+1(t) − λj(t)ψ

+
j (t)

)

=
m
∑

j=1

(−1)j
(

(

a+j (t)− λj(t)
)

ψ+
j (t) +

(

a−j (t)− λj(t)
)

ψ−j (t)

)

.

The Rankine–Hugoniot relation associated with (2.1) reads

(2.5)
(

a+j (t)− λj(t)
)

ψ+
j (t) =

(

a−j (t)− λj(t)
)

ψ−j (t) ,
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therefore by (2.4)

(2.6)
d

dt

∫

R
|ψ(x, t)| dx = 2

m
∑

j=1

±
(

a±j (t)− λj(t)
)

|ψ±j (t)| .

Consider each point xj(t) successively. If xj(t) is a Lax discontinuity, then

a−j (t) > λj(t) > a+(t) and both coefficients ±(a±j (t) − λj(t)) are negative. If

xj(t) is a rarefaction-shock discontinuity, then a−j (t) < λj(t) < a+(t) and the

coefficients ±(a±j (t)−λj(t)) are positive. These two cases lead us to the two sums

in (2.2). Indeed one just needs to observe the following: if (x, τ) correspond to a

Lax or rarefaction-shock discontinuity of the speed a, but ψ does not change sign

at (x, τ) (so it is not counted in (2.6)), then actually by the Rankine–Hugoniot

relation (see (2.5)) we conclude easily that

ψ−(x, τ) = ψ+(x, τ) = 0 ,

and so it does not matter to include the point (x, τ) in the sums (2.2).

Suppose next that xj(t) is an undercompressive discontinuity. Then the two

sides of (2.5) have different sign, therefore

(

a+j (t)− λj(t)
)

ψ+
j (t) =

(

a−j (t)− λj(t)
)

ψ−j (t) = 0 ,

and the corresponding term in (2.6) vanishes.

Our objective now is to derive an improved version of Theorem 2.2, based

on a weighted L1 norm adapted to the equation (2.1). For piecewise constant

functions, we set

(2.7) ‖ψ(t)‖w(t) :=
∫

R
|ψ(x, t)|w(x, t) dx ,

where w = w(x, t) > 0 is a piecewise constant and uniformly bounded function.

We determine this function based on the following constraint on its jumps, at

each discontinuity of the speed a,

(2.8) w+(x, t)− w−(x, t)

{

≤ 0 if (x, t) ∈ S(a),

≥ 0 if (x, t) ∈ F(a) .

The weight is chosen so that the left-hand trace of a slow undercompressive

discontinuity and the right-hand trace of a fast one are weighted more. This is

consistent with the immediate observation that the terms (λj(t)− a
−
j (t)) |ψ

−
j (t)|

and (a+j (t) − λj(t)) |ψ
+
j (t)| have a favorable (negative) sign for slow and fast
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undercompressive discontinuities, respectively. On the other hand, the jumps of

w at Lax or rarefaction-shock discontinuities will remain unconstrained. This

choice is motivated by the two observations:

(i) Lax shocks already provide us with a good contribution in (2.2), and

(ii) rarefaction shocks are the source of instability and non-uniqueness and

cannot be “fixed up”.

The constraint in (2.8) is different for slow and for fast undercompressive

discontinuities. To actually exhibit a (uniformly bounded) weight satisfying (2.8),

we put a restriction on how the nature of the discontinuities changes in time as

wave interactions take place. (An incoming wave may be a slow undercompressive

one and become a fast one after the interaction, etc. A different constraint is

placed before and after the interaction.)

Precisely, we suppose that, to the speed a = a(x, t), we can associate on

one hand a function κ : R×R+ → R having bounded total variation and such

that J (κ) ⊂ J (a) and I(κ) ⊂ I(a), and on the other hand a partition of the

discontinuities

(2.9) J (a) = J I(a) ∪ J II(a) ,

so that, for each (x, t) ∈ J (a), the limits κ±= κ±(x, t) determine if the wave is

slow or fast on its left or right side, as follows:

(2.10) sgn
(

a±(x, t)− λ(x, t)
)

=

{

sgnκ∓ if (x, t) ∈ J I(a),

− sgnκ∓ if (x, t) ∈ J II(a) .

Here we use sgn(y) =−1, 0, 1 iff y < 0, y = 0, y > 0, respectively. Therefore a

discontinuity (x, t) ∈ J I(a) (for instance) is

a Lax one iff κ− < 0 and κ+ > 0 ,

a slow undercompressive one iff κ− ≥ 0 and κ+ ≥ 0 ,

a fast undercompressive one iff κ− ≤ 0 and κ+ ≤ 0 ,

a rarefaction-shock iff κ− > 0 and κ+ < 0 .

Furthermore, to measure the strength of the jumps, we introduce a piecewise

constant function, b = b(x, t), having the same jump points as the function a.

For instance, we could assume that there exist constants C1, C2 > 0 such that at

each discontinuity of a

(2.11) C1

∣

∣

∣a+(y, t)−a−(y, t)
∣

∣

∣ ≤
∣

∣

∣b+(y, t)−b−(y, t)
∣

∣

∣ ≤ C2

∣

∣

∣a+(y, t)−a−(y, t)
∣

∣

∣ .
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However, strictly speaking, this condition will not be used, in the present section

at least.

Based on the functions κ and b and for t except wave interaction times, we

can set

(2.12)

V I(x, t) =
∑

(y,t)∈J I(a),
y<x

∣

∣

∣b+(y, t)− b−(y, t)
∣

∣

∣ ,

V II(x, t) =
∑

(y,t)∈J II(a),
y<x

∣

∣

∣b+(y, t)− b−(y, t)
∣

∣

∣ ,

so that the total variation of b(t) on the interval (−∞, x) decomposes into

(2.13) TV x
−∞(b(t)) = V I(x, t) + V II(x, t) .

Fix some parameter m ≥ 0. Consider now the weight-function defined for each

(x, t) ∈ C(a) by

(2.14) w(x, t) =

{

m+ V I(∞, t)− V I(x, t) + V II(x, t) if κ(x, t) > 0,

m+ V I(x, t) + V II(∞, t)− V II(x, t) if κ(x, t) ≤ 0 .

It is immediate to see that indeed (2.8) holds and that with (2.11)

(2.15) m ≤ w(x, t) ≤ m+ TV (b(t)) ≤ m+ C2 TV (a(t)) , x ∈ R .

Note also that the weight depends on b and a, but not on the solution.

Theorem 2.3. Consider a piecewise constant speed a = a(x, t) admitting

a decomposition (2.9)–(2.10) and satisfying the total variation estimate (2.15).

Consider the weight function w = w(x, t) defined by (2.13). Let ψ be any piece-

wise constant solution of the linear hyperbolic equation (2.1). Then the weighted

norm (2.7) satisfies for all 0 ≤ s ≤ t

(2.16) ‖ψ(t)‖w(t) +

∫ t

s

∑

(x,τ)∈L(a)

(

2m+ TV (b)−
∣

∣

∣b+(x, τ)− b−(x, τ)
∣

∣

∣

)

·
∣

∣

∣a−(x, τ)− λ(x, τ)
∣

∣

∣ |ψ−(x, τ)| dτ

+

∫ t

s

∑

(x,τ)∈S(a)∪F(a)

∣

∣

∣b+(x, τ)− b−(x, τ)
∣

∣

∣

∣

∣

∣a−(x, τ)− λ(x, τ)
∣

∣

∣ |ψ−(x, τ)| dτ

= ‖ψ(s)‖w(s) +

∫ t

s

∑

(x,τ)∈R(a)

(

2m+ TV (b)
) ∣

∣

∣a−(x, τ)− λ(x, τ)
∣

∣

∣ |ψ−(x, τ)| dτ

+

∫ t

s

∑

(x,τ)∈R(a)

∣

∣

∣b+(x, τ)− b−(x, τ)
∣

∣

∣

∣

∣

∣a−(x, τ)− λ(x, τ)
∣

∣

∣ |ψ−(x, τ)| dτ .
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The statement (2.16) is sharper than (2.2), as all discontinuities contribute

now to the decrease of the weighted L1 norm. Note that as m→∞, we recover

exactly (2.2) from (2.16).

Proof: We proceed similarly as in the proof of Theorem 2.2. However, xj(t)

for t ∈ I (some open interval avoiding the interaction points in a or ψ) denote

now all the jump points in either a or ψ. We obtain as before the identity

(2.17)
d

dt

∫

R
|ψ(x, t)|w(x, t) dx

=
m
∑

j=1

(

(

λj(t)− a
−
j (t)

)

|ψ−j (t)|w
−
j (t) +

(

a+j (t)− λj(t)
)

|ψ+
j (t)|w

+
j (t)

)

=
m
∑

j=1

(

sgn
(

λj(t)− a
−
j (t)

)

w−j (t) + sgn
(

a+j (t)− λj(t)
)

w+
j (t)

)

·
∣

∣

∣λj(t)− a
−
j (t)

∣

∣

∣ |ψ−j (t)| ,

where we used the Rankine–Hugoniot relation (2.5).

If xj(t) is a Lax discontinuity in J I(a), then by (2.11) we have κ− < 0 and

κ+ > 0. So by (2.14) we find

w−j = m+ V I(xj(t)−) + V II(∞)− V II(xj(t)−) ,

w+
j = m+ V I(∞)− V I(xj(t)+) + V II(xj(t)+) ,

and so

(2.18a) sgn
(

λj(t)− a
−
j (t)

)

w−j (t) + sgn
(

a+j (t)− λj(t)
)

w+
j (t)

= −w−j (t)− w
+
j (t)

= −2m− TV (b) +
∣

∣

∣b+j (t)− b
−
j (t)

∣

∣

∣ .

If xj(t) is a rarefaction-shock discontinuity in J I(a), then by (2.11) we have

κ− > 0 and κ+ < 0. By (2.13) we find

w−j = m+ V I(∞)− V I(xj(t)−) + V II(xj(t)−) ,

w+
j = m+ V I(xj(t)+) + V II(∞)− V II(xj(t)+) ,

and so

(2.18b) sgn
(

λj(t)− a
−
j (t)

)

w−j (t) + sgn
(

a+j (t)− λj(t)
)

w+
j (t)

= w−j (t) + w+
j (t)

= 2m+ TV (b) +
∣

∣

∣b+j (t)− b
−
j (t)

∣

∣

∣ .
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If xj(t) is a fast undercompressive discontinuity in J I(a), then by (2.11) we

have κ− ≤ 0 and κ+ ≤ 0. By (2.13) we find

(2.18c) sgn
(

λj(t)− a
−
j (t)

)

w−j (t) + sgn
(

a+j (t)− λj(t)
)

w+
j (t)

= w−j (t)− w
+
j (t)

= m+ V I(xj(t)−) + V II(∞)− V II(xj(t)−)

− m− V I(xj(t)+)− V II(∞) + V II(xj(t)+)

= −
∣

∣

∣b+j (t)− b
−
j (t)

∣

∣

∣ .

Similarly for slow undercompressive discontinuities in J I(a) we obtain

(2.18d) sgn
(

λj(t)−a
−
j (t)

)

w−j (t)+ sgn
(

a+j (t)−λj(t)
)

w+
j (t) = −|b+j (t)−b

−
j (t)| .

Using (2.18) in (2.17) we conclude that

‖ψ(t)‖w(t) +

∫ t

s

∑

(x,τ)∈L(a)

(

2m+ TV (b)−
∣

∣

∣b+(y, τ)− b−(y, τ)
∣

∣

∣

)

·
∣

∣

∣a−(x, τ)− λ(x, τ)
∣

∣

∣ |ψ−(x, τ)| dτ

+

∫ t

s

∑

(x,τ)∈S(a)∪F(a)

∣

∣

∣b+(y, τ)− b−(y, τ)
∣

∣

∣

∣

∣

∣a−(x, τ)− λ(x, τ)
∣

∣

∣ |ψ−(x, τ)| dτ

= ‖ψ(s)‖w(s) +

∫ t

s

∑

(x,τ)∈R(a)

(

2m+ TV (b) +
∣

∣

∣b+(y, τ)− b−(y, τ)
∣

∣

∣

)

·
∣

∣

∣a−(x, τ)− λ(x, τ)
∣

∣

∣ |ψ−(x, τ)| dτ ,

which is equivalent to (2.16).

Using that R(a) is included in the set of points where ψ changes sign, it is

easy to deduce from (2.16) that:

Corollary 2.4. Under the assumptions and notations in Theorem 2.3, we

have for all 0 ≤ s ≤ t

‖ψ(t)‖w(t)≤ ‖ψ(s)‖w(s)+
(

2m+TV (b)
)

sup
(x,τ)∈R(a)
s≤τ≤t

∣

∣

∣b+(x, τ)−b−(x, τ)
∣

∣

∣

∫ t

s
TV (ψ(τ)) dτ



88 P. GOATIN and P.G. LEFLOCH

and, in particular, letting m→∞

(2.19) ‖ψ(t)‖L1(R) ≤ ‖ψ(s)‖L1(R) + 2 sup
(x,τ)∈R(a)
s≤τ≤t

∣

∣

∣b+(x, τ)−b−(x, τ)
∣

∣

∣

∫ t

s
TV (ψ(τ)) dτ .

Finally, in view of Corollary 2.4, in case the function a contains no rarefaction

shocks, we deduce that

‖ψ(t)‖w(t) ≤ ‖ψ(s)‖w(s) , 0 ≤ s ≤ t .

Observe that this result is achieved, based on a weight that depends

on an arbitrary function, b, and on the sole assumption that a decomposition

(2.9)–(2.10) of the jumps of a is available. However, our result in this section

covers only piecewise constant solutions. We will see in Section 5 that a stronger

structure assumption on the coefficients a is necessary to handle general solutions

of bounded variation.

3 – Sharp L1 estimate for hyperbolic conservation laws

In this section, we apply Theorem 2.3 to the case that a is the averaging

coefficient (1.5) based on two entropy solutions of (1.1). First, we check that the

assumptions required in Section 2 on the coefficient a do hold in this situation.

Therefore Theorem 2.3 applies to the piecewise constant solutions defined by the

wave-front traking (also called polygonal approximation) algorithm proposed by

Dafermos in [7]. Next, we observe that, with a suitable choice of the definition

of the wave strengths, the weighted norm in Section 2 reduces to Liu–Yang’s

functional. Finally we rigorously justify the passage to the limit in the estimate

of Theorem 2.3 when the number of wave fronts tends to infinity and exact

entropy solutions of (1.1) are recovered.

Consider the nonlinear scalar conservation law:

(3.1) ∂tu+ ∂xf(u) = 0 , u(x, t) ∈ R ,

where the flux f : R → R is a smooth function. Let uI and uII be two bounded

entropy solutions of (3.1) having bounded total variation. Given h > 0 let us

approximate the data uI(0) and uII(0) by piecewise constant functions uI,h(0),

uII,h(0), having finitely many jumps and such that as h→ 0

(3.2) uI,h(0)→ uI(0), uII,h(0)→ uII(0) in the L1 norm ,
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(3.3) TV (uI,h(0))→ TV (uI(0)) , TV (uII,h(0))→ TV (uII(0)) .

Applying Dafermos’ scheme [7], we can construct corresponding, piecewise

constant, approximate solutions uI,h and uII,h having finitely many jump lines

and for t ≥ s ≥ 0 and p ∈ [1,∞]

(3.4) ‖uI,h(t)‖Lp(R) ≤ ‖u
I,h(s)‖Lp(R) , ‖uII,h(t)‖Lp(R) ≤ ‖u

II,h(s)‖Lp(R) ,

and for all −∞ ≤ A+M (t−s) ≤ B −M (t−s)

(3.5)
TV

B−M (t−s)
A+M (t−s) (u

I,h(t)) ≤ TV B
A (uI,h(s)) ,

TV
B−M (t−s)
A+M (t−s) (u

II,h(t)) ≤ TV B
A (uII,h(s)) .

More precisely, the functions uI,h and uII,h are exact solutions of (3.1) satisfy-

ing therefore the Rankine–Hugoniot relation at every jump. They contain two

kinds of jump discontinuities: Lax shocks satisfy the so-called Oleinik entropy

inequalities, while rarefaction jumps do not, but have small strength, that is

(3.6)
∣

∣

∣uI,h(x+, t)− uI,h(x−, t)
∣

∣

∣ ≤ h ,
∣

∣

∣uII,h(x+, t)− uII,h(x−, t)
∣

∣

∣ ≤ h .

Furthermore, for a subsequence h→ 0 at least, we have for each time t ≥ 0

uI,h(t)→ uI(t), uII,h(t)→ uII(t) in the L1 norm .

To study the L1 distance between these approximate solutions, we set

ψ := uII,h − uI,h ,

which is a solution of the linear hyperbolic equation

(3.7) ∂tψ + ∂x(a
h ψ) = 0 , ah(x, t) :=

f(uII,h(x, t))− f(uI,h(x, t))

uII,h(x, t)− uI,h(x, t)
.

First of all, based on Theorem 2.2 and (3.5)–(3.6), we obtain immediately:

Theorem 3.1. The approximate solutions uI,h and uII,h satisfy the following

L1 stability estimate for all 0 ≤ s ≤ t

(3.8)
∥

∥

∥uII,h(t)− uI,h(t)
∥

∥

∥

L1(R)

+

∫ t

s

∑

(x,τ)∈L(a)

2
(

ah(x−, τ)− λa
h

(x, τ)
) ∣

∣

∣uII,h(x−, τ)− uI,h(x−, τ)
∣

∣

∣ dτ

≤
∥

∥

∥uII,h(s)− uI,h(s)
∥

∥

∥

L1(R)
+ 2h (t− s) ‖f ′′‖∞

(

TV (uI,h(0)) + TV (uII,h(0))
)

.
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From the functions uI and uII we define the function a as in (3.7). Recall

that the wave front tracking scheme converges locally uniformly (see the proof

of Theorem 3.5 below for a definition), so that the BV solutions uI and uII are

endowed with additional regularity properties. Consider for instance the function

uI . In particular, for all but countably many times t and for each x, either x is

a point of continuity of uI in the classical sense (say (x, t) ∈ C(uI)) or else it is a

point of jump in the classical sense (say (x, t) ∈ J (uI)) and, to the discontinuity,

one can also associate a shock speed, denoted by λI(x, t).

From the properties shared by uI and uII , one deduces immediately a similar

property for the coefficient a. Excluding countably many times at most, at each

point of jump of a we can define the propagation speed λa(x, t) of the discontinuity

located at the point (x, t). Namely, we have

λa(x, t) =

{

λI(x, t) if (x, t) ∈ J (uI),

λII(x, t) if (x, t) ∈ J (uII) .

In the limit h→ 0 we deduce from (3.8) that:

Corollary 3.2. For all 0 ≤ s ≤ t we have

(3.9)
∥

∥

∥uII(t)− uI(t)
∥

∥

∥

L1(R)

+

∫ t

s

∑

(x,τ)∈L(a)

2
(

a(x−, τ)− λa(x, τ)
) ∣

∣

∣uII(x−, τ)− uI(x−, τ)
∣

∣

∣ dτ

≤
∥

∥

∥uII(s)− uI(s)
∥

∥

∥

L1(R)
.

We omit the proof of Corollary 3.2 as (3.9) is a consequence of a stronger

estimate proven in Theorem 3.5 below (by taking m → ∞ in (3.15)). Note that

(3.9) is a stronger statement than the standard L1 contraction estimate

∥

∥

∥uII(t)− uI(t)
∥

∥

∥

L1(R)
≤
∥

∥

∥uII(s)− uI(s)
∥

∥

∥

L1(R)
.

Proof: We apply the estimate (2.2) with ψ replaced with uII,h − uI,h. We

just need to observe (see [14]) that all the rarefaction-shock discontinuities in

ah are due to rarefaction fronts in uI,h or in uII,h, which have small strength

according to (3.6). In other words we have
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∫ t

s

∑

(x,τ)∈R(a)

2
(

λa(x, τ)− a−(x, τ)
)

|ψ−(x, τ)| dτ

≤ sup
(x,τ)∈R(a)
s≤τ≤t

2
∣

∣

∣a+(x, τ)− a−(x, τ)
∣

∣

∣

∫ t

s
TV (ψ(τ)) dτ

≤ 2 ‖f ′′‖∞ h

∫ t

s
TV (ψ(τ)) dτ

≤ 2 ‖f ′′‖∞ h (t− s)
(

TV (uI,h(0)) + TV (uII,h(0))
)

.

This establishes (3.8).

We now want to apply Theorem 2.3 and control a weighted norm of uII,h−uI,h.

In this direction, our main observation is:

Lemma 3.3. When the function f is strictly convex, the coefficient ah

satisfies all of the assumptions (2.9)–(2.10).

Proof: The function ah is piecewise constant, and we can associate to this

function an obvious decomposition of the form (2.9). To establish (2.10), consider

for instance a jump point (x, t) ∈ J (uI,h) ∩ C(uII,h), together with its left- and

right-hand traces uI− and uI+. Since u
I,h is a solution of (3.1), the corresponding

speed λ = λ(x, t) satisfies the Rankine–Hugoniot relation:

−λ (uI+ − u
I
−) + f(uI+)− f(u

I
−) = 0 .

Thus the term in the left-hand side of (2.10) takes the form

a±(x, t)− λ(x, t) =
f(uII)− f(uI±)

uII − uI±
−
f(uI+)− f(u

I
−)

uI+ − u
I
−

=

∫ 1

0

(

f ′
(

θ uII + (1− θ)uI±

)

− f ′
(

θ uI∓ + (1− θ)uI±

)

)

dθ .

Thus we obtain

(3.10)

a±(x, t)− λ(x, t) = µ (uII − uI∓) ,

µ :=

∫ 1

0

∫ 1

0
f ′′
(

ρ
(

θ uII+ (1−θ)uI±

)

+ (1−ρ)
(

θ uI∓ + (1−θ)uI±

)

)

θ dθ dρ .

Since f is strictly convex, the coefficient is bounded away from zero. In view of

(3.10), if we now choose κ(x, t) := uII,h − uI,h, the desired property (2.10) holds

true.
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Next, we define the weight wh = wh(x, t) associated with the function ah, by

the formula (2.14) in which we specify

(3.11) κh(x, t) := uII,h − uI,h .

It follows immediately from Theorem 2.3 that:

Theorem 3.4. Suppose that the function f is strictly convex. The approxi-

mate solutions constructed by Dafermos scheme satisfy the L1 stability estimate

for all 0 ≤ s ≤ t

(3.12)
∥

∥

∥uII,h(t)− uI,h(t)
∥

∥

∥

wh(t)

+

∫ t

s

∑

(x,τ)∈L(ah)

(

2m+ TV (bh)−
∣

∣

∣bh(x+, τ)− bh(x−, τ)
∣

∣

∣

)

·
∣

∣

∣ah(x−, τ)− λh(x, τ)
∣

∣

∣

∣

∣

∣uII,h(x−, τ)− uI,h(x−, τ)
∣

∣

∣ dτ

+

∫ t

s

∑

(x,τ)∈S(ah)∪F(ah)

∣

∣

∣bh(x+, τ)− bh(x−, τ)
∣

∣

∣

∣

∣

∣ah(x−, τ)− λh(x, τ)
∣

∣

∣

·
∣

∣

∣uII,h(x−, τ)− uI,h(x−, τ)
∣

∣

∣ dτ

=
∥

∥

∥uII,h(s)− uI,h(s)
∥

∥

∥

wh(s)

+

∫ t

s

∑

(x,τ)∈R(ah)

(

2m+ TV (bh) +
∣

∣

∣bh(x+, τ)− bh(x−, τ)
∣

∣

∣

)

·
∣

∣

∣ah(x−, τ)− λh(x, τ)
∣

∣

∣

∣

∣

∣uII,h(x−, τ)− uI,h(x−, τ)
∣

∣

∣ dτ ,

where ah is the averaging coefficient defined in (3.7) and λh(x, τ) represents the

speed of the discontinuity located at (x, τ) ∈ J (ah).

We emphasize that (3.12) is an equality in which the contribution to the

L1 norm of each type of wave appears clearly. The coefficient ah exhibits three

types of waves: the Lax and undercompressive discontinuities in ah contribute to

the decay of the L1 weighted distance. The statement (3.12) quantifies sharply

this effect. On the other hand, the rarefaction-shocks appearing in the right-hand

side of (3.12) increase the L1 norm.
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In the rest of this section, we assume that the function b = bh is chosen to be

specifically

(3.13) bh(x+, t)−bh(x−, t) =

{

uI,h(x+, t)− uI,h(x−, t) if (x, t)∈J (uI,h),

uII,h(x+, t)− uII,h(x−, t) if (x, t)∈J (uII,h) ,

but a more general definition is possible.

Our next purpose is to pass to the limit (h→ 0) in the statement established

in Theorem 3.4 for piecewise constant approximate solutions. We recover here a

result derived by Dafermos [9] via a different approach. Recall the notation C(uI),

S(uI), etc introduced earlier. Denote by I(uI) the countable set of interactions

times. Let V I(t) be the total variation function associated with uI(t). Based

on the functions V I(t) and V II(t), we then define the weight w as in (2.14) but

with (2.12) replaced by the total variation functions of uI(t) and uII(t), with

κ :=uII− uI and

(3.14) b(x+, t)− b(x−, t) =

{

uI(x+, t)− uI(x−, t) if (x, t) ∈ J (uI),

uII(x+, t)− uII(x−, t) if (x, t) ∈ J (uII) .

Furthermore, to any functions of bounded variation u, v, w in the space vari-

able x (the time variable being fixed) we associate the measure on R

µ =
(

a(u, v)− f ′(u)
)

(v − u) dw

understood as the nonconservative product in the sense of Dal Maso, LeFloch

and Murat [10] and characterized by the following two conditions:

(1) If B is a Borel set included in the set of continuity points of w

(3.15a) µ(B) =

∫

B

(

a(u, v)− f ′(u)
)

(v − u) dw ,

where the integral is defined in a classical sense;

(2) If x is a point of jump of w, then

(3.15b)

µ({x}) =
1

2

(

(

a(u+, v+)− a(u−, u+)
)

(v+ − u+)

+
(

a(u−, v−)− a(u−, u+)
)

(v− − u−)

)

|w+ − w−|

with u± = u(x±), etc.

Note that, if u = uI and v = uII , the two terms (a(u±, v±) − a(u−, u+)) ·

· (v± − u±) in fact coincide.
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Theorem 3.5. Let the function f be strictly convex and let uI and uII be

two entropy solutions of bounded variation of the conservation law (1.1). For all

0 ≤ s ≤ t we have

(3.16)
∥

∥

∥uII(t)− uI(t)
∥

∥

∥

w(t)

+

∫ t

s

∑

(x,τ)∈L(a)∩J (uI)

q

∣

∣

∣

∣

a
(

uI(x−), uII(x−)
)

− a
(

uI(x+), uI(x−)
)

∣

∣

∣

∣

·
∣

∣

∣uII(x)− uI(x)
∣

∣

∣ dτ

+

∫ t

s

∑

(x,τ)∈L(a)∩J (uII)

q

∣

∣

∣

∣

a
(

uI(x−), uII(x−)
)

− a
(

uII(x+), uII(x−)
)

∣

∣

∣

∣

·
∣

∣

∣uII(x)− uI(x)
∣

∣

∣ dτ

+

∫ t

s

∫

R

(

a(uI , uII)− f ′(uI)
)

(uII − uI) dV I dτ

+

∫ t

s

∫

R

(

a(uI , uII)− f ′(uII)
)

(uI − uII) dV II dτ ≤
∥

∥

∥uII(s)− uI(s)
∥

∥

∥

w(s)
.

where q = q(τ) = 2m+ TV (uI(τ)) + TV (uII(τ)).

Observe that the terms in integrals in (3.16) globally contribute to the decrease

of weighted norm, as is better seen rewriting the formula as follows (V I
c and V II

c

being the continuous parts of the measures V I and V II):

(3.16′)
∥

∥

∥uII(t)− uI(t)
∥

∥

∥

w(t)

+

∫ t

s

∑

(x,τ)∈L(a)∩J (uI)

(

q − |uI+ − u
I
−|
) ∣

∣

∣a(uI−, u
II
+ )− a(uI+, u

I
−)
∣

∣

∣ |uII − uI | dτ

+

∫ t

s

∑

(x,τ)∈L(a)∩J (uII)

(

q − |uII+ − u
II
− |
) ∣

∣

∣a(uI−, u
II
− )− a(uII+ , u

II
− )
∣

∣

∣ |uII − uI | dτ

+

∫ t

s

∑

(x,τ)∈(S(a)∪F(a))∩J (uI)

∣

∣

∣a(uI−, u
II
− )− a(uI+, u

I
−)
∣

∣

∣ |uII − uI | |uI+ − u
I
−| dτ

+

∫ t

s

∑

(x,τ)∈(S(a)∪F(a))∩J (uII)

∣

∣

∣a(uI−, u
II
− )− a(uII+ , u

II
− )
∣

∣

∣ |uII − uI | |uII+ − u
II
− | dτ
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+

∫ t

s

∫

R

∣

∣

∣a(uI , uII)− f ′(uI)
∣

∣

∣ |uII − uI | dV I
c dτ

+

∫ t

s

∫

R

∣

∣

∣a(uI , uII)− f ′(uII)
∣

∣

∣ |uI − uII | dV II
c dτ ≤

∥

∥

∥uII(s)− uI(s)
∥

∥

∥

w(s)
.

The following estimate is a direct consequence of the definition (3.15):

Lemma 3.6. There exists a constant C > 0 such that for all functions of

bounded variation u, ũ, v, ṽ, w defined on some interval [α, β]

(3.17)

∣

∣

∣

∣

∣

∫ β

α

(

a(u, v)− f ′(u)
)

(v − u) dw −
∫ β

α

(

a(ũ, ṽ)− f ′(ũ)
)

(ṽ − ũ) dw

∣

∣

∣

∣

∣

≤ C
(

‖ũ− u‖L∞(α,β) + ‖ṽ − v‖L∞(α,β)

)

TV[α,β](w) .

Proof of Theorem 3.5:

Step 1: Preliminaries.

For each t ≥ 0, the functions V I,h(t) and V II,h(t) associated with the wave

front tracking approximations uI,h(t) and uII,h(t) are of uniformly bounded vari-

ation as h→ 0. The measures dV I,h and dV II,h are also Lipschitz continuous in

time (with constant independent of h) for the weak convergence, except at inter-

action points. On the other hand, interaction times in the limiting solutions are

at most countable. Therefore, extracting subsequences if necessary, the measures

dV I,h and dV II,h converge to some limiting (non-negative) measures, say:

(3.18) dV I,h(t)→ dV̄ I(t) , dV II,h(t)→ dV̄ II(t) .

By lower semi-continuity, we have at each time t

(3.19) dV I(t) ≤ dV̄ I(t) , dV II(t) ≤ dV̄ II(t) ,

and, in particular, at each (x, t)

(3.20a) V I(x, t) ≤ V̄ I(x, t) , V II(x, t) ≤ V̄ II(x, t) .

(3.20b)
V I(+∞, t)− V I(x, t) ≤ V̄ I(+∞, t)− V̄ I(x, t) ,

V II(+∞, t)− V II(x, t) ≤ V̄ II(+∞, t)− V̄ II(x, t) .

Based on the functions V̄ I(t) and V̄ II(t), on the coefficient κ := uII −uI and

on the function in (3.14), we can define a weight denoted by w̄, along the same
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lines as in (2.14). We will show that the left-hand side of (3.16) is bounded above

by

(3.21)
∥

∥

∥uII(t)− uI(t)
∥

∥

∥

w̄(t)

+

∫ t

s

∑

(x,τ)∈L(a)∩J (uI)

q̄

∣

∣

∣

∣

a
(

uI(x−), uII(x−)
)

− a
(

uI(x+), uI(x−)
)

∣

∣

∣

∣

·
∣

∣

∣uII(x)− uI(x)
∣

∣

∣ dτ

+

∫ t

s

∑

(x,τ)∈L(a)∩J (uII)

q̄

∣

∣

∣

∣

a
(

uI(x−), uII(x−)
)

− a
(

uII(x+), uII(x−)
)

∣

∣

∣

∣

·
∣

∣

∣uII(x)− uI(x)
∣

∣

∣ dτ

+

∫ t

s

∫

R

(

a(uI , uII)− f ′(uI)
)

(uII − uI) dV̄ I(y, τ) dτ

+

∫ t

s

∫

R

(

a(uI , uII)− f ′(uII)
)

(uI − uII) dV̄ II(y, τ) dτ

where q̄ := 2m+ V̄ I(+∞)+ V̄ II(+∞), and that (3.21) coincides with the desired

upper bound ‖uII(s)− uI(s)‖w(s). The former statement is postponed to Step 5

below and we focus now on the latter.

Fix some t ≥ s ≥ 0 and rewrite (3.12) in the equivalent form

(3.22)
∥

∥

∥uII,h(t)− uI,h(t)
∥

∥

∥

wh(t)

+

∫ t

s

∑

(x,τ)∈L(ah)

(

2m+ TV (bh)
) ∣

∣

∣ah(x−, τ)−λh(x, τ)
∣

∣

∣

∣

∣

∣uII,h(x−, τ)−uI,h(x−, τ)
∣

∣

∣ dτ

+

∫ t

s

∑

(x,τ)∈J I(ah)

∣

∣

∣bh(x+, τ)− bh(x−, τ)
∣

∣

∣

(

ah(x−, τ)− λh(x, τ)
)

·
(

uII,h(x−, τ)− uI,h(x−, τ)
)

dτ

+

∫ t

s

∑

(x,τ)∈J II(ah)

∣

∣

∣bh(x+, τ)− bh(x−, τ)
∣

∣

∣

(

ah(x−, τ)− λh(x, τ)
)

·
(

uI,h(x−, τ)− uII,h(x−, τ)
)

dτ
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=
∥

∥

∥uII,h(s)− uI,h(s)
∥

∥

∥

wh(s)

+

∫ t

s

∑

(x,τ)∈R(ah)

(

2m+ TV (bh)
) ∣

∣

∣ah(x−, τ)−λh(x, τ)
∣

∣

∣

∣

∣

∣uII,h(x−, τ)−uI,h(x−, τ)
∣

∣

∣ dτ ,

or, with obvious notations,

(3.23)
∥

∥

∥uII,h(t)− uI,h(t)
∥

∥

∥

wh(t)
+Ωh1 +Ωh2 =

∥

∥

∥uII,h(s)− uI,h(s)
∥

∥

∥

wh(s)
+Ωh3 .

As the maximum strength of rarefaction fronts in uI,h and uII,h vanishes with h

(see (3.6)) and rarefaction shocks in ah arise only from these rarefaction fronts

(see (1.6)), we have

(3.24) Ωh3 → 0 as h→ 0 .

On the other hand, we can always choose the (initial) approximations at time s

in such a way that

(3.25) w̄(s) = w(s)

and

(3.26) lim
h→0

∥

∥

∥uII,h(s)− uI,h(s)
∥

∥

∥

wh(s)
=
∥

∥

∥uII(s)− uI(s)
∥

∥

∥

w(s)
.

It remains to prove that the limit of the left-hand side of (3.22) is exactly (3.21).

This will be established in the following three steps.

Step 2: We will rely on the local uniform convergence of the front tracking

approximations (see Bressan and LeFloch [3]). For all but countably many times

τ we have the following properties for uI (as well as for uII):

(1) For each point of jump z of uI there exists a sequence zh→ z such that

for each ε > 0 there exists δ > 0 such that

(3.27a)

∣

∣

∣uI,h(x)− uI(z+)
∣

∣

∣+
∣

∣

∣uI(x)− uI(z+)
∣

∣

∣ < ε for all x− zh ∈ (0, δ) ,

∣

∣

∣uI,h(x)− uI(z−)
∣

∣

∣+
∣

∣

∣uI(x)− uI(z−)
∣

∣

∣ < ε for all x− zh ∈ (−δ, 0)

and (clearly)

(3.27b)

∣

∣

∣uI(x)− uI(z+)
∣

∣

∣ < ε for all x− z ∈ (0, δ) ,

∣

∣

∣uI(x)− uI(z−)
∣

∣

∣ < ε for all x− z ∈ (−δ, 0) .
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(2) For each point of continuity z of uI and for each ε > 0, there exists δ > 0

such that

(3.28)
∣

∣

∣uI,h(x)− uI(z)
∣

∣

∣+
∣

∣

∣uI(x)− uI(z)
∣

∣

∣ < ε for all x− z ∈ (−δ, δ) .

We also recall from [3] that, for all but countably many times t, the atomic

parts of the measures V̄ I and V̄ II coincide with the one of V I and V II , that is

for each y ∈ R

(3.29)
V̄ I(y+, t)− V̄ I(y−, t) = V I(y+, t)− V I(y−, t) ,

V̄ II(y+, t)− V̄ II(y−, t) = V II(y+, t)− V II(y−, t) .

Following LeFloch and Liu [20] who established the weak stability of noncon-

servative products under local uniform convergence, we want to show that

(3.30)

Ωh2(τ) :=

∫

R

(

a
(

uI,h(y, τ), uII,h(y, τ)
)

− f ′(uI,h(y, τ))

)

·
(

uII,h(y, τ)− uI,h(y, τ)
)

dV I,h(y)

+

∫

R

(

a
(

uI,h(y, τ), uII,h(y, τ)
)

− f ′(uII,h(y, τ))

)

·
(

uI,h(y, τ)− uII,h(y, τ)
)

dV II,h(y)

−→
∫

R

(

a
(

uI(y, τ), uII(y, τ)
)

− f ′(uI(y, τ))

)

(

uII(y, τ)− uI(y, τ)
)

dV̄ I(y)

+

∫

R

(

a
(

uI(y, τ), uII(y, τ)
)

− f ′(uII(y, τ))

)

(

uI(y, τ)− uII(y, τ)
)

dV̄ II(y) .

By Lebesgue dominated convergence theorem and since a uniform bound in τ

and h is available, it will follow from (3.29) that

Ωh2 =

∫ t

s
Ωh2(τ) dτ −→

∫ t

s

∫

R

(

a(uI , uII)− f ′(uI)
)

(uII − uI) dV̄ I(y, τ) dτ

(3.30′) +

∫ t

s

∫

R

(

a(uI , uII)− f ′(uII)
)

(uI − uII) dV̄ II(y, τ) dτ .

Given ε > 0, select finitely many (large) jumps in uI or uII , located at

y1, y2, ..., yn, so that

(3.31)
∑

x6=yj

j=1,2,...,n

∣

∣

∣uI(x+)− uI(x−)
∣

∣

∣+
∣

∣

∣uII(x+)− uII(x−)
∣

∣

∣ < ε .
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To each yj we associate the corresponding discontinuity point yhj in uI,h or uII,h.

To simplify the presentation we will focus on the case where yj<y
h
j <yj+1<y

h
j+1

for all j. The other cases can be treated similarly. In view of the local convergence

property (3.27)–(3.28) and by extracting a covering of the interval [y0, yn], we have

also

(3.32)
∣

∣

∣uI,h(x)−uI(x)
∣

∣

∣+
∣

∣

∣uII,h(x)−uII(x)
∣

∣

∣ ≤ 2 ε , x ∈ (yhj , yj+1) ⊆ (yj , yj+1) .

In view of (3.30) we can construct functions uIε and uIIε that are continuous

everywhere except possibly at the points yj and such that the following conditions

hold with u replaced by either uI or uII :

(3.33)
TV

(

uε; R\{y1, ..., yn}
)

≤ C TV
(

u; R\{y1, ..., yn}
)

,

‖u− uε‖∞ ≤ C ε , TV
(

u− uε; R\{y1, ..., yn}
)

≤ C ε ,

where C is independent of ε.

Consider the decompositions

∫

R

(

a(uI,h, uII,h)−f ′(uI,h)
)

(uII,h−uI,h) dV I,h =
n
∑

j=0

∫

(yh
j
,yh

j+1
)
· · · +

n
∑

j=1

∫

{yh
j
}
· · ·

and

∫

R

(

a(uI , uII)− f ′(uI)
)

(uII − uI) dV̄ I =
n
∑

j=0

∫

(yj ,yj+1)
· · · +

n
∑

j=1

∫

{yj}
· · · .

Here yh0 =y0=−∞ and yhn+1=yn+1=+∞. Thus in (3.30) we have to estimate

(3.34)

Ωh2(τ) =

∫

R

(

a(uI,h, uII,h)− f ′(uI,h)
)

(uII,h − uI,h) dV I,h

−
∫

R

(

a(uI , uII)− f ′(uI)
)

(uII − uI) dV̄ I

= T h1 + T h2

with

T h1 :=
n
∑

j=1

∫

{yh
j
}

(

a(uI,h, uII,h)− f ′(uI,h)
)

(uII,h − uI,h) dV I,h

−
n
∑

j=1

∫

{yj}

(

a(uI , uII)− f ′(uI)
)

(uII − uI) dV̄ I
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and

T h2 :=
n
∑

j=0

∫

(yh
j
,yh

j+1
)

(

a(uI , uII)− f ′(uI,h)
)

(uII,h − uI,h) dV I,h

−
n
∑

j=0

∫

(yj ,yj+1)

(

a(uI , uII)− f ′(uI)
)

(uII − uI) dV̄ I .

First, relying on the convergence property (3.29) we have immediately

T h1 =
n
∑

j=1

(

a
(

uI,h(yhj−), u
II(yhj−)

)

− λI,h(yhj−)

)

(

uII,h(yhj−)− u
I,h(yhj−)

)

·
∣

∣

∣uI,h(yhj+)− uI,h(yhj−)
∣

∣

∣

−

(

a
(

uI(yj−), u
II(yj−)

)

− λI(yj−)

)

(

uII(yj−)− u
I(yj−)

)

·
∣

∣

∣uI(yj+)− uI(yj−)
∣

∣

∣ ,

so that

|T h1 | ≤ C
n
∑

j=1

∑

±

∣

∣

∣uI,h(yhj±)− u
I(yj±)

∣

∣

∣+
∣

∣

∣uII,h(yhj±)− u
II(yj±)

∣

∣

∣ .

Thus, in view of the local convergence at jump points (3.27a), for h small enough

we obtain

(3.35) |T h1 | ≤ C ε .

Relying on the simplifying assumption yj < yhj < yj+1 < yhj+1 for all j, we

can decompose T h2 as follows:

(3.36)

T h2 =
n
∑

j=0

∫

(yh
j
,yj+1)

(

a(uI,h, uII,h)− f ′(uI,h)
)

(uII,h − uI,h) dV I,h

−
(

a(uI , uII)− f ′(uI)
)

(uII − uI) dV̄ I

−
n
∑

j=0

∫

(yj ,y
h
j
]

(

a(uI , uII)− f ′(uI)
)

(uII − uI) dV̄ I

+
n
∑

j=0

∫

[yj+1,y
h
j+1

)

(

a(uI,h, uII,h)− f ′(uI,h)
)

(uII,h − uI,h) dV I,h

:= T h2,1 + T h2,2 + T h2,3 .
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We first consider T h2,2:

T h2,2 = −
n
∑

j=0

∫

(yj ,y
h
j
]

(

a
(

uI(yj+), uII(yj+)
)

− f ′(uI(yj+))

)

·

·
(

uII(yj+)− uI(yj+)
)

dV̄ I(y)

+
n
∑

j=0

∫

(yj ,y
h
j
]

{

(

a
(

uI(y), uII(y)
)

− f ′(uI(y))

)

(

uII(y)− uI(y)
)

−

(

a
(

uI(yj+), uII(yj+)
)

− f ′(uI(yj+))

)

(

uII(yj+)− uI(yj+)
)

}

dV̄ I(y) .

Therefore, with (3.17), we obtain

|T h2,2| ≤ C
∑

j

∣

∣

∣V̄ I(yj+)− V̄ I(yhj+)
∣

∣

∣

+ C V I(+∞)



 sup
y∈(yj ,y

h
j
]

∣

∣

∣uI(y)− uI(yj+)
∣

∣

∣ + sup
x∈(yj ,y

h
j
]

∣

∣

∣uII(y)− uII(yj+)
∣

∣

∣



 .

Since yhj → yj , we have |V̄ I(yj+) − V̄ I(yhj+)| → 0, therefore for h sufficiently

small

(3.37) |T h2,2| ≤ C ε .

A similar argument for T h2,3 shows that

(3.38) |T h2,3| ≤ C ε .

Next consider the decomposition
(

a(uI,h, uII,h)−f ′(uI,h)
)

(uII,h−uI,h) dV I,h −
(

a(uI, uII)−f ′(uI)
)

(uII−uI) dV̄ I

=
(

a(uI,h, uII,h)−f ′(uI,h)
)

(uII,h−uI,h) dV I,h−
(

a(uI, uII)−f ′(uI)
)

(uII−uI) dV I,h

+
(

a(uI, uII)− f ′(uI)
)

(uII− uI) dV I,h −
(

a(uIε , u
II
ε )− f ′(uIε )

)

(uIIε − u
I
ε ) dV

I,h

+
(

a(uIε , u
II
ε )− f ′(uIε )

)

(uIIε − u
I
ε ) dV

I,h −
(

a(uIε , u
II
ε )− f ′(uIε )

)

(uIIε − u
I
ε ) dV̄

I

+
(

a(uIε , u
II
ε )− f ′(uIε )

)

(uIIε − u
I
ε ) dV̄

I −
(

a(uI, uII)− f ′(uI)
)

(uII− uI) dV̄ I ,

which, with obvious notation, yields a decomposition for T h2,1

(3.39) T h2,1 = Mh
1 +Mh

2 +Mh
3 +Mh

4 .
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Using (3.17) and the local convergence property (3.31), we obtain

|Mh
1 | ≤ C

n
∑

j=0

∫

(yh
j
,yj+1)

|dV I,h|



 sup
(yh

j
,yj+1)

|uI,h − uI | + sup
(yh

j
,yj+1)

|uII,h − uII |





(3.40)
≤ C ε .

Similarly using (3.17) and (3.33) we obtain

|Mh
2 | ≤ C

n
∑

j=0

∫

(yh
j
,yj+1)

|dV I,h|



 sup
(yh

j
,yj+1)

|uI − uIε | + sup
(yh

j
,yj+1)

|uII − uIIε |





(3.41)
≤ C ε .

Dealing with Mh
4 is similar:

|Mh
4 | ≤ C

n
∑

j=0

∫

(yh
j
,yj+1)

|dV̄ I |



 sup
(yh

j
,yj+1)

|uI − uIε | + sup
(yh

j
,yj+1)

|uII − uIIε |





(3.42)
≤ C ε .

Finally to treat Mh
3 we observe that, since uIε and uIIε are continuous func-

tions on each interval (yhj , yj+1) and since dV I,h is sequence of bounded measures

converging weakly-star toward dV̄ I , we have for all h sufficiently small

(3.43) |Mh
3 | ≤ ε .

Combining (3.39)–(3.43) we get

(3.44) |T h2,1| ≤ C ε .

Combining (3.36)–(3.38) and (3.44) we obtain

|T h2 | ≤ C ε

and thus with (3.34)–(3.35)

|Ωh2(τ)| ≤ C ε for all h sufficiently small .

Since ε is arbitrary, this completes the proof of (3.30).
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Step 3: Consider now the term

(3.45)

Ω1(τ) =
∑

(x,τ)∈L(ah)∩J (uI,h)

(

2m+ TV (bh)
) ∣

∣

∣ah(x−, τ)− λh(x, τ)
∣

∣

∣

·
∣

∣

∣uII,h(x−, τ)− uI,h(x−, τ)
∣

∣

∣ .

On one hand, observe that

(3.46) TV (bh(τ)) = TV (uI,h(τ)) + TV (uII,h(τ))

−→ V̄ I(+∞, τ) + V̄ II(+∞, τ) .

For all but countably many τ the following holds. Extracting a subsequence if

necessary we can always assume that for each j either (yhj , τ) ∈ L(a
h) for all h,

or else (yhj , τ) /∈ L(a
h) for all h. Then consider the following three sets: denote

by J1 the set of indices j such that (yhj , τ) ∈ L(a
h) and (yj , τ) ∈ L(a). Let J2 the

set of indices j such that (yhj , τ) /∈ L(a
h) and (yj , τ) ∈ L(a). Finally J3 is the set

of indices j such that (yhj , τ) ∈ L(a
h) and (yj , τ) /∈ L(a).

The local convergence property (3.27) implies

(3.47)
∑

j∈J1

∣

∣

∣

∣

a
(

uI,h(yhj−), u
II,h(yhj−)

)

− a
(

uI,h(yhj−), u
I,h(yhj+)

)

∣

∣

∣

∣

·
∣

∣

∣uII,h(yhj−)− u
I,h(yhj−)

∣

∣

∣

−→
∑

j∈J1

∣

∣

∣

∣

a
(

uI(yj−), u
II(yj−)

)

− a
(

uI(yj−), u
I(yj+)

)

∣

∣

∣

∣

∣

∣

∣uII(yj−)− u
I(yj−)

∣

∣

∣ .

(Indeed, given ε > 0, choose finitely many jump points as in (3.31) and use (3.27)

with ε replaced with ε |uI(z+)− uI(z+)|).

On the other hand for indices in J2 or J3 we have

(3.48)
∑

j∈J2∪J3

∣

∣

∣

∣

a
(

uI,h(yhj−), u
II,h(yhj−)

)

− a
(

uI,h(yhj−), u
I,h(yhj+)

)

∣

∣

∣

∣

·
∣

∣

∣uII,h(yhj−)− u
I,h(yhj−)

∣

∣

∣ −→ 0

but

(3.49)
∑

j∈J2∪J3

∣

∣

∣

∣

a
(

uI(yj−), u
II(yj−)

)

− a
(

uI(yj−), u
I(yj+)

)

∣

∣

∣

∣

·
∣

∣

∣uII(yj−)− u
I(yj−)

∣

∣

∣ = 0 .
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Indeed, for each j ∈ J2, yj is a Lax shock but yhj is not. Extracting a subse-

quence if necessary, it must be that the Lax inequalities are violated on the left

or on the right side of yhj for all h. So it must be that, assuming that it is

the case on the left side, a(uI(yj−), u
II(yj−)) − a(uI(yj−), u

I(yj+)) ≥ 0 while

a(uI(yhj−), u
II(yhj−)) − a(uI(yhj−), u

I(yhj+)) ≤ 0 for all h. But the latter con-

verges toward the former by the local uniform convergence, which proves that

a(uI(yj−), u
II(yj−))− a(u

I(yj−), u
I(yj+)) = 0.

Combining (3.45)–(3.49) yields

(3.50) Ωh1 −→
∫ t

0

∑

(x,τ)∈L(a)

q̄(τ)
∣

∣

∣a(x−, τ)−λ(x, τ)
∣

∣

∣

∣

∣

∣uII(x, τ)−uI(x, τ)
∣

∣

∣ dτ ,

where q̄ := 2m+ V̄ I(+∞) + V̄ II(+∞).

Step 4: Continuity of the weighted norm.

Fix some time t. Recall that the weight w̄(t) is defined based on the total

variation functions V̄ II and V̄ I and on the function uII(t) − uI(t). The weight

wh(t) is defined based on the total variation functions V II,h and V I,h and on

the function uII,h(t)− uI,h(t). On the other hand, uII,h − uI,h(t)→ uII − uI(t),

V II,h → V̄ II and V I,h → V̄ I . Therefore we have

(3.51) w(x, t) = w̄(x, t) whenever uII(x, t)− uI(x, t) 6= 0 .

Combining (3.51) and the L1 convergence uII,h− uI,h(t) → uII− uI(t), we

have

(3.52)
∥

∥

∥uII(t)− uI(t)
∥

∥

∥

w̄(t)
= lim

h→0

∥

∥

∥uII,h(t)− uI,h(t)
∥

∥

∥

wh(t)
.

Step 5: The left-hand side of (3.16) is bounded above by (3.21).

First of all, the inequality

(3.53)

∫ t

0

∫

R

(

a(uI , uII)− f ′(uI)
)

(uII − uI) dV I(y, τ) dτ

≤
∫ t

0

∫

R

(

a(uI , uII)− f ′(uI)
)

(uII − uI) dV̄ I(y, τ) dτ

is a direct consequence of (3.19) and the definition of the nonconservative product

in (3.15).
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On the other hand, by the definition of the weighted norm and because of

(3.20), similarly to (3.51) we have the inequality

(3.54) w(x, t) ≤ w̄(x, t) whenever uII(x, t)− uI(x, t) 6= 0 .

Hence, by (3.53) and (3.54) the left-hand side of (3.16) is bounded above by

(3.21). This completes the proof of Theorem 3.5.

4 – Generalized characteristics and maximum principle

We now return to the setting in Section 2 and aim at extending the analysis

therein to arbitrary functions of bounded variation. For exact solutions of the

hyperbolic equation

(4.1) ∂tψ + ∂x(aψ) = 0 ,

we will establish a maximum principle: Any solution of (4.1) remains non-negative

for all times if it is so initially. For a more precise (local) statement, our proof

will make use of Dafermos–Filippov theory of generalized characteristics.

Our main assumption throughout this section is the following:

(4.2) There exists a constant E such that ∂xa ≤
E

t
.

This is nothing but a generalization of the well-known Oleinik’s entropy inequal-

ity. To motivate (4.2), let us recall the following result.

Let f be a strictly convex function and u be an entropy solution (with bounded

variation for all times) of the conservation law

(4.3) ∂tu+ ∂xf(u) = 0 , u(x, t) ∈ R .

Then is is known that there exists a constant C = C(u) such that

(4.4) ∂xu ≤
C

t
.

Lemma 4.1. If uI and uII are two entropy solutions of the conservation law

(4.3), then the averaging speed

(4.5) a = a(uI , uII) :=
f(uII)− f(uI)

uII − uI
.

satisfies our assumption (4.2), with E = sup f ′′ (C(uI) + C(uII))/2.
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Proof: Let us fix some time t > 0. On each Borel set consisting of points of

continuity of both uI and uII , the following holds:

∂xa = ∂x

∫ 1

0
f ′
(

θ uI + (1− θ)uII
)

dθ

=

∫ 1

0
f ′′
(

θ uI + (1− θ)uII
) (

θ ∂xu
I + (1− θ) ∂xu

II
)

dθ

≤
∫ 1

0
sup f ′′

(

θ
C(uI)

t
+ (1− θ)

C(uII)

t

)

dθ

≤ sup f ′′
C(uI) + C(uII)

2 t
.

On the other hand, at a point x where one of uI or uII is discontinuous, we

have with an obvious notation

a+ − a− =

∫ 1

0
f ′
(

θ uI+ + (1− θ)uII+

)

dθ −
∫ 1

0
f ′
(

θ uI− + (1− θ)uII−

)

dθ ≤ 0 ,

since f ′ is an increasing function and (for instance by (4.4)) both uI and uII

satisfy uI+ ≤ uI− and uII+ ≤ uII− .

By definition, a generalized characteristic y = y(t) associated with the coeffi-

cient a must satisfy for almost every t (in its domain of definition)

(4.6) a+(y(t), t) ≤ y′(t) ≤ a−(y(t), t) .

According to Filippov’s theory of differential equations [12], through each point

(x̄, t̄) there pass a maximal and a minimal generalized characteristic.

Definition 4.2. A generalized characteristic is said to be genuine iff for

almost every t it satisfies

(4.7) y′(t) ∈
{

a−(y(t), t), a+(y(t), t)
}

.

Proposition 4.3. Any minimal backward generalized characteristic is gen-

uine and for almost every t satisfies

(4.8) y′(t) = a−(y(t), t) .

Similarly, for a maximal backward generalized characteristic we have y ′(t) =

a+(y(t), t).
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Proof: Here we only rely on the following consequence of (4.2): a+≤ a− at

each discontinuity point of the function a. Geometrically, this condition prevents

the existence of rarefaction-shocks in a. On the other hand, rarefaction centers

(also prevented by (4.2) for t > 0) could still be allowed for the present purpose.

Consider (x̄, t̄) ∈ (−∞,+∞)× (0,∞), and let y(t) := y(t; x̄, t̄) be the minimal

backward characteristic through (x̄, t̄). We prove that it is genuine on its domain

(s, t̄]. We proceed as in [8] and assume by contradiction that there is a measurable

set J, J̄ ⊂ (s, t̄] of positive Lebesgue measure, and ε > 0 such that

(4.9) a−(y(t), t)− y
′(t) > 2 ε , t ∈ J .

For each t ∈ J there exists δ(t) > 0 with the property

(4.10) a+(x, t) ≥ a−(y(t), t)− ε , x ∈
(

y(t)− δ(t), y(t)
)

.

Finally, there is a subset I⊂J with µ∗(I)>0 (here µ∗ denotes the outer measure)

and δ̄ > 0 such that δ(t) > δ̄ for t ∈ I.

Let τ be a density point of I, with respect to µ∗. Thus there exists r̄,

0 < r̄ < t̄− τ , so that

(4.11)
µ∗(I ∩ [τ, τ + r])

r
>

2 |α|+ ε

2 |α|+ 2ε
, 0 < r ≤ r̄ ,

where

α := inf
{

a+(x, t)− a−(y(t), t) : s < t ≤ t̄, y(t)− δ̄ ≤ x < y(t)
}

.

Now take a point y ∈ (y(τ)− δ̄, y(τ)) with the property y > y(τ) − 1
2 ε r̄, and

consider a forward characteristic z(·) through (y, τ). We first observe that

z(t) < y(t) , t > τ ,

since y(t) is the minimal backward characteristic through (x̄, t̄).

In addition, we have

z(t) > y(t)− δ̄ , t >∈ [τ, τ + r̄] .

Indeed, suppose by contradiction that for some r ∈ (0, r̄], z(t) > y(t)− δ̄

for t >∈ [τ, τ + r), but z(τ + r) = y(τ + r)− δ̄. Then

0 = z(τ + r)− y(τ + r)− δ̄

= y +

∫ τ+r

τ
z′(t) dt − y(t) −

∫ τ+r

τ
y′(t) dt + δ̄
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>

∫ τ+r

τ

(

z′(t)− y′(t)
)

dt

=

∫

I∩[τ,τ+r]

(

z′(t)− a−(y(t), t) + a−(y(t), t)− y
′(t)
)

dt

+

∫

[τ,τ+r]\I

(

z′(t)− a−(y(t), t) + a−(y(t), t)− y
′(t)
)

dt

≥ ε µ∗
(

I ∩ [τ, τ + r]
)

+ α
(

r − µ∗
(

I ∩ [τ, τ + r]
))

> 0 ,

by (4.9)–(4.11), which leads to a contradiction. In the same way one obtains

0 > z(τ + r̄)− y(τ + r̄)

= y +

∫ τ+r̄

τ
z′(t) dt − y(t) −

∫ τ+r̄

τ
y′(t) dt

> εµ∗
(

I ∩ [τ, τ + r̄]
)

+ α
(

r̄ − µ∗
(

I ∩ [τ, τ + r]
))

−
1

2
ε r̄ > 0 ,

which gives another contradiction. For the maximal backward characteristic the

proof is similar.

Proposition 4.4. Forward characteristics leaving from some (x̄, t̄) are unique

when t̄ > 0.

Proof: Suppose there were two forward characteristics y(·) and z(·) through

(x̄, t̄) with y(τ) < z(τ) for some τ > t̄. By (4.2) we have

(4.12) z′(τ)− y′(τ) ≤ a−(z(t), t)− a+(y(t), t) ≤ Ct̄(z(τ)− y(τ)) .

Integrating (4.12) from t̄ to τ one gets z(τ)− y(τ) = 0, which gives a contradic-

tion.

Theorem 4.5. Let ψ = ψ(x, t) be a solution of (4.1) such that on some

interval [ξ0, ζ0] we have

(4.13) ψ(x, 0) ≥ 0 , x ∈ [ξ0, ζ0] .

Let ξ = ξ(t) be any forward generalized characteristic leaving from (ξ0, 0), and

ζ = ζ(t) be any forward generalized characteristic leaving from (ζ0, 0).

Then we have for all t ≥ 0

(4.14) ψ(x, t) ≥ 0 , x ∈ (ξ(t), ζ(t)) .

Note that it may happen that ξ(t) = ζ(t) for t large enough.
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Proof: Observe that the two characteristics cannot cross and fix any time

t > 0 such that ξ(t) < ζ(t). Fix also any two points such that ξ(t) < ȳ < z̄ < ζ(t).

Let y(t) and z(t) be the maximal and minimal backward characteristics emanating

from ȳ and z̄, respectively. These characteristics can not leave the region limited

by ξ(t) and ζ(t).

Integrating (4.1) in the domain bounded by the characteristics y(t) and z(t),

and using that these characteristics are genuine, so that the flux terms along the

vertical boundaries vanish identically, we arrive at

(4.15)

∫ z̄

ȳ
ψ(x, t) dx =

∫ z(0)

y(0)
ψ(x, 0) dx ≥ 0 .

The last inequality is due to the fact that ψ(·, 0) ≥ 0 and the inequalities ξ0 =

ξ(0) ≤ y(0) ≤ z(0) ≤ ζ(0) = ζ0. Since ȳ and z̄ are arbitrary, we obtain (4.14).

5 – A sharp L1 estimate for hyperbolic linear equations

Based on the maximum principle established in Section 4, we now derive

a sharp estimate for the weighted norm introduced in Section 2. We restrict

attention again to the situation where uI and uII are two entropy solutions of

the conservation law (4.3) and a is the averaging speed given in (4.5). We define a

weight by analogy with what was done in Section 2 in the special case of piecewise

constant solutions.

Given a solution ψ of the equation (4.1), we introduce weighted L1 norm in

the following way. Set

(5.1) V I(x, t) = TV x
−∞(uI(t)) , V II(x, t) = TV x

−∞(uII(t))

and fix some parameter m ≥ 0. Then consider the weight-function defined, for

each t ≥ 0 and each point of continuity x for uI(t) and uII(t), by

(5.2) w(x, t) =

{

m+ V I(∞, t)− V I(x, t) + V II(x, t) if ψ(x, t) > 0,

m+ V I(x, t) + V II(∞, t)− V II(x, t) if ψ(x, t) ≤ 0 .

It is immediate to see that

(5.3) m ≤ w(x, t) ≤ m+ TV (uI(t)) + TV (uII(t)) , x ∈ R .

Finally the weighted norm on the solutions ψ of (4.1) is defined by

‖ψ(t)‖w(t) :=

∫

R
|ψ(x, t)|w(x, t) dx .
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Note that the weight depends on the fixed solutions uI and uII , but also on the

solution ψ.

Our sharp estimate will involve the nonconservative product

µIψ(t) =
(

a− f ′(uI(t))
)

ψ(t) dV I(t)

defined for all almost every t ≥ 0 by

(1) If B is a Borel set included in the set of continuity points of uI(t) then

(5.4a) µIψ(t)(B) =

∫

B

(

a(t)− f ′(uI(t))
)

ψ(t) dV I(t) ,

where the integral is defined in a classical sense;

(2) If x is a point of jump of uI(t), then

(5.4b) µIψ(t)({x}) =
(

a(x−, t)− λI(x, t)
)

ψ(x−, t)
∣

∣

∣uI(x+, t)− uI(x−, t)
∣

∣

∣ .

Here λI(x, t) is a the shock speed of the discontinuity in uI located at (x, t).

The measure µIIψ (t) is defined similarly. Regarding the expression (5.4b), it is

worth noting that if (x, t) is a point of approximate jump of uI and ψ, then the

jump relation for the equation (4.1) reads

(5.5)
(

a(x−, t)− λI(x, t)
)

ψ(x−, t) =
(

a(x+, t)− λI(x, t)
)

ψ(x+, t) .

In the same way we define

µIIψ (t) =
(

f ′(uII(t))− a
)

ψ(t) dV II(t) .

We now prove:

Theorem 5.1. Let uI and uII be two entropy solutions of (1.1) such that

uII− uI admits finitely many changes of sign. Let ψ be any solution of bounded

variation of the hyperbolic equation (4.1) satisfying the constraint

(5.6) ψ (uII − uI) ≥ 0 .

Then for all 0 ≤ s ≤ t

(5.7) ‖ψ(t)‖w(t) +

∫ t

s

∑

(x,τ)∈L(a)

(

2m+ TV (a)
) ∣

∣

∣a−(x, τ)− λ(x, τ)
∣

∣

∣ |ψ−(x, τ)| dτ

+

∫ t

s

∫

R

(

a(τ)− f ′(uI(τ))
)

ψ(τ) dV I(τ) dτ

+

∫ t

s

∫

R

(

a(τ)− f ′(uII(τ))
)

ψ(τ) dV II(τ) dτ ≤ ‖ψ(s)‖w(s) .
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The assumption (5.6) is clearly satisfied with the choice ψ = uII− uI . There-

fore our previous result in Theorem 3.5 (derived via a completely different proof)

can be regarded as a corollary of Theorem 5.1.

It is interesting to observe that, when uII = uI , the weight (5.2) becomes

constant, and therefore (5.7) reduces to the L1 estimate.

‖ψ(t)‖L1(R) +

∫ t

s

∑

(x,τ)∈L(a)

(

2m+ TV (a)
) ∣

∣

∣a−(x, τ)− λ(x, τ)
∣

∣

∣ |ψ−(x, τ)| dτ

≤ ‖ψ(s)‖L1(R) .

Also, note that under the assumption (5.6) µIψ(t) and µ
II
ψ (t) are positive except

at points (x, t) ∈ L(a) ∪ R(a). However, these negative terms are offset in (5.7)

by the positve terms under the first integral.

Proof: Fix any positive time t. By assumption we have finitely many points

−∞ = y0 < y1 < ... < yn < yn+1 = +∞ such that, on each interval (yi, yi+1), we

have ψ(t) ≥ 0 when i is odd and ψ(t) ≥ 0 when i is even. For every i = 1, ..., n,

consider the (unique by Proposition 4.4) forward characteristic yi(·) associated

with the coefficient a and issuing from the initial point (yi, t).

We will focus attention on some interval (yi, yi+1) with i odd, say, and with

−∞<yi<yi+1<+∞. Except when specified differently, all of the characteristics

to be considered from now on are associated with the solution uII . For definite-

ness we will first study the case that the forward characteristic χ0(·) (associated

with uII and) issuing from the point (yi, t) is located on the right-side of the

curve yi, that is,

yi(τ) ≤ χ0(τ) , t ≤ τ ≤ t+ δ

for some δ > 0 sufficiently small.

Fix some (sufficiently small) ε > 0 and denote by yi < z1 < ... < zN < yi+1

the points where uI has a jump larger or equal to ε, that is,

(5.8) uII− (zI , t)− u
II
+ (zI , t) ≥ ε , I = 1, ..., N .

For each I = 1, ..., N , consider also the forward characteristic χI(·) issuing from

the point (zI , t). For definiteness, we will also assume that the forward charac-

teristic χN+1(·) issuing from (yi+1, t) satisfies

χN+1(τ) ≤ yi+1(τ) , t ≤ τ ≤ t+ δ

for some δ > 0 sufficiently small.
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Next, let us select a time s>t with s− t so small that the following properties

hold:

(a) No intersection among the characteristics yi, χ0, χ1, ..., χN , χN+1, yi+1

occurs in the time interval [t, s].

(b) For I=1, ..., N , let ζI(·) and ξI(·) be the minimal and the maximal back-

ward characteristics emanating from the point (χI(s), s). Then the total

variation of uII(·, t) over the intervals (ζI(t), zI) and (zI , ξI(t)) should

not exceed ε
N
.

(c) Let ζ0(·) be the minimal backward characteristic emanating from (yi(s), s)

and ξ0(·) be the maximal backward characteristic emanating from

(χ0(s), s). Then the total variation of uII(·, t) over the intervals (yi, ξ0(t))

and (ζ0(t), yi) should not exceed ε.

(d) Let ζN+1(·) be the minimal backward characteristic emanating from the

point (χN+1(s), s) and ξN+1(·) be the maximal backward characteristic

emanating from (yi+1(s), s). Then the total variation of uII(·, t) over the

intervals (ζN+1(t), yi+1) and (yi+1, ξN+1(t)) should not exceed ε.

For I = 0, ..., N , and some integer k to be fixed later, consider a mesh of the

form

(5.9) χI(s) = x0I < x1I < ... < xkI < xk+1
I = χI+1(s) .

For I = 0, ..., N and j = 1, ..., k, consider also the maximal backward character-

istic ξjI(·) emanating from the point (xjI , s) and identify its intercept zjI = ξjI(t)

by the horizontal line at time t. Finally set also

z00 = yi , zk+1
N = yi+1 , zk+1

I−1 = z0I = zI , I = 1, ..., N .

To start the proof, we integrate the equation (4.1) satisfied by the function

ψ, successively in each domain limited by the characteristics introduced above.

Applying Green’s theorem, we arrive at the following five formulas:

(i) Integrating (4.1) on the region
{

(x, τ) / t < τ < s, yi(τ) < x < χ0(τ)
}

and multiplying by V II(yi, t) one gets

(5.10i)

∫ χ0(s)

yi(s)
ψ(x, s)V II(yi, t) dx +

∫ s

t
(y′i − a+)ψ+(yi(τ), τ)V

II(yi, t) dτ

+

∫ s

t
(a−−λ0)ψ−(χ0(τ), τ)V

II(yi, t) dτ = 0 .
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(ii) Integrating (4.1) on each of the regions

{

(x, τ) / t < τ < s, ξjI(τ) < x < ξj+1
I (τ)

}

for I = 0, ..., N and j = 1, ..., k, and then multiplying by V II(zjI+, t), one gets

(5.10ii)

∫ x
j+1
I

x
j
I

ψ(x, s)V II(zjI+, t) dx −
∫ z

j+1
I

z
j
I

ψ(x, t)V II(zjI+, t) dx

+

∫ s

t
(λjI − a+)ψ+(ξ

j
I(τ), τ)V

II(zjI+, t) dτ

+

∫ s

t
(a− − λ

j+1
I )ψ−(ξ

j+1
I (τ), τ)V II(zjI+, t) dτ = 0 .

(iii) Integrating (4.1) on each of the regions

{

(x, τ) / t < τ < s, χI(τ) < x < ξ1I (τ)
}

for I = 0, ..., N , and multiplying by V II(zI+, t) one gets

(5.10iii)

∫ x1
I

χI(s)
ψ(x, s)V II(zI+, t) dx −

∫ z1
I

zI

ψ(x, t)V II(zI+, t) dx

+

∫ s

t
(λI − a+)ψ+(χI(τ), τ)V

II(zI+, t) dτ

+

∫ s

t
(a− − λ

1
I)ψ−(ξ

1
I (τ), τ)V

II(zI+, t) dτ = 0 .

(iv) Integrating (4.1) on the regions

{

(x, τ) / t < τ < s, ξkI (τ) < x < χI+1(τ)
}

for I = 0, ..., N , and multiplying by V II(zkI+, t) one gets

(5.10iv)

∫ χI+1(s)

xk
I

ψ(x, s)V II(zkI+, t) dx −
∫ zI+1

zk
I

ψ(x, t)V II(zkI+, t) dx

+

∫ s

t
(λkI − a+)ψ+(ξ

k
I (τ), τ)V

II(zkI+, t) dτ

+

∫ s

t
(a− − λI+1)ψ−(χI+1(τ), τ)V

II(zkI+, t) dτ = 0 .
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(v) Finally integrating (4.1) on the last region
{

(x, τ) / t < τ < s, χN+1(τ) < x < yi+1(τ)
}

and multiplying by V II(yi+1, t) one gets

(5.10v)

∫ yi+1(s)

χN+1(s)
ψ(x, s)V II(yi+1, t) dx

+

∫ s

t
(λN+1 − a+)ψ+(χN+1(τ), τ)V

II(yi+1, t) dτ

+

∫ s

t
(a− − y

′
i+1)ψ−(yi+1(τ), τ)V

II(yi+1, t) dτ = 0 .

Next, summing all of the formulas (5.10) leads us to the general identity:

(5.11)

∫ χ0(s)

yi(s)
ψ(x, s)V II(yi, t) dx +

N
∑

I=0

k
∑

j=0

∫ x
j+1
I

x
j
I

ψ(x, s)V II(zjI+, t) dx

+

∫ yi+1(s)

χN+1(s)
ψ(x, s)V I(yi+1, t) dx −

N
∑

I=0

k
∑

j=0

∫ z
j+1
I

z
j
I

ψ(x, t)V II(zjI+, t) dx

= −
N
∑

I=0

k
∑

j=1

∫ s

t

[

V II(zjI+, t)− V
II(zj−1I +, t)

]

(λjI − a−)ψ−(ξ
j
I(τ), τ) dτ

−
N
∑

I=0

∫ s

t

[

V II(zI+, t)− V
II(zkI−1+, t)

]

(λjI − a−)ψ−(χI(τ), τ) dτ

−
∫ s

t

[

V II(yi+, t)− V
II(yi, t)

]

(λ0 − a−)ψ−(χ0(τ), τ) dτ

−
∫ s

t

[

V II(yi+1+, t)− V
II(zkN , t)

]

(λN+1 − a−)ψ−(χN+1(τ), τ) dτ

−
∫ s

t
(y′i − a+)ψ+(yi(τ), τ)V

II(yi, t) dτ

−
∫ s

t
(a− − y

′
i+1)ψ−(yi+1(τ), τ)V

II(yi+1, t) dτ .

To estimate the right-hand side of (5.11), we recall that the solution uI of a scalar

conservation law satisfies

V II(yi, t) ≥ V II(χ0(s), s) , V II(zjI+, t) ≥ V II(xjI+, s) ,

for I = 0, ..., N and j = 0, ..., k. Hence, choosing the difference xj+1
I − xjI in (5.9)

sufficiently small and since the function V II(·, t) is nondecreasing, we conclude
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that the left-hand side of (5.11) can be bounded from below, as follows:

(5.12)

L.H.S. ≥
∫ yi+1(s)

yi(s)
ψ(x, s)V II(x, s) dx − (s− t) ε

−
∫ yi+1(t)

yi(t)
ψ(x, t)V II(x, t) dx .

Estimating the right-hand side of (5.11) is more involved. First note that

each term arising in the left-hand side of (5.11) is non-positive. This follows

from our condition (5.6). Indeed, consider a point (x, s) of approximate jump or

approximate continuity of uI , uII and ψ. If all of these functions are continuous,

the result is trivial. Call λ the discontinuity speed. Based on the jump relation

(5.5), we see that either ψ− (λ− a−) = ψ+ (λ− a+) = 0, or else all of the terms

ψ−, λ− a−, ψ+, and λ− a+ are distinct from zero.

Suppose first that (x, s) is a point in the interior of the region limited by the

two curves yi(·) and yi+1(·). In the latter case, since ψ ≥ 0 in the region under

consideration, we deduce that ψ− > 0 and ψ+ > 0, while the terms λ − a− and

λ − a+ are either both negative or both positive. Actually, in view of the sign

condition (5.6), we have uII± − u
I
± ≥ 0 and, therefore, λ− a± ≥ 0 as follows from

(3.10) (here we are dealing with a jump of uII).

Consider next a point of the boundary yi, for instance. So we now have ψ−<0

and ψ+>0, while the terms λ−a− and λ−a+ have opposite sign. Since no rare-

faction-shock can arise, the discontinuity must be a Lax shock and so λ−a− < 0

and λ − a+ > 0. Again the corresponding term in (5.11) has a favorable sign.

(Observe that the condition (5.6) was not used in this second case.)

Then, for all I = 0, ..., N and j = 1, ..., k, let θjI(·) be the (maximal, for defi-

niteness) backward characteristic associated with uI and issuing from the point

(ξjI(τ), τ). Denote also by θ(zjI ; τ) its intercept with the horizontal line at time t.

Setting

ã(x, t; τ) :=
f(uII(x, t))− f(uI(θ(x, τ), t))

uII(x, t)− uI(θ(x; τ), t)

and using that the solution uI remains constant along the characteristic θjI(·), we

obtain

(5.13) (λjI − a−)(ξ
j
I(τ)) = λjI(z

j
I)− ã(z

j
I , t; τ) .

Then consider the (maximum, for definiteness) backward characteristic yjI(·) as-

sociated with a and issuing from the point (ξjI(τ), τ). By integrating ψ along the

characteristic yjI(·) and using the inequality (4.4), we arrive at a lower bound for
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ψ

(5.14) ψ(ξjI(τ), τ) ≥ ψ(yjI(t), t)

(

t

τ

)E

, t < τ < s .

Upon choosing xj+1
I − xjI in (5.9) so small that the oscillation of V II

c (·) over each

interval (zjI − zj+1
I ) does not exceed ε and recalling the standard estimates on

Stieltjes integrals we deduce from (5.11)–(5.13) that

(5.15)
N
∑

I=0

k
∑

j=1

∫ s

t

[

V II(zjI+, t)− V
II(zj−1I +, t)

] (

(λjI − a−)ψ−(ξ
j
I(τ), τ)

)

dτ

≥
N
∑

I=0

k
∑

j=1

∫ s

t

[

V II
c (zjI , t)− V

II
c (zj−1I , t)

] (

λjI(z
j
I)− ã(z

j
I , t, τ)

)

ψ(yjI(t), t)

(

t

τ

)E

dτ

≥
∫ s

t

N
∑

I=0

k
∑

j=1

(

∫ z
j
I

z
j−1
I

(

λjI(x)− ã(x, t, τ)
)

ψ(x, t) dV II
c (x, t) − c ε

)

(

t

τ

)E

dτ

=

∫ s

t

(

∫ yi+1

yi

(

λjI(x)− ã(x, t, τ)
)

ψ(x, t) dV II
c (x, t) − c(yi+1− yi) ε

)

(

t

τ

)E

dτ .

We now combine (5.10), (5.11) and (5.15), divide the resulting inequality by

s− t, and let s↘ t, ε→ 0, obtaining the following inequality:

(5.16)
d+

dt

∫ yi+1(t)

yi(t)
ψ(x, t)V II(x, t) dx

≤ −
∫ yi+1

yi

(

λjI(x)− a(x, t)
)

ψ(x, t) dV II
c (x, t)

−
∑

(x,t)∈J (uII)

(

uII− (x, t)− uII+ (x, t)
)

(λI − a−)(x, t)ψ−(x, t)

−
(

uII− (yi, t)− u
II
+ (yi, t)

)

(λI− a−)(yi, t)ψ−(yi, t)

−
(

uII− (yi+1, t)− u
II
+ (yi+1, t)

)

(λI− a−)(yi+1, t)ψ−(yi+1, t)

− (y′i − a+)ψ+(yi, t)V
II(yi, t) − (a− − y

′
i+1)ψ−(yi+1, t)V

II(yi+1, t) .

The third and fourth terms in the right-hand side of (5.16) are due to the fact

that χ0 and χN+1 lie inside the region limited by yi and yi+1.

We can next focus on the intervals (yi, yi+1) with i even. Based on a com-

pletely symmetric argument and using now the weight m+ V II(∞, t)− V II(·, t)
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instead of V II(·, t), we obtain

(5.17)
d+

dt

∫ yi+1(t)

yi(t)
(−ψ(x, t))

(

m+ V II(∞, t)− V II(x, t)
)

dx

≤
∫ yi+1

yi

(

λjI(x)− a(x, t)
)

(−ψ(x, t)) dV II
c (x, t)

+
∑

(x,t)∈J (uII)

(

uII− (x, t)− uII+ (x, t)
)

(λI − a−)(−ψ−)(x, t)

+
(

uII− (yi, t)− u
II
+ (yi, t)

)

(λI − a−)(−ψ−)(yi, t)

+
(

uII− (yi+1, t)− u
II
+ (yi+1, t)

)

(λI − a−)(−ψ−)(yi+1, t)

− (y′i − a+)(−ψ+)(yi, t)
(

m+ V II(∞, t)− V II(yi, t)
)

− (a− − y
′
i+1)(−ψ−)(yi+1, t)

(

m+ V II(∞, t)− V II(yi+1, t)
)

.

By summation over i = 1, ..., n in (5.16) for i odd and in (5.17) for i even respec-

tively, we obtain

d+

dt

∫ +∞

−∞
[ψ(x, t)]+ V II(x, t) + [−ψ(x, t)]+

(

m+ V II(∞, t)− V II(x, t)
)

dx

(5.18)

≤ −
∑

(x,t)∈L(a)∩J (uII)

(

m+ V II(∞, t)
) ∣

∣

∣λ(x, t)− a−(x, t)
∣

∣

∣ |ψ−(x, t)|

−
∑

(x,t)∈J (uII)

(

uII− (x, t)− uII+ (x, t)
) (

λI(x, t)− a−(x, t)
)

ψ−(x, t)

−
∫

R

(

f ′(uII(y, t))− a(y, t)
)

ψ(y, t) dV II
c (y, t) ,

where the superscript + denotes the positive part of the functions ψ and −ψ

respectively.

Consider now the case where

χ0(τ) ≤ yi(τ) , t ≤ τ ≤ t+ δ ,

and

yi+1(τ) ≤ χN+1(τ) , t ≤ τ ≤ t+ δ .

Assume that there exists a time τ̄ > t such that

χ0(τ̄) < yi(τ̄) , yi+1(τ̄) < χN+1(τ̄)
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(otherwise the curves of the two pairs will coincide, and we can reduce to the

previous case). Let now ξ0(·) be the maximal backward characteristic emanating

from (yi(τ̄), τ̄), and ζN+1(·) be the minimal backward characteristic emanating

from the point (yi+1(τ̄), τ̄). Since characteristics cannot cross, we have that

yi(t) < ξ0(t) , ζN+1(t) < yi+1(t) ,

Then, by finite propagation speed, there exists a time s > t such that

yi(τ) < ξ0(τ) , ζN+1(τ) < yi+1(τ) , t ≤ τ < s ,

yi(s) = ξ0(s) , ζN+1(s) = yi+1(s) .

Instead of properties (c), (d), we will require that s satisfies the following:

(c′) Let ζ0(·) be the minimal backward characteristic emanating from

(χ0(s), s). Then the total variation of uII(·, t) over the intervals (yi, ξ0(t))

and (ζ0(t), yi) should not exceed ε.

(d′) Let ξN+1(·) be the maximal backward characteristic emanating from

(χN+1(s), s). Then the total variation of uII(·, t) over the intervals

(ζN+1(t), yi+1) and (yi+1, ξN+1(t)) should not exceed ε.

From then on we can proceed as before. Finally we write the inequality in

(5.18) exchanging the roles of uI and uII , and combining it with (5.17) we arrive

exactly at the desired inequality (5.7) and the proof of Theorem 5.1 is completed.
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