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HOW MANY INTERVALS COVER A POINT
IN RANDOM DYADIC COVERING?

A.H. Fan and J.P. Kahane

Presented by J.P. Dias

Abstract: We consider a random covering determined by a random variable X of

the space D = {0, 1}N. We are interested in the covering number Nn(t) of a point t ∈ D
by cylinders of lengths ≥ 2−n. It is proved that points in D are differently covered in

the sense that the random sets {t ∈ D : Nn(t)− b n ∼ c nα} are non-empty for a certain

range of b, any real number c and any 1/2 < α < 1. Actually, the Hausdorff dimensions

of these sets are calculated. The method may be applied to the first percolation on an

infinite and locally finite tree.

1 – Introduction

We consider the sequence space D = {0, 1}N and a probability distribution

represented by a random variable X which takes values in the set of non-negative

integers (our methods also apply to the case of an infinite and locally finite tree

and a real-valued variable). For any finite sequence (ε1, ..., εn) of 0 and 1, we de-

note by I(ε1, ..., εn) the n-cylinder in D (also called interval of length 2−n) which

is defined in the usual way and by Xε1,...,εn a random variable which has the same

distribution as X. We consider Xε1,...,εn as the covering number of the cylin-

der I(ε1, ..., εn), that is to say, the cylinder I(ε1, ..., εn) is cut off with probability

p0 = P (X= 0) and is covered m times with probability pm = P (X= m),

m = 1, 2, ... . In the sequel, we assume that all variables Xε1,...,εn are independent

and they are defined on a probability space (Ω,A, P ).
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For t = (tn)n≥1 ∈ D, let

Nn(t) =
n∑

k=1

Xt1,...,tk .

The quantity Nn(t) is called the covering number (or more precisely the n-cover-

ing number) of the point t by cylinders of lengths 2−k (k = 1, 2, ..., n). As a

consequence of the law of large numbers and Fubini’s theorem, we have

lim
n→∞

Nn(t)

n
= EX

almost surely (a.s.) for almost every point t (with respect to Lebesgue mea-

sure on D). It is also well known in the theory of birth processes that a.s.

limn→∞Nn(t) =∞ for every t ∈ D if and only if

p0 = P (X= 0) <
1

2
.

That is to say, a.s. every point is infinitely covered when the above condition is

satisfied.

Our aim in this paper is to study the behavior of Nn(t) by considering the

random sets

Eb =

{
t ∈ D : lim

n→∞

Nn(t)

n
= b

}

for different b ∈ R. If t ∈ Eb, we may say that the point t is covered by about

b n cylinders of lengths ≥ 2−n (with the convention that the cylinder I(ε1, ..., εn)

is covered m times when Xε1,...,εn = m). Actually our method allows us to study

the subsets of Eb defined by

Eb,s =
{
t ∈ D : Nn(t)− b n ∼ sn, as n→∞

}

where s = {sn} is a sequence of real numbers such that sn = o(n).

We make the hypothesis that X is not constant and E etX < ∞ for all t ∈ R
(similar results hold when E etX<∞ for some interval of t). Let

ϕ(u) = E euX , c(u) = logϕ(u) .

The function c(u) is called the free energy of X. Notice that c(u) is strictly

increasing and strictly convex. Its Legendre–Fenchel transform is defined by

c∗(s) = sup
u∈R

(
s u− c(u)

)
.
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Notice also that c∗ is a well defined continuous convex function in the interval

[c′(−∞), c′(+∞)] which is contained in [0,+∞], and that it attains its minimal

value 0 at u = EX.

In the following theorems, dim means the Hausdorff dimension as well as the

packing dimension. See [M2] for the definitions of these two notions of dimension.

We recall the metric of D, which is defined as d(t, s) = 2−n for t, s ∈ D with

n = sup{m : tj = sj , ∀ 1 ≤ j ≤ m}. We denote

J =
{
b ∈ [c′(−∞), c′(+∞)] : c∗(b) ≤ log 2

}
.

Theorem 1. Suppose X is a non-constant random variable taking values

in the set of non negative integers such that E etX < ∞ (∀ t ∈ R). Then for

any number b ∈ J and any sequence of positive numbers s = (sn) such that

sn − sn−1 = o(1) and
√
n log log n = o(sn), we have a.s.

dimEb,s = dimEb = 1− c∗(b)

log 2
.

The proof of Theorem 1 will show that the dimension of the set of points t such

that lim inf n−1Nn(t) ≥ b is equal to dimEb when b > EX and the dimension

of the set of points t such that lim supn−1Nn(t) ≤ b is equal to dimEb when

b < EX.

What happens for Eb when b 6∈ J? This question is answered by the following

theorem.

Theorem 2. Suppose X satisfies the same condition as in Theorem 1. Let

A = inf J and B = sup J . Then we have a.s.

A ≤ lim inf
n→∞

Nn(t)

n
≤ lim sup

n→∞

Nn(t)

n
≤ B (∀ t ∈ D) .

If lim Nn(t)
n doesn’t exist, we may say that t is irregularly covered. The fol-

lowing theorem shows that many points are irregularly covered.

Theorem 3. Suppose X satisfies the same condition as in Theorem 1. Then

the set of irregularly covered points is a.s. of Hausdorff dimension 1.

The present study was partially motivated by Dvoretzky random covering

problem on the unit circle [D] (see [S, K2, FK, K5, K6] for the developments of
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the subject). Recent work on the circle related to ours may be found in [F3], the

results are less complete than those for the sequence space D studied here.

The restriction on D and the positivity assumption of X are not essential: the

above results can be generalized to tree-indexed walks. See [B, L, LP, BP, PP]

for related works on tree-indexed walks.

Using results on percolation in [L], Lyons and Pemantle [LP] have obtained

the dimension formula for dimEb, but their method does not give results on

dimEb,s.

2 – Preliminaries

Our main tool is multiplicative chaos (for a lower estimate for the dimension).

As usual, large deviation is used to get an upper estimate of dimension.

First of all, we recall the notion of the dimension of a measure [F2]. The

lower dimension of a measure µ, denoted by dim∗ µ, is the supremum of β’s such

that µ(E) = 0 for any E with dimE < β. The upper dimension of a measure

µ, denoted by dim∗µ, is the infimum of dimF for F ’s such that µ(F c) = 0. It is

clear that for a given Borel set A, we have

dimA ≥ dim∗ µ if µ(A) > 0 .

When dim∗ µ = dim∗µ = α, we write dimµ = α.

The general theory of multiplicative chaos was developed by the second author

in [K3]. We recall it here briefly. The key part for us is the Peyrière probability

measure. Let (Pn) be a sequence of non-negative independent random functions

defined on D such that EPn(t) = 1 (∀ t ∈ D). Consider the finite products

Qn(t) =
n∏

k=1

Pn(t) .

We call Qn(t) an indexed martingale because it is a martingale for each t ∈ D.

It was proved in [K3] that for any Borel probability measure µ on D, a.s. the

random measures Qn(t) dµ(t) converge weakly to a (random) measure that we

denote by Qµ. The operator Q is called a multiplicative chaos. If the total mass

martingale

Yn =

∫

D
Qn(t) dµ(t)

converges in L1, the measure Qµ does not vanish and a probability measure
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Q = Qµ on Ω×D, called Peyrière measure, may be defined by the relation
∫

Ω×D
ϕ(ω, t) dQµ(ω, t) = E

∫

D
ϕ(ω, t) dQµ(t)

(for all bounded measurable functions ϕ). A very useful fact is that if the dis-

tribution of the variable Pn(t) is independent of t ∈ D, then Pn(t, ω) (n ≥ 1)

considered as random variables on Ω×D are Q-independent. Furthermore, we

have the formula

EQ h(Pn) = Eh(Pn)Pn

(for any Borel function h).

We shall use a particular class of multiplicative chaos. This corresponds to

Pn(t) = Wt1,...,tn

where all the random variables {Wt1,...,tn} are independent, non-negative and

normalized (i.e. EWt1,...,tn = 1), and for any n ≥ 1, the subfamily of variables

{Wt1,...,tn} are identically distributed with common law represented by a variable

W̃n. The corresponding chaos is called (generalized) random cascades determined

by W̃n. When W̃n are identically distributed, we recover the classical random

cascades, well studied in [KP, M1]. The following lemmas study the random

measure Qλ determined by a sequence {W̃n} and the Lebesgue measure λ = dt

on D. Recall that Yn denotes the total mass martingale
∫
D Qn(t) dt.

Lemma 1. Suppose that for some 0 < h < 1 we have

lim inf
n→∞

E log2 W̃
h
n

h− 1
> 1 .

Then the martingale Yn converges a.s. to zero. Consequently Qλ = 0 a.s..

Proof: The condition implies that E W̃j < 2h−1 for large j. Let B be an

arbitrary ball of radius 2−n. We have

E sup
t∈B

Qn(t)
h =

n∏

j=1

E W̃ h
j ≤ C 2−n(1−h)

where C is a constant independent of the ball B. We conclude by applying

theorem 3 from [K3].

Lemma 2. Suppose that for some h > 1 we have

lim sup
n→∞

E log2 W̃
h
n

h− 1
< 1 .
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Then the martingale Yn converges in Lh. Consequently the Peyrière measure

Q = Qλ exists.

Proof: The condition implies that there exists ε > 0 such that 21−h E W̃j ≤
eε(1−h) for large j. By the same calculation as in [K1] (p. 622), we have

EY h
n−1 ≤ EY h

n ≤ EY h
n−1 E W̃ h

n 21−h
(
1 +

E2Y h/2
n−1

EY h
n−1

)h−1

.

It follows that for large n, we have EY h
n−1 ≤ 1/ε. Thus the total mass martingale

is bounded in Lh.

Lemma 3. Let 0 < h′ < 1 < h′′. Denote

D− = 1− lim inf
n→∞

E log2 W̃
h′
n

h′ − 1
, D+ = 1− lim sup

n→∞

E log2 W̃
h′′
n

h′′ − 1
.

Then D+≤ dim∗Qλ ≤ dim∗Qλ ≤ D− a.s..

Proof: We follow [K4] using a result from [F1]. For β > 0, let Wβ be

the variable such that P (Wβ = 2β) = 2−β = 1 − P (Wβ = 0). The random

cascades determined by Wβ (called β-model) gives rise to a multiplicative chaos

Qβ . We construct Qβ independent of Q. The product Qβ Q is the chaos defined

by {Wβ W̃n}. A simple calculation gives

log2(W̃nWβ)
h

h− 1
=

log2 W̃
h
n

h− 1
+ β (∀h 6= 1) .

Take 0 < β < D+ (there is nothing to do if D+ is negative). We have

lim sup
n→∞

log2(W̃nWβ)
h′′

h′′ − 1
= 1−D+ + β < 1 .

By Lemma 2 and the main result of [F1], we get dim∗Qλ ≥ β a.s..

Take β > D−. We have

lim inf
n→∞

log2(W̃nWβ)
h′′

h′′ − 1
= 1−D− + β > 1 .

By Lemma 1 and the result of [F1], we get dim∗Qλ ≤ β a.s..

Suppose c′(λb) = b. Take ξn = λb + ηn with ηn → 0 as n→∞. Consider

W̃n =
eξnX

ϕ(ξn)
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where X is the variable determining our covering. For different choices {ηn}, the
corresponding random measure Qλ may be singular each other, but they have

the same dimension.

Lemma 4. Let Qλ be the random measure defined by the above sequence

{W̃n}. Then
dimQλ = 1− c∗(b)

log 2
a.s..

Proof: Since ξn → λb and

logE W̃ h
n

h− 1
=

c(ξn h)− c(ξn)

h− 1
− c(ξn) ,

we have

lim
n→∞

logE W̃ h
n

h− 1
=

c(λb h)− c(λb)

h− 1
− c(λb) .

The function c(·) being strictly convex, we have

c(λb h)− c(λb)

h− 1
− c(λb) > c′(λb)λb − c(λb) = c∗(b) if h > 1 ;

c(λb h)− c(λb)

h− 1
− c(λb) < c′(λb)λb − c(λb) = c∗(b) if h < 1 .

Now we can apply Lemma 3.

Now let us recall some properties of the free energy function of X and of its

Legendre–Fenchel transform. Let xmax (resp. xmin) be the essential upper (resp.

lower) bound of the variable X. Then let

pmin = P (X= xmin) , pmax = P (X= xmax) .

We first claim that (assuming pmin > 0)

c′(−∞) = xmin , c∗(xmin) = log
1

pmin
.

In fact, since

E etX = pmin e
txmin(1 +O(et)) (t→ −∞) ,

EXetX = pmin xmin e
txmin(1 +O(et)) (t→ −∞) ,

we have

c′(t) =
EXetX

EetX
= xmin +O(et) (t→ −∞) ,

c∗(c(t)) = t c′(t)− c(t) = pmin xmin e
txmin(1 +O(tet)) (t→ −∞) .
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We also claim that if xmax <∞

c′(+∞) = xmax , c∗(xmax) = log
1

pmax
.

In fact, the proof is the same as above because, assuming pmax > 0,

E etX = pmax e
txmax(1 +O(e−t)) (t→ +∞) ,

EXetX = pmax xmax e
txmax(1 +O(e−t)) (t→ +∞) .

Consequently, we have c∗(xmin) ≤ log 2 if and only if pmin ≥ 1
2 . If pmin<

1
2 ,

there is a point 0 < c0 < EX such that c∗(c0) = log 2. Also if pmax <
1
2 , there is

a point b0 > EX such that c∗(b0) = log 2.

3 – Proof of Theorem 1

Let us first prove dimP Eb ≤ 1− c∗(b)/ log 2 where dimP denotes the packing

dimension. Notice that the interval J contains EX because EX = c′(0) and

c∗(c′(0)) = 0. Suppose b > EX. (The case b < EX may be similarly treated).

Fix a small δ > 0. Let

Cn =

{
I(t1, ..., tn) :

n∑

k=1

Xt1,...,tk > (b− δ)n

}
.

Let Gn be the union set of all cylinders in Cn. It is clear that

Eb ⊂
∞⋃

`=1

∞⋂

n=`

Gn .

Then

dimP Eb ≤ sup
`≥1

dimP

∞⋂

n=`

Gn ≤ sup
`≥1

dimB

∞⋂

n=`

Gn

where dimB denotes the upper box dimension. Remark that when n ≥ `, Cn is a

cover of
⋂∞

n=`Gn by cylinders of length 2−n. Thus we have

dimB

∞⋂

n=`

Gn ≤ lim sup
n→∞

Card Cn
log 2n

.

Now estimate the random variable Card Cn. It is obvious that

E Card Cn =
∑

t1,...tn

P

(
n∑

k=1

Xt1,...,tk > (b− δ)n

)
.
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However, by the theorem of large deviation [E] (p. 230), we have

P

(
n∑

k=1

Xt1,...,tk > (b− δ)n

)
≤ e−nc∗(b−δ) = 2−n

c∗(b−δ)
log 2 .

This, together with the preceding equality, gives us

E Card Cn ≤ 2
n(1−

c∗(b−δ)
log 2

)
.

Then

E
∞∑

n=1

n−2 2
−n(1−

c∗(b−δ)
log 2

)
Card Cn < ∞ .

It follows that almost surely we have

Card Cn = O
(
n2 2

n(1−
c∗(b−δ)

log 2
)
)
.

Therefore

lim sup
n→∞

Card Cn
log 2n

≤ 1− c∗(b− δ)

log 2
.

Letting δ → 0, we obtain the desired upper bound.

Suppose b is an interior point of J . In order to prove dimH Eb,s ≥ 1 −
c∗(b)/ log 2, we consider the random measure Qλ determined by

W̃n =
eξnX

ϕ(ξn)

where ξn ∈ R is the solution of c′(ξn) = b+(sn−sn−1). By Lemma 2, the Peyrière

measure Q is well defined. We have

EQXt1,...,tn =
EX eξnX

ϕ(ξn)
= c′(ξn) ,

EQX2
t1,...,tn =

EX2 eξnX

ϕ(ξn)
=

ϕ′′(ξn)

ϕ(ξn)
,

VarQXt1,...,tn = c′′(ξn) .

Notice that the variables Xt1,...,tn (n=1, 2, ...) are Q-independent. Then by the

law of the iterated logarithm, Q-almost surely

n∑

k=1

Xt1,...,tk− bn− sn = O
(√

n log log n
)
.
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Since
√
n log log n = o(sn), Qλ(E

c
b,s) = 0 a.s.. Then

dimH Eb,s ≥ dim∗Qλ a.s..

On the other hand, by Lemma 4,

dimQλ = 1− c∗(b)

log 2
a.s..

Thus the formula is proved when b is in the interior of J .

Let A be the left end point of J . If c∗(A) = log 2, the proof of the upper bound

shows that dimEA = 0 then dimEA,s= 0. Suppose c∗(A) < log 2. This implies

A = xmin = c′(−∞) > −∞ (see the definition of J and the strict convexity of c∗).

In order to prove dimExmin,s = 1 − log2
1

pmin
, it suffices to consider the random

cascade by choosing ξn tending to −∞ such that c′(xn) = c′(−∞) + (sn− sn−1)

to get the lower bound (the upper bound is proved as above).

Let B<+∞ be the right end point of J . As for the left end point, if c∗(B) =

log 2, we have dimEB = dimEB,s = 0. Suppose c∗(B) < log 2. This implies

xmax = c′(+∞) = B < ∞. In order to prove dimExmax,s = 1 − log2
1

pmax
, it

suffices to consider the random cascade by choosing ξn tending to +∞ such that

c′(xn) = c′(+∞) + (sn− sn−1) to get the lower bound.

4 – Proof of Theorem 2

Notice that

xmin ≤
Nn(t)

n
≤ xmax .

So, there is nothing to prove for lim sup Nn(t)
n ≤ sup J when sup J = xmax and

nothing to prove for lim inf Nn(t)
n ≥ inf J when inf J = xmin.

Suppose that sup J < xmax. That implies c∗(c′(∞)) > log 2. Denote by [x]

the integral part of a real number x. Let γ > 0 be a large number. For j ≥ 4,

introduce the following notation

Sj(t) =
∑

[γ(j−1) log(j−1)]≤k<[γj log j]

Xt1,...,tk

Uj = max
t∈D

Sj(t) , Vj = min
t∈D

Sj(t) .

Suppose Uj = Sj(t0) for some point t0. It is clear that Uj ≤ Sj(t) for all t in

the [γ log j]-cylinder containing t0. It follows that for any λ > 0, we have

eλUj ≤ 2γ log j
∫

D
eλSj(t) dt .
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Taking expectation gives us

E eλUj ≤ 2γ log j (E eλX)γ log j .

Take B′ > B. Then c∗(B′) > log 2. By using Chebyshev’s inequality, we get

P (Uj ≥ B′γ log j) ≤ jγ{log 2−(B
′λ−c(λ))} .

Take λ > 0 such that c′(λ) = B′ and B′λ − c(λ) = supt(B
′t − c(t)) = c∗(B′).

Such a λ > 0 does exist because c∗(c′(∞)) > log 2. Then

P (Uj ≥ B′γ log j) = O(jγ(log 2−c∗(B′))) .

Since log 2 − c∗(B′) is strictly negative, the series
∑

j j
γ(log 2−c∗(B′)) converges if

γ is sufficiently large. According to the Borel–Cantelli lemma, almost surely for

large j

Uj ≤ B′ γ log j .

Thus we have

J∑

j=1

Uj ≤ B′ γ
J∑

j=1

log j + O(1) ≤ B′ γ J log J + O(1) .

For any n ≥ 1, there is a K such that [γ(K − 1) log(K− 1)] ≤ n < [γ K logK].

Then
n∑

k=1

Xε1,...,εk ≤
K∑

j=1

Uj ≤ B′ γ K logK +O(1) ∼ B′ n .

Thus we have proved

lim sup
n→∞

Nn(t)

n
≤ B′ (∀ t ∈ D) .

Since B′ is an arbitrary number such that B ′ > B, it follows from the last in-

equality that

lim sup
n→∞

Nn(t)

n
≤ B (∀ t ∈ D) .

The proof of the lower estimate is similar. We just point out what should

be changed. If Vj = Sj(t0) for some point t0, then Vj ≥ Sj(t) for all t in the

[γ log j]-cylinder containing t0. This allows us to get that for any λ > 0,

E e−λVj ≤ 2γ log j (E e−λX)γ log j .
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By using Chebyshev’s inequality, for A′ < A we get

P (Vj ≤ A′γ log j) ≤ jγ{log 2−(−A′λ−c(−λ))} .

Take λ > 0 such that A′(−λ)− c(−λ) = supt(A
′t− c(t)) = c∗(A′). Then

P (Vj ≤ A′γ log j) ≤ jγ(log 2−c∗(A′)) .

5 – Proof of Theorem 3

Let (ξn) be a sequence of positive numbers such that 0 < a ≤ ξn ≤ b <∞
which will be determined later. Consider the random measure Qλ defined by

W̃n =
eξnX

ϕ(ξn)
.

By Lemma 2, if b is small enough, the Peyrière measure Q exists. From now on,

we assume that b is small. Since

EQXε1,...,εk = c′(ξk) , VarQ(Xε1,...,εk) = c′′(ξk) ,

by the law of the iterated logarithm, Q-almost everywhere

n∑

k=1

Xε1,...,εk −
n∑

k=1

c′(ξk) = O
(√

σ2n log log σ
2
n

)

where

σ2n =
n∑

k=1

c′′(ξk) ≈ n .

Thus a.s. Q-almost everywhere we have the equivalence

Nn(t) ∼
n∑

k=1

c′(ξk) .

Take a rapidly increasing sequence of positive integers (nk) such that

lim
k→∞

nk

n1 + ...+ nk
= 1 .

For any two given small numbers 0 < a < b, define the sequence (ξj) in the

following way
ξj = a if n2k ≤ j < n2k+1 ,

ξj = b if n2k+1 ≤ j < n2k+2 .
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Then we have

lim inf
n→∞

1

n

n∑

k=1

c′(ξk) ≤ c′(a) < c′(b) ≤ lim sup
n→∞

1

n

n∑

k=1

c′(ξk) .

Let E be the set of points t ∈ D such that lim Nn(t)
n doesn’t exists. Then

almost surely Qλ(Ec) = 0. It follows that almost surely dimE ≥ dimQλ. By

Lemma 3, if b→ 0 then dimQ→ 1. We get dimE = 1.

6 – Poisson covering and Bernoulli covering

We look at two examples.

Example 1. Suppose X is a Poisson variable with parameter a > 0

(i.e. P (X= k) = e−a ak

k! ). Then

ϕ(t) = e−a(1−et) , c(t) = −a(1− et) .

Let b = c′(t) = a et. That means t = log b
a . We have

c∗(b) = t c′(t)− c(t) = log
b

a
· b+ (a− b) .

Thus we get

Theorem 4. Suppose X is a Poisson variable with parameter a > 0. Then

there is an interval Ja such that for b ∈ Ja, almost surely

dimEb = 1− 1

log 2

[
(a− b) + b log

b

a

]
;

for b 6∈ Ja, Eb = ∅. The interval Ja consists of b ≥ 0 such that F (b) ≤ log 2

where F (b) = a− b+ b log b
a .

The interval Ja may be calculated explicitly. Notice that xmin = 0, xmax =∞
and

c∗(0) = a , c∗(∞) =∞ .

Let B > a be the solution of F (B) = log 2. If a ≤ log 2, Ja = [0, B]. If a > log 2,

Ja = [A,B] where 0 < A < a is the other solution of F (A) = log 2.
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Remark that if a ≤ log 2, the above theorem implies that lim Nn(t)
n may be as

small as possible. But if a > log 2, it is uniformly (in t) bounded from below by

A > 0.

Remark also that the variable X takes all positive integers as values. A priori,

one might assume that lim Nn(t)
n may take large values. But by the above theorem,

it is uniformly (in t) bounded by B.

Example 2. Suppose X is a Bernoulli variable with parameter p > 0

(i.e. P (X= 1) = p = 1− P (X= 0)). Then

ϕ(t) = 1− p+ p et , c(t) = log(1− p+ p et) .

Let b = c′(t) = pet

1−p+pet . That means t = log b(1−p)
p(1−b) . We have

c∗(b) = t c′(t)− c(t) = b log
b

p
+ (1− b) log

1− b

1− p
.

Thus we get

Theorem 5. Suppose X is a Bernoulli variable with parameter 0 < p < 1.

Then there is an interval Ip such that for b ∈ Ip ,

dimEb = 1− 1

log 2

[
b log

b

p
+ (1− b) log

1− b

1− p

]
a.s. ;

for b 6∈ Ip, Eb = ∅. The interval Ip consists of 0 ≤ b ≤ 1 such that F (b) ≤ log 2

where F (b) = b log b
p + (1−b) log 1−b

1−p .

The interval Ip may be calculated as follows. Notice first that xmin = 0,

xmax = 1 and

c∗(0) = log
1

1− p
, c∗(1) = log

1

p
.

If p = 1
2 , Ip = [0, 1]. If p > 1

2 , Ip = [A, 1] where 0 < A < p is the solution of

F (A) = log 2; if p < 1
2 , Ip = [0, B] where p < B < 1 is the solution of F (B) =

log 2.

Notice that if p < 1
2 , lim sup Nn(t)

n ≤ B (∀ t ∈ D) for some B < 1; if p > 1
2 ,

lim inf Nn(t)
n ≥ A (∀ t ∈ D) for some A > 0.

Finally we remark that the condition
√
n log logn = o(sn) in Theorem 1 is

not always necessary. Consider the Bernoulli covering with 0 < p < 1/2. Let

ξn = log

(
1− p

p
(sn − sn−1)

)
.
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Notice that ξn → −∞ because of sn−sn−1 = o(1). Consider the random measure

Qλ defined by

W̃n =
eξkX

ϕ(ξk)
.

It may be checked that the Peyrière measure Q is well defined and dimQλ =

1− log2
1
1−p (by Lemma 2 and Lemma 3). Notice that Xt1,...,tk = 0 or 1. We have

EQXt1,...,tk = EQX2
t1,...,tk

= EXt1,...,tk Wt1,...,tk = c′(ξk) .

It follows that the variance

VarQXt1,...,tk = c′(ξk)− c′(ξk)
2 .

Since

c′(t) =
pet

1− p+ p et
=

p

1− p
et +O(e2t) (t→ −∞) ,

we have

EQXt1,...,tk = VarQXt1,...,tk = sk − sk−1 +O((sk − sk−1)
2) .

Since sn − sn−1 = o(1), we have

n∑

k=1

(sk − sk−1)
2 = o(sn) .

By using the law of the iterated logarithm, Q-almost everywhere we have

Nn(t) ∼
p

1− p

n∑

k=1

eξk =
n∑

k=1

(sk − sk−1) = sn .

Thus for the Bernoulli covering with 0 < p < 1/2, for any sequence such that

sn − sn−1 = o(1) we have a.s.

dimE0,s = 1− log2
1

1− p
= 1− c∗(0)

log 2
.
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