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A CELLULAR AUTOMATON ON A TORUS

C.I. Cobeli, M. Crâşmaru and A. Zaharescu

Abstract: In this paper we prove a conjecture of Brian Thwaites concerning the

evolution function of a certain cellular automaton on a torus.

In the seventies, when more and more people had access to personal comput-

ers, John Conway’s game of life became very popular. Since then, the study of

this type of game grew up into the theory of cellular automata. In [4] (see also

[1, page 311]) Brian Thwaites proposes a conjecture which leads to such a cellular

automaton.

Thwaites’s conjecture is: Given any finite sequence of rational numbers, take

the positive differences of successive members (including differencing the last

member with the first); iteration of this operation eventually produces a set of

zeros if and only if the size of the set is a power of 2.

Our aim in this note is to prove that Thwaites conjecture holds true.

Let a0, ..., ad−1 be the given d rational numbers, which we may think as the

heights of d poles situated around a circle. These numbers are replaced at the

next step by d rational numbers given by the difference in heights of successive

poles, and then the process is repeated.

Being an iteration of the same operation, it resembles Conway’s life game.

For now the field of play is a 1-dimensional torus and since, as we will see only

finitely many numbers which depend on the initial configuration are involved, in

the long run, we will end up with a cycle. Finding the lengths of these cycles,

which depend mostly on d — the size of the torus —, is the interesting problem.

In other words, if d is a power of 2, Thwaites conjecture says that the length of

any cycle is equal to 1 (the shortest possible). We examine the lengths of the

cycles that occur and provide conditions on d which guarantee that these lengths

are small or long. A criterion which tests if a given integer is a period for this

evolution function is given in section 3.
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312 C.I. COBELI, M. CRÂŞMARU and A. ZAHARESCU

1 – Proof of Thwaites conjecture

We begin by making some notations which set the problem in a clearer frame-

work. Let a0, ..., ad−1 be the given rational numbers. For convenience, we unpack

this ordered set of numbers by associating to it the infinite sequence (a0, a1, ...),

where the components are defined by

ak = ak+d for k ≥ 0 .(1)

Let us denote by Qd and by Nd the set of all the sequences with rational and

natural components respectively, satisfying (1). The evolution function φ :Qd→Qd

is defined by φ(a0, a1, ...) = (a
′
0, a

′
1, ...), where

a′k = |ak − ak+1| for k ≥ 0 .(2)

With these notations, Thwaites conjecture says that for any sequence

(a0, a1, ...) ∈ Qd, φ(n)(a0, a1, ...) = (0, 0, ...) for all sufficiently large n ∈ N iff

d is a power of 2. (Here φ(n) is the repeated composition of n samples of φ.)

Let’s note that all the components of φ(n)(a0, a1, ...) are nonnegative if n ≥ 1

and by multiplying all the components of the initial sequence (a0, a1, ...) by the

least common multiple of their denominators, we may assume that the domain

of our evolution function is Nd.

Let M = max {a0, ..., ad−1}. By the definition of φ, it is easy to see that all

the components of φ(n)(a0, a1, ...) are integers belonging to [0,M ]. Because there

are only finitely many such periodic sequences in Nd, it follows that given any

initial configuration (a0, a1, ...), the repeated application of the evolution function

will eventually produce a cycle of sequences which keep repeating.

The next lemma shows that after sufficiently many steps we always end up

with sequences with components having at most 2 distinct values.

Lemma 1. Let d be a positive integer, (a0, a1, ...) a sequence of nonnegative

integers satisfying (1) and suppose the function φ is defined as above. Then

there is a positive integer a such that for sufficiently large n all the components

of φ(n)(a0, a1, ...) belong to {0, a}.

Proof: The proof is by (inverse) induction. Let us look at a portion of the

sequence of numbers we get at some step. We write them on a line as follows:

..., b, 0, ..., 0,
︸ ︷︷ ︸

s zeros

m, ...,m,
︸ ︷︷ ︸

u numbers

0, ..., 0,
︸ ︷︷ ︸

t zeros

c, ...(3)
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Here m is the maximum of all our numbers at this step, b and c are nonzero,

m > b, m > c, s ≥ 0, t ≥ 0, u ≥ 1 and the part of the sequence that begins and

ends with m contains only 0’s or m’s. Then, after at most s + u + t steps, the

maximum of the numbers that are produced out by this portion of the sequence

will be ≤ max {m− b,m− c} < m. Of course at a given step the sequence of

numbers we obtain might contain several subsequences of the form (3), but what

happens is that after at most d steps the maximum of the numbers at that step

will be strictly less than m. The lemma then follows by induction.

By multiplying all the components of the initial configuration by a−1, where

a is given by Lemma 1, we may assume that after sufficiently many steps all the

components of the sequences we obtain are 0 or 1. Then our operation (taking

the positive differences of successive members of the sequence) is nothing else

than addition in the group (Z/2Z,+).

Now there is a transparent way to generalize the game by replacing Z/2Z by a
more general finite monoid and also by playing on a multidimensional field. The

operation in this case is to take the sum (or product if the multiplicative notation

is used) of the closest neighbors. We only mention here that if we keep the same

group Z/2Z, but play on a multidimensional torus, then we eventually obtain a
sequence of zeros if and only if the size of one of the dimensions is a power of 2.

This can be showed by following the same lines of proof.

Returning to our problem, let us observe that by starting with an arbitrary

sequence of 0’s and 1’s, by applying repeatedly the evolution function, we obtain

the following table which is filled with the beginning of the sequences obtained

in the first few iterations.

Step 1 2 3 · · ·

0. a0 a1 a2 · · ·
1. a0 + a1 a1 + a2 a2 + a3 · · ·
2. a0 + a2 a1 + a3 a2 + a4 · · ·
3. a0 + a1 + a2 + a3 a1 + a2 + a3 + a4 a2 + a3 + a4 + a5 · · ·
4. a0 + a4 a1 + a5 a2 + a6 · · ·
5. a0 + a1 + a4 + a5 a1 + a2 + a5 + a6 a2 + a3 + a6 + a7 · · ·
6. a0 + a2 + a4 + a6 a1 + a3 + a5 + a7 a2 + a4 + a6 + a8 · · ·
7. a0 + a1 + · · · + a7 a1 + a2 + · · · + a8 a2 + a3 + · · · + a9 · · ·
8. a0 + a8 a1 + a9 a2 + a10 · · ·
9. a0 + a1 + a8 + a9 a1 + a2 + a9 + a10 a2 + a3 + a10 + a11 · · ·
10. a0 + a2 + a8 + a10 a1 + a3 + a9 + a11 a2 + a4 + a10 + a12 · · ·
· · · · · · · · · · · · · · ·
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Now it is easy to see by induction that in the above table if d=2m then the

d-th row (and consequently all that follow after it) contains only 0’s. Also, there

are sequences of 0’s and 1’s, namely those containing an odd number of 1’s, for

which on the (d−1)-th row all the numbers are equal to 1. Thus, if d is a power of

2 and we start with an arbitrary set of 0’s and 1’s, then the process will produce

0’s in d steps and only for particular ak’s in less then d steps.

The outcome in the case d 6= 2m can be also deduced easily by induction.

Thus, if we start for example with the periodic sequence given by a0 = 1 and

ak = 0 for 1 ≤ k ≤ d−1, then 1 will always be the first number on the rows

representing the steps of order a power of 2. Therefore, if d is not a power of 2

then there are sequences which will never produce a set of 0’s.

We summarize our result in the following theorem which proves the Thwaites

conjecture.

Theorem 1. Let d be a positive integer and suppose the evolution function φ

is defined as above. Then there is a rational number r>0 such that the repeated

application of φ to any initial sequence of rational numbers (a0, a1, ...) satisfying

(1) will eventually produce a cycle of sequences with the property (1) with all

their components in {0, r}. Moreover, the cycle will contain only the sequence

(0, 0, ...) independently on the initial sequence if and only if d is a power of 2.

2 – The length of cycles

We assume in this section that the evolution function φ is defined on Ud,

where Ud, is the set of all the sequences with components in {0, 1}, satisfying (1).

This is not restrictive as we saw above and also has the advantage that it makes

φ to be additive.

Theorem 1 shows that if d is a power of 2 then the length of any cycle is equal

to 1. Suppose from now on that d is not a power of 2. Write d = 2k r with k ≥ 0

and r odd, r > 1. Let s be the order of 2 modulo r. Thus 2s−1 ≡ 0 (mod r).

Let F = {0, 1} be the field with 2 elements and let I be the ideal of F [X]

generated by Xd−1. Map the sequence a = (a0, ..., ad−1) to the coset

ψ(a) = I +
d−1∑

i=0

aiX
i

in the ring F [X]/I. Then φ(a) = I +0 if and only if a = 0. Moreover ψ(φ(a)) =

(1+X)φ(a). It follows that we get a cycle of length n, starting with e0 =
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(1, 0, ..., 0) precisely when n is the least positive integer for which

(1 +X)n+c ≡ (1 +X)c (mod Xd−1)(4)

in F [X], for some positive integer c.

We now prove that n = 2k(2s− 1) is always a period (thus the length of a

cycle will be a divisor of this number). We have:

(1 +X)2
k+s
= 1 +X2k+s

since we are working in characteristic 2. But

X2k+s−X2k = X2k(X2k(2s−1) − 1) ≡ 0 (mod Xd−1)

since d divides 2k(2s − 1). Hence

(1 +X)2
k+s

≡ 1 +X2k = (1 +X)2
k
(mod Xd−1)

and we see that (4) is satisfied with n = 2k(2s− 1) and c = 2k.

Let us assume now that d = r is a prime number and that s is even, s = 2 t

say. In this case we want to show that d(2t−1) is a period. We have 2t ≡−1

(mod d), so that 2t = dm− 1 for some integer m. Since Xd − 1 is coprime to X

it will suffice to prove that

Xd(1 +X)d(2
t−1)+d ≡ Xd(1 +X)d (mod Xd−1) ,(5)

taking the integer c to be d. However

(1 +X)d(2
t−1)+d = {(1 +X)2

t
}d = (1 +X2t)d = (1 +Xmd−1)d

from which it follows that

Xd(1 +X)d(2
t−1)+d ≡ Xd(1 +Xmd−1)d = (X +Xmd)d (mod Xd−1) .

The congruence (5) then follows since we may replace every occurrence ofXd by 1,

modulo Xd−1. We have proved the following

Theorem 2.

(i) Let d = 2kr, r odd and let s be the order of 2 modulo r. Then 2k(2s− 1)

is a period.

(ii) If d is an odd prime and s is even, s = 2 t, then d(2t−1) is a period.

One can ask about short and long periods.



316 C.I. COBELI, M. CRÂŞMARU and A. ZAHARESCU

Let us assume that d is a prime. Then the period provided by Theorem 2 has

length 2s−1 or d(2t−1). In both cases the length is a multiple of d.

Short periods :

If d is a Mersenne prime, i.e. a prime d of the form d = 2p − 1 the length

of the above period is d. In this case each such period will actually be a cycle.

One doesn’t know if there are infinitely many such primes. The first Mersenne

primes are 3, 7, 31, 127, ... . As examples, we show below the cycles produced by

the initial configuration e0 when d = 3 and d = 7:

(1, 0, 0)→ (1, 0, 1)→ (1, 1, 0)→ (0, 1, 1)→ (1, 0, 1)→ · · ·

and

(1, 0, 0, 0, 0, 0, 0)→ (1, 0, 0, 0, 0, 0, 1)→ (1, 0, 0, 0, 0, 1, 0)→

→ (1, 0, 0, 0, 1, 1, 1)→ (1, 0, 0, 1, 0, 0, 0)→ (1, 0, 1, 1, 0, 0, 1)→

→ (1, 1, 0, 1, 0, 1, 0)→ (0, 1, 1, 1, 1, 1, 1)→ (1, 0, 0, 0, 0, 0, 1)→ · · ·

respectively.

Long periods :

In case 2 is a primitive root modulo d, the period provided by Theorem 2 is as

large as d(2
d−1

2 −1). Artin’s conjecture, still unsolved, says that there are infinitely

many such primes. The first prime numbers which satisfy Artin’s conjecture are

3, 5, 11, 13, 19, 29, 37, 53, 59, 61, 67, 83, 101, ....

We give below the cycle obtained in case d = 5.

(1, 0, 0, 0, 0)→ (1, 0, 0, 0, 1)→ (1, 0, 0, 1, 0)→ (1, 0, 1, 1, 1)→

→ (1, 1, 0, 0, 0)→ (0, 1, 0, 0, 1)→ (1, 1, 0, 1, 1)→ (0, 1, 1, 0, 0)→

→ (1, 0, 1, 0, 0)→ (1, 1, 1, 0, 1)→ (0, 0, 1, 1, 0)→ (0, 1, 0, 1, 0)→

→ (1, 1, 1, 1, 0)→ (0, 0, 0, 1, 1)→ (0, 0, 1, 0, 1)→ (0, 1, 1, 1, 1)→

→ (1, 0, 0, 0, 1)→ · · ·

In their papers on Artin’s conjecture Rajiv Gupta and M. Ram Murty [2] and

Heath-Brown [3] use results by Bombieri, Friedlander, Fouvry, Deshouillers and

Iwaniec to show that there are infinitely many primes p for which all the prime

factors of p−1
2 are larger than p1/4,

This shows that there are primes p for which the lengths of our periods are

huge, more precisely they are larger than 2
p1/4

.
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The lengths of cycles obtained for all primes d ≤ 47 are given in the following

Table.

d length of cycle s 2s − 1 d(2s/2 − 1)

3 3 2 3 3
5 15 = 5 · 3 4 15 15
7 7 3 7
11 341 = 11 · 31 10 341 · 3 341
13 819 = 13 · 63 12 819 · 5 819
17 255 = 17 · 15 8 255 255
19 9709 = 19 · 511 18 9709 · 33 9709
23 2047 = 23 · 89 11 2047
29 475107 = 29 · 16383 28 475107 · 5 · 113 475107
31 31 5 31
37 3233097 = 37 · 87381 36 3233097 · 3 · 5 · 13 · 109 3233097 · 3
41 41943 = 41 · 1023 20 41943 · 52 41943
43 5461 = 43 · 127 14 5461 · 3 5461
47 8388607 = 47 · 178481 23 8388607

3 – A more general evolution function

In this section we introduce a more general evolution function and give a

useful method to calculate its repeated composition by itself. Finally, we deduce

a criterion which discerns if a given integer is or is not the length of a cycle of

chains produced by our original evolution function.

Let d be a positive integer and S = {0, 1}d. We denote by ρ(x) the circular

rotation to the right of the vector x ∈ S (e.g. for d = 7, ρ(1, 1, 0, 1, 0, 0, 0) =

(0, 1, 1, 0, 1, 0, 0) ) and · : S×S → S the xor function (which is the componentwise

addition mod 2).

Let a1, a2, ..., as be s positive integers and define the evolution function

φ : S → S by

φ(x) = ρ(a1)(x) · · · ρ(as)(x) .

Note that for s = 2, a1 = 0 and a2 = 1 we get our previous evolution function.

The following lemma adds together some properties of these functions.
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Lemma 2. For any nonnegative integers k,m, n and any x,y ∈ S we have:

1. ρ(xy) = ρ(x) ρ(y) ,

2. φ(xy) = φ(x)φ(y) ,

3. φ(ρ(x)) = ρ(φ(x)) ,

4. φ(m)(xy) = φ(m)(x)φ(m)(y) ,

5. φ(m)(ρ(x)) = ρ(φ(m)(x)) ,

6. φ(m)(ρ(n)(x)) = ρ(n)(φ(m)( x)) ,

7. φ(2k)(x) = ρ(2ka1)(x) · · · ρ(2kas)(x) .

Proof: Everything follows easily by definitions and/or by induction.

As a consequence, we immediately obtain the following:

Corollary 1. Suppose d = 2k. Then, for any x ∈ S and n ≥ 1 we have that

φ(d+n−1)(x) = 0 if s is even and φ(nd)(x) = x if s is odd.

Remark. It is easy to see that properties 1–7 from Lemma 2 do not depend

essentially on S. Thus we may replace {0, 1} by a more general monoid (a nilpo-

tent one may be of particular interest), for which similar consequences still hold

true. Let

k = 2l0 + 2l1 + · · ·+ 2lµ(6)

be the representation in base 2 of the positive integer k and assume l0<...< lµ.

We denote

rij ≡ 2
liaj (mod d) , 0 ≤ rij ≤ d−1(7)

for 0 ≤ i ≤ µ and 1 ≤ j ≤ s.

The next proposition gives an algorithm for the calculation of φ(k)(x) in

Os(log k) steps.

Proposition 1. Let x ∈ S and

y0 = ρr01(x) · · · ρr0s(x) .

Define inductively

yj = ρrj1(yj−1) · · · ρ
rjs(yj−1)

for 1 ≤ j ≤ µ. Then

φ(k)(x) = yµ .
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Proof: Let k = k1+ 2
l0 . Using Lemma 2 we have

φ(k)(x) = φ(k1+2l0 )(x) = φ(k1)
(

φ(2l0 )(x)
)

= φ(k1)
(

ρ(2l0a1)(x) · · · ρ(2l0as)(x)
)

= φ(k1)
(

ρ(r01)(x) · · · ρ(r0s)(x)
)

= φ(k1)(y0) .

Similarly, let k1 = k2 + 2
l1 . Then we have

φ(k1)(y0) = φ(k2+2l1 )(y0) = φ(k2)
(

φ(2l1 )(y0)
)

= φ(k2)
(

ρ(2l1a1)(y0) · · · ρ
(2l1as)(y0)

)

= φ(k2)
(

ρ(r11)(y0) · · · ρ
(r1s)(y0)

)

= φ(k2)(y1) .

It is clear now that the proposition follows by induction following the same pro-

cedure.

A direct way to calculate φ(k)(x) is given in the next theorem.

Theorem 3. For any positive integer k represented as in (6), we have

φ(k)(x) =
∏

1≤i1,...,iµ+1
≤s

ρ
(r0 i1+···+rµ iµ+1

)
(x) .

Proof: The proof is by induction on µ.

If µ = 0, then k = 2l0 and by Lemma 2

φ(2l0 )(x) = ρ(2l0a1)(x) · · · ρ(2l0as)(x) = ρ(r01)(x) · · · ρ(r0s)(x) .

Suppose the statement is true for µ− 1. Let k1 = k− 2lµ . Then the represen-

tation of k1 in base 2 has µ digits and we can apply to it the induction hypothesis.

Thus, by Lemma 2 we have

φ(k)(x) = φ(2lµ+k1)(x) = φ(2lµ )
(

φ(k1)(x)
)

= φ(2lµ )

(
∏

1≤i1,...,iµ≤s

ρ
(r0 i1+···+rµ−1 iµ

)
(x)

)

.

By the definition of φ(x), (7) and Lemma 2 this is
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=
s∏

j=1

ρ(2lµaj)

(
∏

1≤i1,...,iµ≤s

ρ
(r0 i1+···+rµ−1 iµ

)
(x)

)

=
s∏

j=1

ρ(rµj)

(
∏

1≤i1,...,iµ≤s

ρ
(r0 i1+···+rµ−1 iµ

)
(x)

)

=
∏

1≤i1,...,iµ+1
≤s

ρ
(r0 i1+···+rµ iµ+1

)
(x) ,

which concludes the proof of the theorem.

Now we apply this result to the particular evolution function from the previous

sections. Thus, from now on we assume that s = 2, a1 = 0 and a2 = 1, that is

φ(x) = x ρ(x).

Corollary 2. Let k = 2l0 +2l1 + · · ·+2lµ be the representation in base 2 of

the positive integer k, where l0< · · ·<lµ, and φ(x) = x ρ(x). Denote

Rk =
{

r : r ≡ 2li (mod d), 0 ≤ r ≤ d−1, for some 0≤ i≤µ
}

.

Then

φ(k)(x) = x
∏

R⊂P(Rk)

ρ

(
∑

r∈R

r

)

(x)

for any x ∈ S.

Proof: By Theorem 3

φ(k)(x) =
∏

1≤i1,...,iµ+1
≤2

ρ
(r0 i1+···+rµ iµ+1

)
(x) .(8)

By (7) and our hypothesis rj1= 0 and rj2 ≡ 2
lj (mod d), 0≤rj2<d for 0≤j≤µ.

The corollary then follows by isolating in (8) the term with i1= ... = iµ+1= 1,

that is ρ(0)(x) (= x) and using the fact that

ρ

(
∑

r∈∅

r

)

(x) = 0 .

From Corollary 2 we deduce a criterion for cycling. Thus, φ(k)(x) = x is

equivalent to

∏

R⊂P(Rk)

ρ

(
∑

r∈R

r

)

(x) = 0 .(9)
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Starting with x = e0 = (1, 0, ..., 0), we get φ(e0) = e0 ρ(e0) = (1, 1, 0, ..., 0) = e1.

Then, by (9) and Lemma 2, we deduce

∏

R⊂P(Rk)

ρ

(
∑

r∈R

r

)

(e0) ·
∏

R⊂P(Rk)

ρ

(

1+
∑

r∈R

r

)

(e0) = 0 ,

which can be written as

∏

R⊂P(Rk)

ρ

(
∑

r∈R

r

)

(e0) =
∏

R⊂P(Rk)

ρ

(

1+
∑

r∈R

r

)

(e0)

or

∏

R⊂P(Rk)

ρ

(
∑

r∈R

r

)

(e0) = ρ

(
∏

R⊂P(Rk)

ρ

(
∑

r∈R

r

)

(e0)

)

.(10)

For any m ∈ {1, ..., d} let

νk,d(m) = #

{

R ⊂ Rk :
∑

r∈R

r ≡ m (mod d)

}

.

Then (10) becomes

d∏

m=1

ρ νk(m)(e0) = ρ

( d∏

m=1

ρ νk(m)(e0)

)

.

Since the only invariants of ρ are (0, ..., 0) and (1, ..., 1) we obtain the following:

Corollary 3. A positive integer k is a period for φ(x) = x ρ(x) if and only

if the numbers νk,d(m), 1 ≤ m ≤ d have the same parity.

We checked the values of νk,d(m) with k being the length of the shortest cycle

for different values of d and we found some interesting regularity properties. Thus,

νk,d(m) not only have the same parity but most of the time they are equal. Some

nontrivial examples are:

1. If d = 11 then k = 341 = 1010101012 ,

ν341,11(11) = 1 and ν341,11(m) = 3 for 1 ≤ m ≤ 10.

2. If d = 13 then k = 819 = 11001100112 ,

ν819,13(13) = 3 and ν819,13(m) = 5 for 1 ≤ m ≤ 12.
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3. If d = 19 then k = 9709 = 100101111011012 ,

ν9709,19(19) = 25 and ν9709,19(m) = 27 for 1 ≤ m ≤ 18.

4. If d = 29 then k = 475107 = 11100111111111000112 ,

ν475107,29(29) = 563 and ν475107,29(m) = 565 for 1 ≤ m ≤ 28.

5. If d = 37 then k = 3233097 = 1100010101010101001001 and

m 1 2 3 4 5 6 7 8 9 10
ν3233097,37(m) 23 27 25 23 27 29 25 23 27 29

m 11 12 13 14 15 16 17 18 19 20
ν3233097,37(m) 27 29 33 33 31 31 31 29 29 31

m 21 22 23 24 25 26 27 28 29 30
ν3233097,37(m) 31 31 33 33 29 27 29 27 23 25

m 31 32 33 34 35 36 37
ν3233097,37(m) 29 27 23 25 27 23 19

5′. If d = 37 and we take k′ to be defined by k′ = 3233097 ∗ 3 = 9699291 =

1001001111111111110110112, then

ν9699291,37(37) = 7083 and ν9699291,37(m) = 7085 for 1 ≤ m ≤ 36.

6. If d = 41 then k = 41943 = 10100011110101112 ,

ν41943,41(41) = 23 and ν41943,41(m) = 25 for 1 ≤ m ≤ 40.

7. If d = 43 then k = 5461 = 10101010101012 ,

ν5461,43(43) = 1 and ν5461,43(m) = 3 for 1 ≤ m ≤ 42.

This leads us to make the following

Conjecture. Suppose d is a prime number, s is the order of 2 mod d, s is

even and k = d(2s/2 − 1). Then

νk,d(1) = νk,d(2) = · · · = νk,d(d−1) = νk,d(d) + 2 .
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