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EXPONENTIAL STABILITY FOR THE WAVE EQUATION
WITH WEAK NONMONOTONE DAMPING *

P. Martinez and J. Vancostenoble

Abstract: We consider the wave equation with a weak nonlinear internal damping.

First for a weak monotone damping in dimension 2, we prove that the energy of strong

solutions decays exponentially to zero. This improves earlier results of Komornik and

Nakao.

Then we consider a class of nonmonotone dampings. For strong solutions, we give

new results of strong asymptotic stability and we prove that the energy decays to zero

with an explicit decay rate estimate.

1 – Introduction

In this paper, we consider the wave equation in a smooth bounded domain

Ω of RN , N ≥ 1. A control is exerced by means of a force which is a nonlinear

function of the observed velocity. The system is the following:















u′′ −∆u+ g(u′) = 0 in Ω× R+ ,

u = 0 on ∂Ω× R+ ,

u(0) = u0, u′(0) = u1 ,

(1.1)

with (u0, u1) ∈ H1
0 (Ω)× L2(Ω) and where g : R → R is continuous and g(0) = 0.
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As usual, define the energy of the system by

E(t) =
1

2

∫

Ω

(

u′2 + |∇u|2
)

dx .

First we study the case when g is monotone increasing, and then the nonmonotone

case. We recall briefly some known results on these cases:

• When g is increasing , Dafermos [7] and Haraux [11] proved strong asymp-

totic stability for this problem i.e.

E(t)→ 0 when t→ +∞ ,

using the compactness of the trajectories in the energy space and LaSalle’s invari-

ance principle. Aassila [1] extended their results on some unbounded domains.

See also Conrad and Pierre [6] for strong asymptotic stability results in an ab-

stract framework.

Moreover, when the feedback term satisfies

∀x ∈ R, α|x| ≤ |g(x)| ≤ β|x|(1.2)

for some positive constants α and β, it is easy to see that the energy decays

exponentially to zero.

Komornik [14] and Nakao [17] extended some results of Haraux and Zuazua

[12], of Conrad, Leblond and Marmorat [5] and of Zuazua [23] studying the case

of increasing dampings that have a polynomial growth in zero and at infinity with

different methods. In dimension N ≥ 2, they proved that the energy decays poly-

nomially to zero with an explicit decay rate estimate, even when the dissipation

is weak at infinity, that means when

g(v)

v
→ 0 as |v| → +∞ .

In particular, Nakao [17] considered the function

g(v) =
v√

1 + v2
,(1.3)

which has finite limits at infinity. He noted that, in one space dimension, the

energy decays exponentially; in dimension 2, he proved that the energy decays

faster than t−m for all m ∈ N:

∀ t ∈ R+ , E(t) ≤ C(m)

tm
for all m ∈ N ,
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with C(m) depending on the norm of the initial conditions in H2(Ω) × H1
0 (Ω);

in higher dimensions, he proved that the energy decays polynomially.

Their proofs are based on the boundedness of the trajectories in H2(Ω)×H1
0 (Ω),

on the theorem of Gagliardo–Nirenberg and on the polynomial form of the dissi-

pation.

In this paper, we adapt their methods to study the case of weak dissipations.

In dimension 2, we show that if g is increasing, the behavior of g at infinity has

no real effect on the decay rate of the energy of strong solutions (Theorem 2):

if g′(0) 6= 0 (for example in the case (1.3)), we show that the energy decays

exponentially (the decay rate depending on the norm of the initial conditions in

H2(Ω)×H1
0 (Ω)).

• When g is nonmonotone, few results seem to be known. We assume that

x g(x) ≥ 0 for all x ∈ R ,

which implies that the energy is nonincreasing and that the trajectories are

bounded in the energy space. To our knowledge, the trajectories are not com-

pact in general. If g is globally Lipschitz, Slemrod [20] proved weak asymptotic

stability for the problem (1.1) i.e.

(u(t), u′(t)) ⇀ (0, 0) when t→ +∞
weakly in H1

0 (Ω)×L2(Ω). One of the authors proved that this result still occurs

for all global solutions of (1.1) even if g is not globally Lipschitz (see [22]). See

also Feireisl [8] for a strong stability result in the one dimensional case (and [19]

for a similar result in the case of a boundary feedback).

In the particular case (1.2), it is easy to see that the classical results of expo-

nential stability, obtained for g monotone, remain valid for g nonmonotone once

the problem is well posed.

When (1.2) is replaced by a weaker assumption, the proofs of Komornik [14]

and Nakao [17] for g monotone cannot be extended to the nonmonotone case.

Indeed, they are based on the boundedness of strong solutions in H2(Ω)×H1
0 (Ω),

provided by the monotonicity. See also Aassila [2] for nonmonotone feedback with

the hypothesis that u′ is bounded.

In this paper, we consider nonmonotone functions g of class C1, satisfying
∀x ∈ R, g′(x) ≥ −m ,

∀x ∈ R, c1
|x|

(

ln(2 + |x|)
)k
≤ |g(x)| ≤ c2 |x|q ,
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with c1 > 0, c2 > 0, m ≥ 0, q ≥ 0 and k ∈ [0, 1]. We prove that the problem (1.1)

is well posed and we estimate the norm of strong solutions in H2(Ω) × H1
0 (Ω).

Then we show that the energy of strong solutions decays to zero with an explicit

decay rate estimate, (Theorem 3 for N= 2 and Theorem 4 for N≥ 3). The proof

is based on a method recently introduced by one of the authors in [16], that

allows one to compensate the lack of a priori uniform bound of strong solutions

in H2(Ω) × H1
0 (Ω) and on a new nonlinear integral inequality (Lemma 6) that

generalizes a result of Haraux [9].

We make precise our results in Section 2 (see Theorem 2 for the monotone case

and Theorem 3 and Theorem 4 for the nonmonotone case) and we apply them

on some examples. We establish the well posedness of the problem in Section 3.

We prove Theorem 2 in Section 4, Theorem 3 in Section 5, and Theorem 4 in

Section 6.

2 – Statement of the problem and main results

Let Ω be a bounded open set of RN of class C2. Let g : R → R be a function

of class C1. We denote R+ :=[0,+∞) and we consider the evolutionary problem

u′′ −∆u+ g(u′) = 0 in Ω× R+ ,(2.1)

u = 0 on ∂Ω× R+ ,(2.2)

u(0) = u0, u′(0) = u1 ,(2.3)

where (u0, u1) is given in Z, which is the subset of H1
0 (Ω)×H1

0 (Ω) defined by

Z :=
{

(u, v) ∈ H1
0 (Ω)×H1

0 (Ω), −∆u+ g(v) ∈ L2(Ω)
}

.(2.4)

We will denote

C(u0, u1) := ‖−∆u0 + g(u1)‖2L2(Ω) + ‖u1‖2H1
0 (Ω)

.(2.5)

As usual, we define the energy of the solution u by

∀ t ∈ R+, E(t) =
1

2

∫

Ω

(

u′2 + |∇u|2
)

dx .(2.6)
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2.1. Well posedness

Assume that g is a function of class C1 that satisfies

∀x ∈ R, x g(x) ≥ 0 ,(2.7)

∀x ∈ R, g′(x) ≥ −m ,(2.8)

with m ≥ 0. Then existence and regularity of the solution u of (2.1)–(2.3) are

given by the

Theorem 1.

(i) Assume (2.8). Then the problem (2.1)–(2.3) is well posed: for any

(u0, u1) ∈ Z such that −∆u0 + g(u1) ∈ L2(Ω), there exists a unique

strong solution u(t) satisfying

∀ t ∈ R+,
(

u(t), u′(t)
)

∈ Z ,

and, for any T > 0,
(

u(·), u′(·)
)

∈ W 1,∞
(

[0, T ]; H1
0 (Ω)×L2(Ω)

)

.

(ii) Moreover, if we also assume (2.7), then we have the following energy

estimate:

∀ t ∈ R+, ‖u(t)‖2H1
0 (Ω)

+ ‖u′(t)‖2L2(Ω) ≤ ‖u0‖2H1
0 (Ω)

+ ‖u1‖2L2(Ω) ,(2.9)

and so
(

u(·), u′(·)
)

∈ W 1,∞
(

R+; H1
0 (Ω)×L2(Ω)

)

.

(iii) We also have the following estimate:

∀ t ∈ R+, ‖−∆u(t)+g(u′(t))‖2L2(Ω)+‖u′(t)‖2H1
0 (Ω)

≤ C(u0, u1) e2mt .(2.10)

Remark. In the monotone case (m = 0), Theorem 1 gives a classical result of

existence and regularity of theory of maximal monotone operators. In particular,

part (iii) implies

u′ ∈ L∞(R+, H1
0 (Ω)) .(2.11)

This estimate is strictly provided by the monotonicity. It is essential in the proofs

in [14] and in [17]. Our proof of exponential stability (Theorem 2) will also be

based on this estimate.
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Remark. In the classical case

∀x ∈ R, |g(x)| ≤ β|x| ,(2.12)

it is easy to check that Theorem 1 gives that, for any (u0, u1) ∈ H2(Ω)×H1
0 (Ω),

∀ t ∈ R+,
(

u(t), u′(t)
)

∈ H2(Ω)×H1
0 (Ω) ,

and

∀ t ∈ R+, ‖u(t)‖2H2(Ω) + ‖u′(t)‖2H1
0 (Ω)

≤
(

‖u‖2H2(Ω) + ‖u1‖2H1
0 (Ω)

)

e2mt .

2.2. Exponential stability when g is increasing

We already know from the principle of LaSalle that the energy of these so-

lutions decays to zero at infinity. Our main result is the following decay rate

estimate:

Theorem 2. Assume that N = 2 and let g : R → R be a nondecreasing

function of class C1 such that g(0) = 0, g′(0) 6= 0 and

∀ |x| ≥ 1, |g(x)| ≤ c |x|q(2.13)

with c ≥ 0 and q ≥ 0.

Given (u0, u1) ∈ Z, the energy of the solution u(t) of (2.1)–(2.3) decays exponen-
tially: there exists an explicit constant ω, depending on C(u0, u1) such that

∀ t ≥ 0, E(t) ≤ E(0) e1−ωt .(2.14)

Remarks.

1. Theorem 2 improves earlier results of [14] and of [17] who showed that the

energy decays faster than t−m for all m ∈ N.

2. In fact the weakness of g at infinity has no real effect on the decreasingness

of the energy of strong solutions: we find the same estimate on the energy as if g

would satisfy

α|v| ≤ |g(v)| ≤ β|v| for all v, with α > 0 .

The only difference comes from the fact that the decay rate depends on C(u0, u1).
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Example. Consider

g(v) =
v√

1 + v2
for all v ∈ R ,

that satisfies (2.12). Then (2.14) gives the estimate

E(t) ≤ E(0) e1−ωt ,

and the proof of Theorem 2 gives

ω =
c

1 + C ′(u0, u1)
,

where C ′(u0, u1)=‖(u0, u1)‖H2(Ω)×H1
0 (Ω)

and c is a constant that depends on Ω.

2.3. Exponential stability for a class of nonmonotone dampings

Assume that g is a function of class C1 that satisfies

∀x ∈ R, x g(x) ≥ 0 ,(2.15)

∀x ∈ R, g′(x) ≥ −m ,(2.16)

∀ |x| ≥ 1, c1
|x|

(

ln(2 + |x|)
)k
≤ |g(x)| ≤ c2 |x|q ,(2.17)

with c1 > 0, c2 > 0, m ≥ 0, q ≥ 0 and k ∈ [0, 1].

Theorem 3. Assume N = 2 and let g be a function satisfying (2.15)–(2.17)

such that g′(0) 6= 0. Given (u0, u1) ∈ Z, there exists an explicit positive constant

ω, depending on C(u0, u1) such that the energy of the solution u(t) of (2.1)–(2.3)

satisfies the following estimate

∀ t ≥ 0, E(t) ≤ E(0) e1+ω e−ω(1+t)
1−k

if k ∈ [0, 1) ,(2.18)

∀ t ≥ 0, E(t) ≤ eE(0) 2ω

(2 + t)ω
if k = 1 .(2.19)

Remark. Theorem 3 implies strong asymptotic stability results: the energy

of strong solutions decays to zero, with an explicit decay rate estimate.

Example. Theorem 3 can be applied to the odd function defined on R+ by

∀x ≥ 0, g(x) =
(

sin(θ(x))
)2
x
(

ln(x+ 2)
)q

+
(

cos(θ(x))
)2 x
(

ln(x+ 2)
)k

,
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with q ∈ [0, 1], k ∈ [0, 1] and

θ(x) =
(

ln(x+ 2)
)1−q

if q ∈ [0, 1) ,

θ(x) = ln
(

ln(x+ 2)
)

if q = 1 .

(Note that θ is strictly increasing and θ(x) → +∞ as x → +∞. One can check

that g is nonmonotone, g′ is bounded if q = 0 and just bounded from below if

q > 0.)

If k = 1
2 , the energy of strong solutions decays as

∀ t ≥ 0, E(t) ≤ C E(0) e−ω
√
t ,

(C and ω depending on C(u0, u1).

For example, for

g(x) =

(

sin
(

50 ln
(

ln(x+ 2)
))

)2

x ln(x+ 2)

+ 10

(

cos
(

50 ln
(

ln(x+ 2)
))

)2 x

ln(x+ 2)
,

then, the graph of g is
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2.4. Comments and extensions

1. Our method is not specific to dimension N = 2: in higher dimension, we

also obtain

Theorem 4. Assume N ≥ 3 and let g be a function satisfying (2.15)–(2.17)

with

0 ≤ k ≤ 1 and 1 ≤ q ≤ N + 2

N − 2
,

and such that g′(0) 6= 0.

Given (u0, u1) ∈ Z, there exists two positive constants C,ω such that the

energy of the solution u(t) of (2.1)–(2.3) satisfies the following estimate

∀ t ≥ 0, E(t) ≤ CE(0) e−ω(1+t)
1−k

if k ∈ [0, 1) ,(2.20)

∀ t ≥ 0, E(t) ≤ C E(0) 2ω

(2 + t)ω
if k = 1 .(2.21)

Remark. If g is increasing (m = 0) and N ≤ 3, then the same estimate

holds for all q ≥ 1. This improves earlier results of [17].

2. Applying the method described in [16], we could eliminate the assumption

g′(0) 6= 0 and we would still obtain decay rate estimates, even when g has not a

polynomial growth in zero.

3. We can extend the previous results to a control force exerced on a part of

Ω. We consider the equation

u′′ −∆u+ a(x) g(u′) = 0 in Ω× R+ ,

where a : Ω→ R is continuous positive function such that, for example, the region

where a(x) ≥ α > 0, contains a neighbourhood of ∂Ω or at least a neighbourhood

of

Γ(x0) :=
{

x ∈ ∂Ω, (x− x0) · ν(x) ≥ 0
}

,

where ν is the outward unit normal to Ω and x0 ∈ R2 (see Zuazua [24]) or even

more general conditions, (see [16]). See also Nakao [18] and Tcheugoue Tebou

[21].

4. All the previous results are still true if we just assume that g : R → R is

continuous such that

∀x1, x2 ∈ R, x1 6= x2,
g(x1)− g(x2)

x1 − x2
≥ −m ,

and g is of class C1 in a neighborhood of 0 such that g′(0) 6= 0.
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3 – Well posedness and a priori estimates

3.1. Well posedness

Letting v = u′, we may rewrite (2.1)–(2.3) in the form























u′ − v = 0 ,

v′ −∆u+ g(v) = 0 ,

u(0) = u0 ,

v(0) = u1 .

(3.1)

We introduce the Hilbert space H = H1
0 (Ω) × L2(Ω) and write (3.1) as the

one order evolution equation in H for the vector U(t) = (u(t), v(t)):







dU

dt
(t) +AU(t) + LU(t) = 0 ,

U(0) = (u0, u1) .

(3.2)

We denote g̃ the monotone increasing function

∀x ∈ R, g̃(x) = g(x) +mx .

We define the nonlinear operator A by











D(A) =
{

(u, v) ∈ H1
0 (Ω)×H1

0 (Ω) | −∆u+ g̃(v) ∈ L2(Ω)
}

,

∀ (u, v) ∈ D(A), A(u, v) =
(

−v, −∆u+ g̃(v)
)

.

A is a maximal monotone operator in H, (see Haraux [10], Theorem 45, p. 90).

Note that D(A) = Z.
Then we define L : H → H by

∀ (u, v) ∈ H, L(u, v) = (0,−mv) .

Clearly, L is Lipschitzian.

So we can apply the following theorem about Lipschitz perturbations of a

maximal monotone operator:

Theorem 5 (Brézis [4], Theorem 3.17 and Remark 3.14). Let H be a Hilbert

space, A : D(A) ⊂ H → H be a maximal monotone operator and L : H → H be

a Lipschitzian operator.
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Then, for all U0 ∈ D(A), there exists a unique U : [0,+∞)→ H such that:

U(0) = U0 ,

∀ t ≥ 0, U(t) ∈ D(A) ,

∀T > 0, U(·) ∈W 1,∞((0, T );H) ,

dU

dt
(t) +AU(t) + LU(t) = 0 p.p. t ∈ (0,+∞) .

This proves the first part of Theorem 1.

3.2. A priori estimates

Note that since we consider only strong solutions, the previous regularity

results allow us to justify the following computations, where we omit to write the

differential elements in order to simplify the expressions. We will denote by c all

the constants that depend only on the structure of the problem (Ω, g) and by C

all the constants that depend also on

‖ −∆u0 + g(u1)‖2L2(Ω) + ‖u1‖2H1
0 (Ω)

.

First we verify that the energy is nonincreasing:

Lemma 1. Assume (2.7) and (2.8). Then

∀ 0 ≤ S < T < +∞, E(T )− E(S) = −
∫ T

S

∫

Ω
u′ g(u′) dx dt ≤ 0 .(3.3)

Remark. Since x g(x) ≥ 0 for all x ∈ R, it follows that the energy is

nonincreasing, locally absolutely continuous and

E′(t) = −
∫

Ω
u′ g(u′) dx a.e. in R+ .

Proof of Lemma 1: We multiply (2.1) by u′ and we integrate by parts on

Ω× [S, T ]:

−
∫ T

S

∫

Ω
u′ g(u′) =

∫ T

S

∫

Ω
u′(u′′ −∆u) =

[

1

2

∫

Ω
u′2 + |∇u|2

]T

S
= E(T )− E(S) .
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This proves the part (ii) of Theorem 1.

Next we prove the part (iii) of Theorem 1:

Lemma 2. Assume (2.8). Then

∀ t ≥ 0, ‖ −∆u(t) + g(u′(t))‖2L2(Ω) + ‖u′(t)‖2H1
0 (Ω)

≤ C(u0, u1) e2mt .(3.4)

Proof of Lemma 2: Denote w :=u′. Then differentiating (2.1)–(2.3) with

respect to time, we see that w satisfies

w′′ −∆w + g′(w)w′ = 0 in Ω× R+ ,(3.5)

w = 0 on ∂Ω× R+ ,(3.6)

w(0) = u1, w′(0) = ∆u0 − g(u1) .(3.7)

We multiply (3.5) by w′ and we integrate by parts on Ω× [S, T ]:

−
∫ t

0

∫

Ω
g′(w)w′2 =

∫ t

0

∫

Ω
w′(w′′ −∆w) =

[

1

2

∫

Ω
w′2 + |∇w|2

]t

0
.

So
[
∫

Ω
u′′2 + |∇u′|2

]t

0
≤ 2m

∫ T

S

∫

Ω
u′′2 dx dτ ,

i.e.

‖ −∆u(t) + g(u′(t))‖2L2(Ω) + ‖u′(t)‖2H1
0 (Ω)

≤

≤ C(u0, u1) + 2m

∫ T

S
‖ −∆u(τ) + g(u′(τ))‖2L2(Ω) dτ .

We apply Gronwall’s lemma to get (3.4).

3.3. Inequality given by the multiplier method

Lemma 3. Assume (2.8). Let Ω be a bounded domain of class C2 in RN . Let

φ : R+ → R+ be an increasing concave function of class C2. Set σ ≥ 0. Assume

that g is a function of class C1 that satisfies g′(0) 6= 0 and

∀ |x| ≥ 1, |g(x)| ≤ c|x|q with 1 ≤ q ≤ N+ 2

max(0, N− 2)
.
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Given (u0, u1) ∈ Z, there exists c > 0 that depends on Ω such that the solution

u(t) of (2.1)–(2.3) satisfies

∫ T

S
E(t)1+σ φ′(t) dt ≤ cE(S)1+σ + c

∫ T

S
E(t)σ φ′(t)

∫

Ω
u′2 dx dt .(3.8)

Note that, if N= 2, (3.8) is true for all q ≥ 1. Note also that, if g is increasing

(m = 0) and N≤ 3, then we can prove that the same estimate holds for all q ≥ 1.

Remark. The proof of (3.8) is based on multiplier techniques; the constant

c is explicit. (3.8) is classical when φ′(t) = 1 (see, e.g., [14]). φ′ will be closely

related on the behavior of g at infinity.

Proof of Lemma 3: First integrate by parts the following expression:

0 =

∫ T

S
Eσφ′

∫

Ω
u (u′′ −∆u+ g(u′))

=

[
∫

Ω
(Eσφ′ u)u′

]T

S
−
∫ T

S

∫

Ω
(Eσφ′ u)′ u′

−
∫ T

S
Eσφ′

∫

∂Ω
u ∂νu+

∫ T

S
Eσφ′

∫

Ω
|∇u|2 + u g(u′)

=

[

Eσφ′
∫

Ω
uu′

]T

S
−
∫ T

S

(

σ E′Eσ−1 φ′ + Eσφ′′
)

∫

Ω
uu′

−
∫ T

S
Eσφ′

∫

Ω
2u′2 +

∫ T

S
Eσφ′

∫

Ω
u′2 + |∇u|2 + u g(u′) .

So

2

∫ T

S
E1+σφ′ = −

[

Eσφ′
∫

Ω
uu′

]T

S
+

∫ T

S

(

σ E′Eσ−1 φ′ + Eσφ′′
)

∫

Ω
uu′

+

∫ T

S
Eσφ′

∫

Ω
2u′2 − u g(u′) .

(3.9)

Since φ′ is nonnegative and nonincreasing, φ′ is bounded on R+ and we have

∣

∣

∣

∣

Eσφ′(t)
∫

Ω
uu′ dx

∣

∣

∣

∣

≤ cE(t)1+σ ,

and
∣

∣

∣

∣

∫ T

S
σ E′Eσ−1 φ′

∫

Ω
uu′ dx dt

∣

∣

∣

∣

≤ cE(S)1+σ .
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Since φ′′ is nonpositive,

∣

∣

∣

∣

∫ T

S
Eσφ′′

∫

Ω
uu′ dx dt

∣

∣

∣

∣

≤ cE(S)1+σ
∫ T

S
−φ′′(t) dt

≤ cE(S)1+σφ′(S) ≤ cE(S)1+σ .

It remains to estimate the last term of (3.9):

Lemma 4. There exists c > 0 depending on Ω such that, for all ε > 0, we

have

∫ T

S
Eσφ′

∫

Ω
u g(u′) dx dt ≤

≤ cεE(S)1+σ +
c

ε

∫ T

S
Eσφ′

∫

Ω
u′2 dx dt+ ε

∫ T

S
E1+σφ′ dt

(3.10)

Proof of Lemma 4: There exists λ > 0 such that

|g(x)| ≤ λ|x| if |x| ≤ 1 .

Then set η > 0.

∫ T

S
Eσφ′

∫

|u′|≤1
u g(u′) dx dt ≤

∫ T

S
Eσφ′

∫

|u′|≤1

η

2
u2 +

1

2 η
g(u′)2

≤ c η

2

∫ T

S
E1+σφ′ +

∫ T

S
Eσφ′

∫

|u′|≤1

1

2 η
g(u′)2

≤ c η

2

∫ T

S
E1+σφ′ +

∫ T

S
Eσφ′

∫

Ω

λ2

2 η
u′2 .

Next we look at the part |u′| > 1: since q ≤ N+2
max (0,N−2) ,

H1(Ω) ⊂ Lq+1(Ω) ,

and so

‖u‖Lq+1(Ω) ≤ c ‖u‖H1(Ω) ≤ c
√
E .
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Then

∫ T

S
Eσφ′

∫

|u′|>1
u g(u′) dx dt ≤

≤
∫ T

S
Eσφ′

(
∫

Ω
|u|q+1

)1/(q+1) (∫

|u′|>1
|g(u′)|(q+1)/q

)q/(q+1)

≤ c

∫ T

S
Eσ+ 1

2 φ′
(
∫

|u′|>1
u′ g(u′)

)q/(q+1)

≤ c

∫ T

S
φ′Eσ+ 1

2 (−E′)q/(q+1)

≤ c

∫ T

S
φ′
(

E
σ+ 1

2
− qσ
q+1

)(

(−E′)q/(q+1)E
qσ
q+1

)

≤ c ηq+1
∫ T

S
φ′E(q+1)(σ+

1
2
− qσ
q+1

)
+

c

η(q+1)/q

∫ T

S
φ′(−E′Eσ)

≤ c ηq+1E(0)(q−1)/2
∫ T

S
φ′E1+σ +

c

η(q+1)/q
E(S)1+σ .

Thus we get (3.10) by choosing η small enough.

Therefore we deduce from the three last estimates that

2

∫ T

S
E(t)1+σ φ′(t) dt ≤

≤ cE(S)1+σ +
c

ε

∫ T

S
E(t)σ φ′(t)

∫

Ω
u′2 dx dt+ ε

∫ T

S
E(t)1+σ φ′(t) dt .

We get (3.8) choosing ε small enough.

Remark. When g is increasing (m = 0) and N ≤ 3, we use the fact that

H2(Ω) ↪→ L∞(Ω). So u ∈ L∞(R+, L∞(Ω)). Then,

∣

∣

∣

∣

∫ T

S
Eσφ′

∫

|u′|>1
u g(u′) dx dt

∣

∣

∣

∣

≤ c ‖u‖L∞(R+,L∞(Ω))

∫ T

S
Eσ

∫

|u′|>1
|g(u′)| dx dt

≤ c ‖u‖L∞(R+,L∞(Ω))

∫ T

S
Eσ

∫

|u′|>1
u′ g(u′) dx dt

≤ c ‖u‖L∞(R+,L∞(Ω))E(S)1+σ .
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4 – Proof of Theorem 2

In this Section, we study the decay rate of the energy when g is monotone

increasing. This allows to introduce in a well-known case the ideas we will use in

the next part to study the nonmonotone case.

We choose φ(t) = t for all t ∈ R+. With σ = 0, Lemma 3 gives that

∫ T

S
E(t) dt ≤ cE(S) + c

∫ T

S

∫

Ω
u′2 dx dt .

Our goal is to estimate
∫ T

S

∫

Ω
u′2 dx dt .

Set R > 0 and fix t ≥ 0. Define

Ωt
1 :=

{

x ∈ Ω: |u′| ≤ R
}

,(4.1)

Ωt
2 :=

{

x ∈ Ω: R < |u′|
}

.(4.2)

Remark. Komornik [14] used this partition with R = 1, and obtained a

polynomial decay rate estimate. We will choose R depending on the norm of

the initial data. A suitable choice of R will lead us to exponential decay rate

estimate.

First we look at the part on Ωt
2 . In order to study the term

∫

Ωt2

u′2 dx dt ,

we will use the regularity of u and the injections of Sobolev. We recall the

interpolation inequality:

Lemma 5 (Gagliardo–Nirenberg). Let 1 ≤ r < p ≤ ∞, 1 ≤ q ≤ p and

m ≥ 0. Then the inequality

‖v‖p ≤ c ‖v‖θm,q ‖v‖1−θr for v ∈Wm,q ∩ Lr(4.3)

holds with some c > 0 and

θ =

(

1

r
− 1

p

)(

m

N
+

1

r
− 1

q

)−1
(4.4)

provided that 0 < θ ≤ 1 (0 < θ < 1 if p =∞ and mq = N).



EXPONENTIAL STABILITY WITH WEAK DAMPING 301

(Here ‖ · ‖p denotes the usual Lp(Ω) norm and ‖ · ‖m,q the norm in Wm,q(Ω).)

As a consequence, in dimension N= 2 we get that there exists a positive constant

c that depends on Ω such that

∀ v ∈ H1(Ω), ‖v‖L3(Ω) ≤ c ‖v‖1/3H1(Ω) ‖v‖
2/3
L2(Ω)(4.5)

(we used (4.3) with p = 3, m = 1, q = r = 2, N= 2 and θ = 1
3 .)

Using Cauchy–Schwarz inequality, we have
∫

Ωt2

u′2 dx =

∫

Ωt2

u′1/2 u′3/2 dx ≤

≤
(
∫

Ωt2

|u′|
)1/2 (∫

Ωt2

|u′|3
)1/2

≤
(
∫

Ωt2

|u′|
)1/2

‖u′‖3/2L3(Ω) .

Since

R

∫

Ωt2

|u′| ≤
∫

Ωt2

u′2 ,(4.6)

we obtain
∫

Ωt2

u′2 dx ≤ 1

R
‖u′‖3L3(Ω) .

Then, since u is a strong solution, we can apply (4.5) with v = u′ to get

‖u′‖3L3(Ω) ≤ c ‖u′‖H1(Ω) ‖u′‖2L2(Ω) ≤ c ‖u′‖H1(Ω)E(t) .

Consequently,
∫

Ωt2

u′2 dx ≤ c

R
‖u′‖H1(Ω)E(t) .(4.7)

Since g is increasing, we can apply Lemma 2 with m = 0 and we get

∀ t ∈ R+, ‖u′‖H1(Ω) ≤
√

C(u0, u1) .

Thus
∫ T

S
E dt ≤ cE(S) + c

∫ T

S

∫

Ω
u′2 dx dt

≤ cE(S) + c

∫ T

S

∫

Ωt1

u′2 dx dt+
c

R

∫ T

S
‖u′‖H1(Ω)E(t) dx dt

≤ cE(S) + c

∫ T

S

∫

Ωt1

u′2 dx dt+
c

R

√

C(u0, u1)

∫ T

S
E(t) dx dt

Now we choose R > 0 such that

c

R

√

C(u0, u1) ≤ 1

2
.(4.8)
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Then
1

2

∫ T

S
E dt ≤ cE(S) + c

∫ T

S

∫

Ωt1

u′2 dx dt .

Next we look at the part on Ωt
1: since g′(0) 6= 0, we can choose r > 0 such

that

∀ v ∈ [−r, r], |g(v)| ≥ α1 |v| ,
for some α1 > 0. Then we define

α2 := inf

{
∣

∣

∣

∣

g(v)

v

∣

∣

∣

∣

: r ≤ |v| ≤ R

}

> 0 .

With α :=min(α1, α2), we have

|g(v)| ≥ α|v| if |v| ≤ R .

So

∫ T

S

∫

Ωt1

u′2 dx dt =

∫ T

S

∫

Ωt1

u′ g(u′)
u′

g(u′)
dx dt ≤

≤ 1

α

∫ T

S

∫

Ωt1

u′ g(u′) dx dt =
1

α

(

E(S)− E(T )
)

.

(4.9)

Finally, we get

1

2

∫ T

S
E(t) dt ≤ cE(S) +

c

α

(

E(S)− E(T )
)

≤
(

c+
c

α

)

E(S) .(4.10)

Letting T go to infinity, we get

∫ +∞

S
E(t) dt ≤ 1

ω
E(S)(4.11)

with 1
ω = 2 c(1 + 1

α). Since E is nonincreasing and nonnegative, a well-known

Gronwall type inequality (see, e.g., [13]) gives

E(t) ≤ E(0) e1−ωt .(4.12)

We recall the proof of this inequality briefly: set h(t) =
∫+∞
t E(τ) dτ . h satisfies

the differential inequality

∀ t ≥ 0, h′(t) + ω h(t) ≤ 0 .
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So

∀ t ≥ 0, h(t) ≤ h(0) e−ωt ≤ 1

ω
E(0) e−ωt .

Then since E is nonnegative and nonincreasing, for all ε > 0 we have

E(t) ≤ 1

ε

∫ t

t−ε
E(τ) dτ ≤ 1

ε
h(t− ε) ≤ 1

ω ε
E(0) eωε e−ωt ,

and the best estimate is obtained for ωε = 1.

The proof of Theorem 2 is completed.

5 – Proof of Theorem 3

Note that the proof of the exponential stability when g is monotone does

not use the monotonicity of g in itself, but only the regularity of the solution u

provided by the monotonicity. When g is nonmonotone, we use the same strategy

than in Section 4. We will use the only estimate that we have on the second order

energy (see Lemma 2). The choice of R and φ will be related to that estimate.

Our goal is to estimate
∫ T

S

∫

Ω
u′2 dx dt .

Set R0 ≥ 1 and define

∀ t ≥ 0, R(t) = R0 e
mt ,(5.1)

and

∀ t ≥ 0, φ(t) = (1 + t)1−k − 1 if k ∈ [0, 1) ,(5.2)

∀ t ≥ 0, φ(t) = ln(2 + t)− ln 2 if k = 1 .(5.3)

Note that φ is an increasing concave function of class C2 on R+ (and φ(0) = 0).

Fix t ≥ 0 and define

Ωt
0 :=

{

x ∈ Ω: |u′| ≤ R0

}

,(5.4)

Ωt
1 :=

{

x ∈ Ω: R0 < |u′| ≤ R(t)
}

,(5.5)

Ωt
2 :=

{

x ∈ Ω: R(t) < |u′|
}

.(5.6)

Note that this partition generalizes the one we constructed in the monotone case:

if m = 0, R(t) = R0 and Ωt
1 = ∅. As in Section 4, R0 will depend C(u0, u1).

First we look at the part on Ωt
2. We have already shown in Section 4 that

∫

Ωt2

u′2 dx ≤ c

R(t)
‖u′‖H1(Ω)E(t) .(5.7)
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Using the estimate given by Lemma 2, we get
∫

Ωt2

u′2 dx ≤ c

R(t)

√

C(u0, u1) emtE(t) =
c

R0

√

C(u0, u1)E(t) .(5.8)

Next we look at the part on Ωt
1:

∫ T

S
φ′(t)

∫

Ωt1

u′2 dx dt =

∫ T

S
φ′(t)

∫

Ωt1

u′ g(u′)
u′

g(u′)
dx dt

≤ c

∫ T

S
φ′(t)

∫

Ωt1

u′ g(u′)
(

ln(2 + |u′|)
)k
dx dt

≤ c

∫ T

S
φ′(t)

(

ln(2 +R(t))
)k
∫

Ωt1

u′ g(u′) dx dt .

(5.9)

Remark that thanks to the definitions of R and φ, the function t 7→ φ′(t) (ln(2 +
R(t)))k is bounded on R+: if k ∈ [0, 1),

∀ t ≥ 0, φ′(t)
(

ln(2 +R(t))
)k

= (1− k) (1 + t)−k
(

ln(2 +R0 e
mt)

)k
≤ M ,

and if k = 1,

∀ t ≥ 0, φ′(t)
(

ln(2 +R(t))
)

≤ 1

2 + t

(

ln(2 +R0 e
mt)

)

≤ M .

So
∫ T

S
φ′(t)

∫

Ωt1

u′2 dx dt ≤
∫ T

S
φ′(t)

(

ln(2 +R(t))
)k
∫

Ωt1

u′ g(u′) dx dt

≤ M E(S) .

(5.10)

At last, we look at the part on Ωt
0: since g

′(0) 6= 0, we have

|g(v)| ≥ α |v| if |v| ≤ R0

for some α > 0. So
∫ T

S
φ′(t)

∫

Ωt0

u′2 dx dt ≤ 1

α

∫ T

S
φ′(t)

∫

Ωt0

u′ g(u′) dx dt

≤ φ′(S)
α

E(S) ≤ cE(S) .

(5.11)

Thus we deduce from the inequality (3.8) and the estimates (5.8), (5.10) and

(5.11) that

∫ T

S
E(t)φ′(t) dt ≤ 2 cE(S) +M E(S) +

c

R0

√

C(u0, u1)

∫ T

S
E(t)φ′(t) dt .
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Define R0 by

R0 := max
{

1, 2 c
√

C(u0, u1)
}

.

Then we obtain
1

2

∫ T

S
E(t)φ′(t) dt ≤ C E(S) .

(Note that C depends on R0, so depends on C(u0, u1).)

Letting go T to infinity, we get

∀S ≥ 0,

∫ +∞

S
E(t)φ′(t) dt ≤ C E(S) .(5.12)

With the change of variable defined by τ = φ(t), we see that the nonincreasing

function F (τ) :=E(φ−1(τ)) satisfies

∀σ ≥ 0,

∫ +∞

σ
F (τ) dτ ≤ C F (σ) =

1

ω
F (σ) ,

therefore

∀ τ ≥ 0, F (τ) ≤ F (0) e1−ωτ ,

i.e.

∀ t ≥ 0, E(t) ≤ E(0) e1−ωφ(t) .(5.13)

The proof of Theorem 3 is completed.

6 – Proof of Theorem 4

When N≥3, we cannot absorb the term on Ωt
2 like we did in Sections 4 and 5.

Our result is based on a new nonlinear integral inequality (Lemma 6), that gen-

eralizes a result from A. Haraux [9].

Assume that g satisfies (2.15)–(2.17). With σ = 1, Lemma 3 gives that

∫ T

S
E(t)2 φ′(t) dt ≤ cE(S)2 + c

∫ T

S
E(t)φ′(t)

∫

Ω
u′2 dx dt .(6.1)

We use the same strategy than in dimension 2: define

∀ t ≥ 0, R(t) = R0 e
γt ,(6.2)

with γ > 0 (that we will choose later later), and

∀ t ≥ 0, φ(t) = (1 + t)1−k − 1 if k ∈ (0, 1) .(6.3)

Consider the partition of Ω defined by (5.4)–(5.6), where R(t) is given by (6.2).
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First we look at the part on Ωt
2. Set p = N+2

4 > 1 and q′ its conjugate

exponent:
1

p
+

1

q′
= 1 .

Then

∫

Ωt2

u′2 dx =

∫

Ωt2

u′1/p u′2−1/p dx ≤
(
∫

Ωt2

|u′|
)1/p (∫

Ωt2

|u′|q′(2−1/p)
)1/q′

≤
(

1

R(t)

)1/p (∫

Ωt2

u′2
)1/p

‖u′‖(2p−1)/p(2p−1)/(p−1) .

So
∫

Ωt2

u′2 dx ≤
(

1

R(t)

)1/(p−1)
‖u′‖(2p−1)/(p−1)(2p−1)/(p−1) .

We use Lemma 5 to get

‖u′‖(2p−1)/(p−1) ≤ c ‖u′‖θH1 ‖u′‖1−θ2 ≤ C eθmtE(t)(1−θ)/2

with

θ =
N

2

1

2 p− 1
= 1 ,

and C depending on C(u0, u1). So

‖u′‖2N/(N+2)2N/(N+2) ≤ C e
2Nm
N+2

t
.(6.4)

(Note that we would have obtained a better estimate by choosing a larger p, but

this does not change the result.) Define γ such that

2Nm

N + 2
− γ

p− 1
= −1 .

Hence

∫ T

S
E(t)φ′(t)

∫

Ωt2

u′2 dx dt ≤ C

∫ T

S
E(t)φ′(t)

e2Nmt/(N+2)

(

R(t)
)1/(p−1) dt

≤ C E(S)

∫ T

S
e−t dt ≤ C E(S) e−S .

(6.5)

Next we look at the part on Ωt
1: since the function t 7→ φ′(t) (ln(2 +R(t))k is

bounded on R+, we have

∫ T

S
E(t)φ′(t)

∫

Ωt1

u′2 dx dt ≤ M E(S)2 ,
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and as usual,
∫ T

S
E(t)φ′(t)

∫

Ωt0

u′2 dx dt ≤ cE(S)2 ,

Thus

∀S ≥ 0,

∫ T

S
E(t)2 φ′(t) dt ≤ cE(S)2 + C E(S) e−S .(6.6)

With the change of variable defined by τ = φ(t) and the change of function

F (τ) :=E(t), we get

∀S ≥ 0,

∫ φ(T )

φ(S)
F (τ)2 dτ ≤ c F (φ(S))2 + C F (φ(S)) e−S .

The nonincreasing function F satisfies, if k ∈ [0, 1),

∀ y ≥ 1,

∫ +∞

y
F (τ)2 dτ ≤ c F (y)2 + C F (y) e−φ

−1(y)

≤ c F (y)2 + C F (y) e−y
1/(1−k)

,

(6.7)

and, if k = 1,

∀ y ≥ 1,

∫ +∞

y
F (τ)2 dτ ≤ c F (y)2 + C F (y) e−e

y

≤ c F (y)2 + C F (y) e−y
2
.

Remark that if C = 0, we deduce from (4.12) that F decays exponentially to zero.

Since 0<k< 1, 1
1−k > 1. We show that the term F (y) e−y

1/(1−k)
has a negligible

effect in front of F (y)2:

Lemma 6. Set γ ≥ 1. Assume that F satisfies

∀ t ≥ 1,

∫ +∞

t
F (τ)2 dτ ≤ c F (t)2 + c F (1)F (t) e−t

γ
.(6.8)

Then there exists Cγ such that F satisfies the decay property:

∀ t ≥ 1, F (t) ≤ Cγ F (1) e−ωt with ω =
1

2 c+ 2
γ

.(6.9)

Remark. In fact, the decay rate estimate (6.9) is not optimal: if F satisfies

(6.8), then it is easy to prove that for all ε > 0, there exists Cγ,ε such that:

∀ t ≥ 1, F (t) ≤ Cγ,ε F (1) e−ωεt with ωε =
1

2 c+ ε
.
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Assume Lemma 6 is true. Then the proof of Theorem 4 is completed: we

deduce from (6.9) that

∀ t ≥ 0, E(t) ≤ Ck E(0) e−ωφ(t) with ω =
1

2 c+ 2(1− k)
.

Proof of Lemma 6: In order to simplify the notations, we prove Lemma 6

when γ = 2. The proof is the same for γ ≥ 1. Define

∀ t ≥ 1, G(t) := F (t)2 + F (1)F (t) e−t
2
.

Then G is nonincreasing and satisfies

∀ t ≥ 1,

∫ +∞

t
G(τ) dτ ≤ cG(t) + F (1)F (t)

∫ +∞

t
e−τ

2
dτ

≤ cG(t) + F (1)F (t)

∫ +∞

t2
e−y

dy

2
√
y

≤ cG(t) +
1

2
F (1)F (t) e−t

2

≤
(

c+
1

2

)

G(t) .

So we deduce from the computations that we made to get (4.12) that

∀ t ≥ 1, G(t) ≤ G(1) e1−(t−1)/(c+
1
2
) .

So

∀ t ≥ 1, F (t) ≤
√
1 + e F (1) e−(t−1)/(2c+1) .
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