K_{W} DOES NOT IMPLY K_{W}^{*}

Carlos R. Borges

Abstract

We prove that the cyclic monotonically normal space T of M.E. Rudin is a K_{W}-space which is not a K_{W}^{*}-space. This answers a question in [3]. In order to do this, we first prove that if a space X has $D^{*}(\mathbb{R} ; \leq)$ then X is a K_{W}-space (it is well known that X is also a K_{1}-space; this does not necessarily mean that X is a $K_{1 W}$-space.).

Theorem 1. If a space (X, τ) has the property $D^{*}(\mathbb{R} ; \leq)$ then X is a K_{W}-space.

Proof: By Theorem 10 of [4] (i.e. $D^{*}(\mathbb{R} ; \leq)$ if and only if $\left.D^{*}(\mathbb{R} ; \leq ; c c h)\right)$, let $\gamma: C^{*}(F) \rightarrow C^{*}(X)$ be a monotone extender such that $\gamma\left(a_{F}\right)=a_{X}$ for each $a \in \mathbb{R}$. Then for each $U \in \tau \mid F$, let

$$
\begin{aligned}
& \mu(U)=\bigcup\left\{\gamma(f)^{-1}(]-\infty, 1[) \mid f \in C(F,[-2,2]), \quad f(F-U) \subset\{2\}\right\} \\
& v(U)=\bigcup\left\{\gamma(f)^{-1}(]-1, \infty[) \mid f \in C(F,[-2,2]), \quad f(F-U) \subset\{-2\}\right\} \\
& k(U)=\mu(U) \cup v(U)
\end{aligned}
$$

If $U \in \tau \mid F$ and $z \in U$, then there exists $f \in C(F,[-2,2])$ such that $f(z)=-2$ and $f(F-U) \subset\{2\}$. Since γ is an extender, we get that $F \cap \mu(U)=U$; similarly, $F \cap v(U)=U$. Hence, $F \cap k(U)=U$, for each $U \in \tau \mid F$. Clearly, $k(F)=X$ and $k(\emptyset)=\emptyset$, because $\gamma\left(\pm 2_{F}\right)= \pm 2_{X}$.

It is obvious that $k(U) \subset k(V)$ whenever $U \subset V$.

[^0]Next, we prove that if $U \cup V=F$ then $k(U) \cup k(V)=X(\underline{W} \log$, let us assume that $U \neq F \neq V)$. Let $x \in X$ and suppose that $x \notin \mu(U)$. Then, for each $f \in C(F,[-2,2])$ such that $f(F-U)=2$, we get that $\gamma(f)(x) \geq 1$. Pick $h \in C(F,[-2,2])$ such that $h(F-V)=-2$ and $h(F-U)=2$ (recall that F is normal). It follows that $\gamma(h)(x) \geq 1$, which implies that $x \in v(V)$. Similarly, if $x \notin v(V)$ then $x \in \mu(U)$. Consequently, we get that $x \in k(U) \cup k(V)$, as required.

Finally, we prove that, for each $U \in \tau \mid F, \overline{k(U)} \cap F=\bar{U}$: Suppose there is $p \in F$ such that $p \in \overline{k(U)}$ and $p \notin \bar{U}$. Pick $h: F \rightarrow[-2,2]$ such that $h(\bar{U})=-2$ and $h(p)=2$. Then $h \leq f$ for all $f: F \rightarrow[-2,2]$ such that $f(F-U)=2$, which implies that $\mu(U) \subset \gamma(h)^{-1}(]-\infty, 1[)$. Since $\gamma(h)^{-1}(]-\infty, 1[) \cap \gamma(h)^{-1}(] 1, \infty[)=\emptyset$ and $p \in \gamma(h)^{-1}(] 1, \infty[)$, we get that $p \notin \overline{\mu(U)}$. Similarly, $p \notin \overline{v(U)}$, and this proves that $p \notin \overline{k(U)}$. Therefore, $\overline{k U} \cap F=\bar{U}$. This completes the proof.

Theorem 2. If a space (X, τ) is a K_{W}^{*}-space then, for each closed subspace F of X there exists a function $k: \tau \mid F \rightarrow \tau$ such that
(i) $F \cap k(U)=U$, for each $U \in \tau \mid F, k(F)=(X), k(\emptyset)=\emptyset$;
(ii) $k(U) \subset k(V)$ whenever $U \subset V$;
(iv) $U, V \in \tau \mid F, \overline{U \cap V}=\bar{U} \cap \bar{V}$ implies $k(U \cap V)=k(U) \cap k(V)$;
(iv) $\overline{k(U)} \cap F=\bar{U}$.

Proof: Let $v: \tau \mid F \rightarrow \tau$ be a K_{W}^{*}-function and define $k: \tau \mid F \rightarrow \tau$ by

$$
k(U)=U \cup(X-[F \cup \overline{v(F-\bar{U})}])
$$

From the proof of Theorem 4 of [3], we immediately get that k satisfies (i), (ii) and (iv). To verify (iii), note that

$$
\begin{aligned}
k(U) \cap k(V)= & {[U \cup(X-[F \cup \overline{v(F-\bar{U})}])] \cap[V \cup(X-[F \cup \overline{v(F-\bar{V})}])] } \\
= & (U \cap V) \cup[(X-[F \cup \overline{v(F-\bar{U})}]) \cap(X-[F \cup \overline{v(F-\bar{V})}])] \\
& (\text { because } U \cap(X-[F \cup \overline{v(F-\bar{V})}])=\emptyset= \\
& =(X-[F \cup \overline{v(F-\bar{U})}]) \cap V, \text { since } U \subset F \text { and } V \subset F) \\
= & (U \cap V) \cup(X-[F \cup \overline{v(F-\bar{U})} \cup \overline{v(F-\bar{V})}])=
\end{aligned}
$$

$$
\begin{gathered}
K_{W} \text { DOES NOT IMPLY } K_{W}^{*} \\
=(U \cap V) \cup(X-[F \cup \overline{v(F-\bar{U}) \cup v(F-\bar{V})}]) \\
=(U \cap V) \cup(X-[F \cup \overline{v((F-\bar{U}) \cup(F-\bar{V}))}]) \\
\\
\quad\left(\text { because } v \text { is a } K_{W}^{*}\right. \text {-function) } \\
=(U \cap V) \cup(X-[F \cup \overline{v(F-\bar{U} \cap \bar{V})}]) \\
=(U \cap V) \cup(X-[F \cup \overline{v(F-\overline{U \cap V})}]) \\
= \\
=k(U \cap V), \quad \text { because } \overline{U \cap V}=\bar{U} \cap \bar{V},
\end{gathered}
$$

which completes the proof.

We conjecture that the converse of Theorem 2 is false and we have not been able to find a characterization of K_{W}^{*}-spaces analogous to the characterization of K_{W}-spaces which appears in Theorem 4 of [3].

Theorem 3. There is a K_{W}-space T which is not a K_{W}^{*}-space.

Proof: The space T is the space described by M.E. Rudin in [6]. We already know from Theorem 1 (recall that monotonically normal spaces have $D^{*}(\mathbb{R} ; \leq)$) that T is a K_{W}-space.

Assuming that T is a K_{W}^{*}-space, let $k: \tau \mid F \rightarrow \tau$ satisfy the conditions of Theorem 3(b). Since the sets $U_{x i}$ and $U_{r x i}$ defined on p. 305 of [6] are easily seen to be clopen, then we get that

$$
\overline{\bigcap_{i<3} U_{x i}}=\bigcap_{i<3} \overline{U_{x i}} \quad \text { and } \quad k\left(\bigcap_{i<3} U_{x i} \cap Y\right)=\bigcap_{i<3} k\left(U_{x i} \cap Y\right)
$$

and, similarly,

$$
k\left(U_{r x_{i} j} \cap U_{r x_{i}(j-1)} \cap Y\right)=k\left(U_{r x_{i} j} \cap Y\right) \cap k\left(U_{r x_{i}(j-1)} \cap Y\right)
$$

Consequently, M.E. Rudin's argument, verbatim, also proves that the above k cannot exist, a contradiction. This completes the proof.

REFERENCES

[1] Borges, C.R. - Extension properties of K_{i}-spaces, $Q \mathcal{G} A$ in General Topology, 7 (1989), 81-97.
[2] Borges, C.R. - A study of K_{0} and $K_{0 W}$-spaces, Math. Japonica, 42(3) (1995), 429-435.
[3] Borges, C.R. - A study of K_{W}-spaces and K_{W}^{*}-spaces, Portugaliae Math., 51 (1994), 109-117.
[4] Borges, C.R. - Extensions of real-valued functions, Q $\mathcal{A} A$ in General Topology, 14 (1996), 233-243.
[5] van Douwen, E.K. - Simultaneous Extension of Continuous Functions, Ph.D. Thesis, Academishe Pers - Amsterdam, 1975.
[6] Rudin, M.E. - A cyclic monotonically normal space which is not K_{0}, Proc. Amer. Math. Soc., 119 (1993), 303-307.

Carlos R. Borges,

Department of Mathematics, University of California, Davis, California 95616-8633 - USA

[^0]: Received: October 6, 1998.
 1980 Mathematics Subject Classification: Primary 54C30; Secondary 54C20.
 Keywords and Phrases: K_{W}-space; K_{W}^{*}-space; K_{1}-space.

