PORTUGALIAE MATHEMATICA Vol. 57 Fasc. 3 – 2000

K_W DOES NOT IMPLY K_W^*

CARLOS R. BORGES

Abstract: We prove that the cyclic monotonically normal space T of M.E. Rudin is a K_W -space which is not a K_W^* -space. This answers a question in [3]. In order to do this, we first prove that if a space X has $D^*(\mathbb{R}; \leq)$ then X is a K_W -space (it is well known that X is also a K_1 -space; this does not necessarily mean that X is a K_{1W} -space.).

Theorem 1. If a space (X, τ) has the property $D^*(\mathbb{R}; \leq)$ then X is a K_W -space.

Proof: By Theorem 10 of [4] (i.e. $D^*(\mathbb{R}; \leq)$ if and only if $D^*(\mathbb{R}; \leq; cch)$), let $\gamma: C^*(F) \to C^*(X)$ be a monotone extender such that $\gamma(a_F) = a_X$ for each $a \in \mathbb{R}$. Then for each $U \in \tau | F$, let

$$\begin{split} \mu(U) &= \bigcup \left\{ \gamma(f)^{-1}(] - \infty, 1[) \mid f \in C(F, [-2, 2]), \ f(F - U) \subset \{2\} \right\}, \\ v(U) &= \bigcup \left\{ \gamma(f)^{-1}(] - 1, \infty[) \mid f \in C(F, [-2, 2]), \ f(F - U) \subset \{-2\} \right\}, \\ k(U) &= \mu(U) \cup v(U) \;. \end{split}$$

If $U \in \tau | F$ and $z \in U$, then there exists $f \in C(F, [-2, 2])$ such that f(z) = -2and $f(F-U) \subset \{2\}$. Since γ is an extender, we get that $F \cap \mu(U) = U$; similarly, $F \cap v(U) = U$. Hence, $F \cap k(U) = U$, for each $U \in \tau | F$. Clearly, k(F) = X and $k(\emptyset) = \emptyset$, because $\gamma(\pm 2_F) = \pm 2_X$.

It is obvious that $k(U) \subset k(V)$ whenever $U \subset V$.

Received: October 6, 1998.

1980 Mathematics Subject Classification: Primary 54C30; Secondary 54C20. Keywords and Phrases: K_W -space; K_W^* -space; K_1 -space.

CARLOS R. BORGES

Next, we prove that if $U \cup V = F$ then $k(U) \cup k(V) = X$ ($\underline{W \log}$, let us assume that $U \neq F \neq V$). Let $x \in X$ and suppose that $x \notin \mu(U)$. Then, for each $f \in C(F, [-2, 2])$ such that f(F-U) = 2, we get that $\gamma(f)(x) \ge 1$. Pick $h \in C(F, [-2, 2])$ such that h(F-V) = -2 and h(F-U) = 2 (recall that F is normal). It follows that $\gamma(h)(x) \ge 1$, which implies that $x \in v(V)$. Similarly, if $x \notin v(V)$ then $x \in \mu(U)$. Consequently, we get that $x \in k(U) \cup k(V)$, as required.

Finally, we prove that, for each $U \in \tau | F$, $\overline{k(U)} \cap F = \overline{U}$: Suppose there is $p \in F$ such that $p \in \overline{k(U)}$ and $p \notin \overline{U}$. Pick $h: F \to [-2, 2]$ such that $h(\overline{U}) = -2$ and h(p) = 2. Then $h \leq f$ for all $f: F \to [-2, 2]$ such that f(F-U) = 2, which implies that $\mu(U) \subset \gamma(h)^{-1}(] - \infty, 1[)$. Since $\gamma(h)^{-1}(] - \infty, 1[) \cap \gamma(h)^{-1}(] 1, \infty[) = \emptyset$ and $p \in \gamma(h)^{-1}(]1, \infty[)$, we get that $p \notin \overline{\mu(U)}$. Similarly, $p \notin \overline{v(U)}$, and this proves that $p \notin \overline{k(U)}$. Therefore, $\overline{kU} \cap F = \overline{U}$. This completes the proof.

Theorem 2. If a space (X, τ) is a K_W^* -space then, for each closed subspace F of X there exists a function $k: \tau | F \to \tau$ such that

- (i) $F \cap k(U) = U$, for each $U \in \tau | F$, k(F) = (X), $k(\emptyset) = \emptyset$;
- (ii) $k(U) \subset k(V)$ whenever $U \subset V$;
- (iv) $U, V \in \tau | F, \ \overline{U \cap V} = \overline{U} \cap \overline{V} \text{ implies } k(U \cap V) = k(U) \cap k(V);$
- (iv) $\overline{k(U)} \cap F = \overline{U}$.

Proof: Let $v: \tau | F \to \tau$ be a K_W^* -function and define $k: \tau | F \to \tau$ by

$$k(U) = U \cup \left(X - \left[F \cup \overline{v(F - \overline{U})} \right] \right)$$
.

From the proof of Theorem 4 of [3], we immediately get that k satisfies (i), (ii) and (iv). To verify (iii), note that

$$\begin{aligned} k(U) \cap k(V) &= \left[U \cup \left(X - \left[F \cup \overline{v(F - \overline{U})} \right] \right) \right] \cap \left[V \cup \left(X - \left[F \cup \overline{v(F - \overline{V})} \right] \right) \right] \\ &= (U \cap V) \cup \left[\left(X - \left[F \cup \overline{v(F - \overline{U})} \right] \right) \cap \left(X - \left[F \cup \overline{v(F - \overline{V})} \right] \right) \right] \\ &\left(\text{because } U \cap \left(X - \left[F \cup \overline{v(F - \overline{V})} \right] \right) = \emptyset = \\ &= \left(X - \left[F \cup \overline{v(F - \overline{U})} \right] \right) \cap V, \text{ since } U \subset F \text{ and } V \subset F \right) \\ &= \left(U \cap V \right) \cup \left(X - \left[F \cup \overline{v(F - \overline{U})} \cup \overline{v(F - \overline{V})} \right] \right) = \end{aligned}$$

256

 K_W does not imply K_W^*

$$= (U \cap V) \cup \left(X - \left[F \cup \overline{v(F - \overline{U})} \cup v(F - \overline{V}) \right] \right)$$

= $(U \cap V) \cup \left(X - \left[F \cup \overline{v((F - \overline{U})} \cup (F - \overline{V})) \right] \right)$
(because v is a K_W^* -function)
= $(U \cap V) \cup \left(X - \left[F \cup \overline{v(F - \overline{U} \cap \overline{V})} \right] \right)$
= $(U \cap V) \cup \left(X - \left[F \cup v(\overline{F - \overline{U} \cap \overline{V})} \right] \right)$
= $k(U \cap V)$, because $\overline{U \cap V} = \overline{U} \cap \overline{V}$,

which completes the proof. \blacksquare

We conjecture that the converse of Theorem 2 is false and we have not been able to find a characterization of K_W^* -spaces analogous to the characterization of K_W -spaces which appears in Theorem 4 of [3].

Theorem 3. There is a K_W -space T which is not a K_W^* -space.

Proof: The space T is the space described by M.E. Rudin in [6]. We already know from Theorem 1 (recall that monotonically normal spaces have $D^*(\mathbb{R}; \leq)$) that T is a K_W -space.

Assuming that T is a K_W^* -space, let $k : \tau | F \to \tau$ satisfy the conditions of Theorem 3(b). Since the sets U_{xi} and U_{rxi} defined on p. 305 of [6] are easily seen to be clopen, then we get that

$$\overline{\bigcap_{i<3} U_{xi}} = \bigcap_{i<3} \overline{U_{xi}} \quad \text{and} \quad k\left(\bigcap_{i<3} U_{xi} \cap Y\right) = \bigcap_{i<3} k(U_{xi} \cap Y)$$

and, similarly,

$$k\Big(U_{rx_ij}\cap U_{rx_i(j-1)}\cap Y\Big) = k(U_{rx_ij}\cap Y)\cap k(U_{rx_i(j-1)}\cap Y) .$$

Consequently, M.E. Rudin's argument, verbatim, also proves that the above k cannot exist, a contradiction. This completes the proof.

CARLOS R. BORGES

REFERENCES

- BORGES, C.R. Extension properties of K_i-spaces, Q&A in General Topology, 7 (1989), 81–97.
- [2] BORGES, C.R. A study of K_0 and K_{0W} -spaces, *Math. Japonica*, 42(3) (1995), 429–435.
- [3] BORGES, C.R. A study of K_W -spaces and K_W^* -spaces, Portugaliae Math., 51 (1994), 109–117.
- [4] BORGES, C.R. Extensions of real-valued functions, Q&A in General Topology, 14 (1996), 233–243.
- [5] VAN DOUWEN, E.K. Simultaneous Extension of Continuous Functions, Ph.D. Thesis, Academishe Pers – Amsterdam, 1975.
- [6] RUDIN, M.E. A cyclic monotonically normal space which is not K₀, Proc. Amer. Math. Soc., 119 (1993), 303–307.

Carlos R. Borges, Department of Mathematics, University of California, Davis, California 95616-8633 – USA

258