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VIABLE SOLUTIONS OF DIFFERENTIAL INCLUSIONS
WITH MEMORY IN BANACH SPACES *

A. Gavioli and L. Malaguti

Abstract: In this paper we study functional differential inclusions with memory

and state constraints. We assume the state space to be a separable Banach space and

prove existence results for an u.s.c. orientor field; we consider both the case of a globally

measurable orientor field and the case of a Caratheodory one.

1 – Introduction

Let E be a separable Banach space, r and T two positive numbers, and put

I = [0, T ]. If u : I → E is a given function, we define the function ut : [−r, 0]→ E

in the following way:

ut(s) = u(t+ s) for all s ∈ [−r, 0] .

Let Cr = C([−r, 0];E) be the space of all continuous functions from [−r, 0] into

E, endowed with the topology of uniform convergence, and consider two multi-

functions F : I×Cr ⇒ E and K: I ⇒ E with non-empty values. For every fixed

φ ∈ Cr such that φ(0) ∈ K(0), we are looking for a function u : [−r, T ] → E

which is absolutely continuous on I, and fulfils the following conditions:

(1.1)

u′(t) ∈ F (t, ut) a.e. on I ,

u(t) ∈ K(t) for all t ∈ I ,

u(t) = φ(t) for all t ∈ [−r, 0] .

Such problems are often mentioned as differential inclusions with memory and

state constraints. Usually, some property of semicontinuity is required on F
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(with respect to the pair (t, x), or even only to x): existence results for (1.1) were

obtained both on lower and upper semicontinuity assumptions. As regards the

first kind of results, we quote e.g. [10] and the references contained therein. In

the present paper, we are interested in the second kind of assumptions. As far

as we know, the first results in this direction were given by Haddad [12], [13], in

the case in which F is globally u.s.c. and takes convex compact values, and K is

fixed (see also [1] and [8]). In [12] E is the euclidean space Rn, and F does not

depend on t, while in [13] E is a Hilbert space and K is convex. In both cases

Haddad gives necessary and sufficient conditions in order to solve (1.1).

As regards the existence of solutions in a separable Banach space, we refer to

Syam [15], where two results are given on this subject: the first one deals with

a fixed convex constraint K and a globally measurable multifunction F which is

u.s.c. on its second argument, while in the second one the constraint is convex

and moving, but F is globally u.s.c..

Some authors also studied differential inclusions where the right-hand side

contains, together with a perturbation with memory, a term which is a “maximal

monotone operator” with respect to the state variable x, for instance the so-called

sweeping process: on this subject we recall Castaing and Monteiro Marques [6],

Avgerinos [2] and also, as regards the sweeping process of second order, Duc Ha

and Monteiro Marques [9].

In the present paper we get existence results in a separable Banach space

with a not necessarily convex constraint which depends on time. Such results are

contained in §4 (Theorems 4.1, 4.2, 4.3) and extend corresponding results without

delay which are presented in §3 (Theorems 3.1, 3.2, 3.3). In particular, Thm. 3.1

is given by Gavioli in [11], Thm. 3.2 improves a recent result due to Malaguti [14],

and Thm. 3.3 is essentially due to Benabdellah, Castaing and Gamal Ibrahim [3].

In order to get the results of §4 from the corresponding results of §3 we

adopt the same technique as in [12], so as to reduce the original problem (1.1)

to a suitable sequence of problems without delay. The main differences in the

assumptions of the three theorems concern the measurability of the multifunction

F and the tangential conditions: in particular, in Theorem 4.1 F is globally

measurable, while in Theorems 4.2 and 4.3 F is supposed to be measurable only

with respect to t. As is known, this case can present some difficulties, in particular

when the constraint K depends on time, and F is only defined on the graph Γ of

K: indeed, an example by Bothe in [4] shows that, on these assumptions, there

may be no solutions, even at finite dimension, in the single-valued case and in

lack of delay. This circumstance, however, can be avoided also in presence of a

moving constraint, provided that F is supposed to be defined on the whole space

I×E.
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2 – Notations and preliminary results

First of all we shortly recall some basic notions about multifunctions: if X

and Y are two non-empty sets, a multifunction Φ: X ⇒ Y is a map from X into

the family of all subsets of Y . The graph of Φ is the set Gr(Φ) made up by those

pairs (x, y) such that x ∈ X and y ∈ Φ(x). A selection of Φ is a map φ : X → Y

such that, for every x ∈ X, φ(x) ∈ Φ(x). If V ⊆ Y , Φ−1(V ) is the set of those

points x ∈X such that Φ(x)∩V 6= ∅. If X is a measurable space, endowed with a

σ-field T , and Y is a topological space, Φ is said to be measurable if Φ−1(V ) ∈ T

whenever V is open in Y . If X and Y are both topological spaces, Φ is said to

be upper semicontinuous if Φ−1(V ) is closed in X whenever V is closed in Y .

From now on I will denote an interval of the kind [0, T ], with 0 < T < +∞,

L its Lebesgue σ-field, λ the Lebesgue measure on I. If Y is a topological space,

the script B(Y ) stands for the Borel σ-field on Y . Now we are going to present

a multivalued version of Scorza–Dragoni Theorem, which is due to Castaing–

Monteiro Marques [5]. We give it in a less general form, which is sufficient to our

purposes.

Theorem 2.1. Let E be a separable Banach space, Y be a convex compact

metrizable subset of a Hausdorff locally convex space. Let F : I×X ⇒ Y a

multifunction with nonempty convex compact values which fulfils the following

conditions:

(i) for any t ∈ I, the set {(x, y) ∈ E×Y : y ∈ F (t, x)}, that is the graph of

F (t, ·), is closed in X×Y ;

(ii) for any x ∈ E, F (·, x) admits a measurable selection.

Then, there exists a measurable multifunction F0 : I×E ⇒ Y with (possibly

empty) convex compact values which enjoys the following properties:

(p1) there is a λ-null set N , not depending on x, such that

F0(t, x) ⊂ F (t, x), for all t /∈ N and x ∈ E ;

(p2) if u : I → E and v : I →D are measurable functions such that v(t) ∈

F (t, u(t)) a.e., then v(t) ∈ F0(t, u(t)) a.e.;

(p3) for every ε > 0, there is a compact subset Iε ⊂ I such that λ(I\Iε) < ε,

the graph of the restriction F0|Iε×E is closed and ∅ 6= F0(t, x) ⊂ F (t, x),

for all (t, x) ∈ Iε×E.

The three following results will also be useful.
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Proposition 2.2. Let X be a topological space, E be a separable Banach

space, and suppose that the multifunction Φ: X ⇒ E turns out to be u.s.c. when

E is endowed with its weak topology σ(E,E∗). Then Φ−1(V ) ∈ B(X) whenever

V is open in the strong topology of E.

Proof: Let V ⊆ E be strongly open in E. Given a countable, dense subset Λ

of E, let F be the family of all closed balls U = B(x; r) such that x ∈ Λ, r ∈ Q+,

B(x; r) ⊆ V . Then F is countable, and V =
⋃

F . Furthermore, every ball U ∈ F

is also weakly closed, so that F−1(U) is closed in X. Then F−1(V ) is the union

of a countable family of closed sets, since F−1(V ) =
⋃

{F−1(U); U ∈ F}.

Proposition 2.3. Let (A, T ) be a measurable space, X and Y be topological

spaces F : T×X ⇒ Y be a multifunction with non-empty closed values and

φ : T → X a measurable function. Suppose that, for every x ∈ X, F (·, x) is

measurable, and φ(T ) is countable. Then the multifunction t 7→ Ψ(t) = F (t, φ(t))

is measurable.

Proof: Let us order φ(T ) in a sequence (ξn)n, and take an open set V ⊆ Y .

According to our assumptions, for every n ∈ N the sets An = φ−1({ξn}), Cn =

F (·, ξn)
−1(V ) are measurable in A. Now it is enough to remark that

Ψ−1(V ) =
+∞
⋃

n=1

(

Cn ∩An

)

.

Proposition 2.4. Let (E, ‖ · ‖) be a Banach space, J a compact interval of

the real line, C(J ;E) the space of all continuous functions u : J → E, endowed

with the norm ‖ · ‖∞ of uniform convergence. Let ψ : J×E → E be a continuous

function, µ : E → C(J ;E) the map x 7→ ψ(·, x). Then µ is continuous.

Proof: Let K ⊆ E be compact: thanks to Heine’s theorem, ψ is uniformly

continuous on J×K. In particular, for every ε > 0 we can find δ > 0 such that,

for every s ∈ J , x, y ∈ E, with ‖x− y‖ ≤ δ,

∥

∥

∥ψ(s, x)− ψ(s, y)
∥

∥

∥ ≤ ε .

Then µ is continuous on K. In particular, for any convergent sequence in E,

we can take K as the set of all its points, together with its limit. Then µ is

sequentially continuous: since E is a normed space, the assertion is proved.
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3 – Viability results without memory

In this section we deal with the case r = 0, that is without delay. Hence the

multifunction F is now defined on I×E (or also on a subset of this space), and

problem (1.1) takes the following, more simple form:

(3.1)

x′(t) ∈ F (t, x(t)) a.e. on I ,

x(t) ∈ K(t) for all t ∈ I ,

x(0) = x0 .

On this subject, we are going to recall some well-known existence theorems, and

also give new ones. From now on, K : I ⇒ E is a given set-valued map, whose

graph will be denoted by Γ. According to the general definition given at the

beginning of §2, we say that K is upper semicontinuous from the left if K−1(V )

is closed from the left in I whenever V is closed in E. For every z = (t, x) ∈ Γ we

denote by TΓ(z) the Bouligand contingent cone of Γ at z (see, for instance [1]),

and put

QΓ(t, x) =
{

y ∈ E : (1, y) ∈ TΓ(t, x)
}

, (t, x) ∈ Γ .

We denote by σw = σ(E,E∗) the weak topology on E. From now on B(E) will

stand for the Borel σ-field on E, with respect to the strong topology.

In order to compare more easily the results we are going to explain, we sum

up all their assumptions now. Conditions (a), (b) and (c) are common to all

theorems, while conditions (e) and (g) are alternative to (d) and (f) respectively.

Furthermore, conditions (i) and (l) are alternative to (h).

Basic assumptions

(a) The multifunction K : I ⇒ E takes compact non-empty values and is

upper semicontinuous from the left.

(b) The sets F (t, x) are non-empty, convex and weakly compact.

(c) For every t ∈ I, F (t, ·) is u.s.c. from (E, ‖ · ‖) to (E, σw).

Measurability conditions on F

(d) For every x ∈ E the multifunction F (·, x) is measurable on I.

(e) F is measurable with respect to L ⊗ B(E).
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Bounds from the exterior on the sets F (t, x)

(f) There exist a function a ∈ L1(I) and a set J ⊆ I, with |I\J | = 0, such

that, for every (t, x) ∈ Γ, with t ∈ J , it is ‖F (t, x)‖ ≤ a(t) (1+‖x‖).

(g) There exists a convex weakly compact set D ⊂ E such that, for all

(t, x) ∈ I×E, F (t, x) ⊆ D.

Tangential conditions

(h) There exists a set J ⊆ I, with |I\J | = 0, such that: if (t, x) ∈ Γ and

t ∈ J , then F (t, x) ∩QΓ(t, x) 6= ∅; otherwise, QΓ(t, x) 6= ∅.

(i) For every (t, x) ∈ Γ it is QΓ(t, x) 6= ∅. Furthermore, there exists a set

J ′ ⊆ I, with |I\J ′| = 0, such that, for every (t, x) ∈ Γ, with t ∈ J ′, it is

F (t, x) ⊆ QΓ(t, x).

(l) For every (t, x) ∈ Γ with t < T and every ε > 0 there exists (tε, xε) ∈ Γ

such that

tε ∈ [t, t+ε] and
xε − x

tε− t
∈

1

tε− t

∫ tε

t
F (s, x) ds + εB .

Remark. As is known [7, Thm. II.20] condition (c) is equivalent to the

following one: for any t ∈ I, p ∈ E∗, the function

φ 7→ δ∗(p;F (t, φ))
.
= sup

{

〈p, v〉; v ∈ F (t, φ)
}

is upper semicontinuous. Furthermore, we point out that obviously (d)⇒(e),

(f)⇒(g), and (i)⇒(h).

The first theorem which we present is given in [11].

Theorem 3.1. Let E be a separable Banach space, and consider two multi-

functions K: I ⇒ E and F : Γ ⇒ E, where Γ is the graph of K. Suppose that

conditions (a), (b), (c), (e), (f), (h) hold: then, for every x0 ∈ K(0), there exists

an absolutely continuous function x : I → E satisfying (3.1).

Now we are going to deduce, from the previous theorem and Thm. 2.1, a result

which holds even when F (t, x) is supposed to be measurable only with respect

to t. As we told at the end of the introduction, in this case particular difficulties

can arise, as is shown by an example in [4]. For this reason, we shall assume that

F is defined on the whole space I×E. Furthermore, we also need to strengthen

conditions (f) and (h).
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Theorem 3.2. Let E be a separable Banach space, K: I⇒E and F: I×E⇒E

two multifunctions satisfying conditions (a), (b), (c), (d), (g), (i). Then, for every

x0 ∈ K(0), there exists an absolutely continuous function x : I → E satisfying

(3.1).

Proof: It is easy to check that F fulfils the assumptions of Thm. 2.1: indeed,

the weak topology σw is metrizable on D, because E is separable. Furthermore,

for every t ∈ I, the multifunction F (t, ·) has a closed graph, since it is upper

semicontinuous from E into (D,σw) [1, Prop. 2, p. 41]. On the other hand, for

every x ∈ E, F (·, x) is measurable, so that it admits a measurable selection [7,

Thm. III.6]. Since all sets F0(t, x) are contained in the same weakly compact

set D, property (p3) ensures that F0 is u.s.c. from Iε×E to (E, σw) (see i.e. [1],

Corollary 1, p. 42). Now, let εn ↓ 0, apply property (p3) with ε = εn and put

Jn = Iεn , J =
⋃

n Jn, S = N
⋃

(I\J): of course, it is right to suppose that the

sequence (Jn)n is increasing, and we also get obviously λ(S) = 0. Now, let us

define a multifunction F̃ : I×E ⇒ D as follows:

F̃ (t, x) =

{

F0(t, x) if (t, x) ∈ (I\S)×E,

D if (t, x) ∈ S×E .

Now we are going to check that F̃ fulfils the same conditions as F in Theorem

3.1, that is (b), (c), (e), (f), (h). As regards (b), we only need to remark that F

takes non-empty values, thanks to the construction of I0 = I\S. Also condition

(c) holds obviously: indeed, if t /∈ I0, F̃ (t, ·) ≡ D; otherwise, for some n ∈ N, it

is t ∈ Jn, so that F̃ (t, ·) agrees with the section of a globally u.s.c. multifunction,

namely the restriction of F0 to the set Jn×E. Now, let us prove (e): to this

end, let A ⊆ E be open, C = F̃−1(A), and suppose that A ∩D 6= ∅ (otherwise,

C = ∅). Let us put, for every n ∈ N, Cn = C ∩ (Jn×E), and C ′ =
⋃

nCn. Then

C = C ′ ∪ (N0×E), with N0 = S ∩ C, and we only need to prove that, for every

n ∈ N, it is Cn ∈ L× B(E). But Cn = F−1
n (A), where Fn is the restriction of F0

toWn = Jn×E, and Fn is u.s.c. from (Wn, ‖·‖) to (E, σw): then Prop. 2.2 ensures

that Cn ∈ L×B(E), and F̃ actually satisfies (e). Since (f) holds obviously, we

only need to prove (h): to this end, let us put J = J ′ ∩ I0, and let (t, x) ∈ Γ,

with t ∈ J ′. Now, since t ∈ J ′, it is F (t, x) ⊆ QΓ(t, x). On the other hand, since

t ∈ I0, we get ∅ 6= F0(t, x) ⊆ F (t, x) = F̃ (t, x). Hence F̃ (t, x) ∩QΓ(t, x) 6= ∅.

For every x0 ∈ K(0) it is then possible to find an absolutely continuous

function x : I → E such that conditions (3.1) hold, with F̃ in place of F . Thanks

to property (p2), it is easy to see that the same conditions are satisfied by F .
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Now we are going to state a third result, which still concerns the case in which

F is measurable only with respect to t, and can be essentially deduced, through

some changes in the proof, from Prop. 6.2 of [3], where the authors deal with a

globally measurable multifunction F .

Theorem 3.3. Let E be a separable Banach space, K: I⇒E and F: I×E⇒E

two multifunctions satisfying conditions (a), (b), (c), (d), (f), (l). Then for every

x0 ∈ K(0), there exists an absolutely continuous function x : I → E satisfying

(3.1).

The proof of Theorem 3.3 needs the following result about approximate solu-

tions, which is essentially given in [3], although under slightly different assump-

tions.

Proposition 3.4. Let E be a separable Banach space, K : I ⇒ E and

F : I×E ⇒ E two multifunctions satisfying conditions (a), (b), (d), (f), (l).

Then, for every x0 ∈ K(0) it is possible to find a constant m > 1 such that for

any ε ∈ ]0, 1], there are an increasing, right continuous function θ : I → I and an

absolutely continuous function x : I → E with the following properties:

(i) θ(0) = 0, θ(T ) = T and θ(t) ∈ [t−ε, t] ∩ I for all t ∈ I;

(ii) for all t ∈ I, x(θ(t)) ∈ K(θ(t));

(iii) ‖x′(t)‖ ≤ mc(t) + 1 λ-a.e. on I;

(iv) x′(t) ∈ F (t, x(θ(t))) + εB a.e. on I;

(v) θ(t) takes at most a countable set of values.

Proof: We apply Prop. 6.1 of [3], in the particular case in which µ agrees

with the Lebesgue measure λ on I. We remark that in [3] F is supposed to take

strongly compact values, but it is easy to check that the given proof still works

when the sets F (t, x) are weakly compact. Then we infer the existence of an

absolutely continuous function x : I → E enjoying properties (i)–(iv). Now, the

techniques used in [3] also show how it is right to suppose that (v) holds as well.

Proof of Theorem 3.3: Given x(0)∈K(0), let us apply the previous propo-

sition with ε = εn, where εn ↓0 as n→ +∞: then we find a constant m > 1, and

functions θn : I→ I, xn : I→E which enjoy the same properties as θ and x in

(i)–(v). As a first step we show that (xn)n admits a subsequence which converges

uniformly on I to an absolutely continuous function x. To this end let us put,
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for every t ∈ I, β(t) = ma(t) + 1, and, for every n ∈ N ,

ξn = xn ◦ θn , σn(t) = e
(

K(θn(t)),K(t)
)

,

δn = sup

{
∫

A
β(τ) dτ ; A ∈ L, λ(A) ≤ εn

}

,

where e(C,D)
.
= sup{dist(x;D); x ∈ C} is the excess of C over D. Then from

conditions (i) and (iii) (in which we put x = xn, θ = θn) we get, for every t ∈ I,

(3.2) ‖ξn(t)− xn(t)‖ ≤
∫ t

θn(t)
‖x′n(τ)‖ dτ ≤ δn .

On the other hand, according to (ii) (with θ = θn), it is ξn(t) ∈ K(t)+σn(t)B, so

that, by virtue of (3.2),

xn(t) ∈ K(t) + (σn(t)+δn)B for all t ∈ I and n ∈ N .

Now, let us fix t ∈ I; since K is u.s.c. from the left, and θn(t) ∈ [t−εn, t] ∩ I for

all n, we get σn(t) → 0 as n → +∞; furthermore, β ∈ L1(I), so that δn → 0

as well. Hence the set X(t) = {xn(t) : n ∈ N} is relatively strongly compact

in E. As a consequence of (iii) (where we put x = xn) the sequence (xn)n is

also equicontinuous. Then it is possible to extract a subsequence, again denoted

(xn)n, uniformly convergent in I to an absolutely continuous function x : I → E.

By virtue of (3.2), also the set Y (t) = {ξn(t) : n ∈ N} is, for every t ∈ I,

relatively compact in E with respect to the norm topology; furthermore, since

x = xn and θ = θn fulfil (iv), we get

x′n(t) ∈ Φ(t) + εnB a.e. on I ,

where Φ(t) denotes the closed convex hull of F (t, Y (t)), which is a convex weakly

compact subset of E. On the other hand, (iii) holds with x = xn, so that the

sequence (x′n)n is bounded and uniformly integrable in L1(I;E): then, according

to [3], Thm. 5.4, it admits a subsequence, still denoted as (x′n)n, which converges

to a function v ∈ L1(I;E) in the σ(L1, L∞)-topology. Indeed, it is easy to show

that v(t) = x′(t) for almost every t ∈ I.

Now we are going to prove that x(t) is a solution of (3.1): since, for every n,

ξn is a right continuous map, it is also measurable; furthermore, since θ = θn
fulfils (v), ξn takes at most a countable set of values: then Prop. 2.3 ensures that

the multifunction t → F (t, ξn(t)) is measurable. Now, for every n ∈ N , t ∈ I,

let Ψn(t) = (x′n(t) + εnB) ∩ F (t, ξn(t)): then Ψn : I ⇒ E is a measurable multi-

function with non-empty closed values, so that it admits a measurable selection
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zn (see e.g. [7], Thm. III.6). Since ‖zn(t) − x′n(t)‖ ≤ εn for every n ∈ N, t ∈ I,

and x′n⇀ x′, we easily argue that zn⇀ x′ in the σ(L1, L∞)-topology; moreover

zn(t) ∈ F (t, ξn(t)) for every t ∈ I .

By (3.2) the sequence ξn → x uniformly in I. Therefore, according to [7],

Thm.VI.4, we obtain

x′(t) ∈ F (t, x(t)) a.e. in I .

Finally, let us recall (ii) (with x = xn, θ = θn), so as to get, for every n ∈ N,

t ∈ I, ξn(t) ∈ K(θn(t)): as n→ +∞, ξn(t)→ x(t), while θn(t)→ t from the left.

Since K is u.s.c. from the left, we get x(t) ∈ K(t) for every t ∈ I.

4 – Viability results with memory

In the sequel we are going to show the existence of viable solutions for the

functional differential inclusion (1.1). First of all, we sum up all the assumptions

which are used in such theorems. They all correspond, in a natural way, to the

assumptions we gave at the beginning of §3, and indeed they are pointed out by

the same letters, but with an apex. We introduce the following set:

(4.1) Λ =
{

(t, w) ∈ I×Cr : w(0) ∈ K(t)
}

.

Basic assumptions

(a′) the multifunction K : I ⇒ E takes compact non-empty values and is

upper semicontinuous from the left.

(b′) the sets F (t, w) are non-empty, convex and weakly compact.

(c′) for every t ∈ I, F (t, ·) is u.s.c. from (Cr, ‖ · ‖∞) to (E, σw).

Measurability conditions on F

(d′) For every w ∈ Cr the multifunction F (·, w) is measurable on I.

(e′) F is measurable with respect to L ⊗ B(Cr).

Bounds from the exterior on the sets F (t, w)

(f′) there exist a function a ∈ L1(I) and a set J ⊆ I, with |I\J | = 0, such

that, for every pair (t, w) ∈ Λ∩(J×E) it is ‖F (t, w)‖ ≤ a(t) (1+‖w(0)‖).



DIFFERENTIAL INCLUSIONS WITH MEMORY 213

(g′) there exists a convex weakly compact set D ⊂ E such that, for every

pair (t, w) ∈ Λ it is F (t, w) ⊆ D.

Tangential conditions

(h′) there exists a set J ⊆ I, with |I\J | = 0, such that: if (t, w) ∈ Λ and

t ∈ J , then F (t, w) ∩QΓ(t, w(0)) 6= ∅; otherwise, QΓ(t, x) 6= ∅;

(i′) for every (t, x) ∈ Γ it is QΓ(t, x) 6= ∅. Furthermore, there exists a set

J ′ ⊆ I, with |I\J ′| = 0, such that, for every (t, w) ∈ Γ, with t ∈ J ′, it is

F (t, w) ⊆ QΓ(t, w(0)).

(l′) for every (t, w) ∈ Λ with t < T and every ε > 0 there exists (tε, xε) ∈ Γ

such that

tε ∈ [t, t+ε] and
xε− w(0)

tε− t
∈

1

tε− t

∫ tε

t
F (s, w) ds + εB ;

Theorem 4.1. Let E be a separable Banach space, and consider two multi-

functions K : I ⇒ E and F : Λ ⇒ E, where Λ is given by (4.1). Suppose

that conditions (a′), (b ′), (c ′), (e ′), (f ′), (h ′) hold: then for every φ ∈ Cr with

φ(0) ∈ K(0), there exists an absolutely continuous function x : I→E satisfying

(1.1).

Theorem 4.2. Let E be a separable Banach space, K : I ⇒ E and

F : I×Cr ⇒ E two multifunctions satisfying conditions (a′), (b ′), (c ′), (d ′),

(g ′), (i ′). Then, for every φ ∈ Cr with φ(0) ∈ K(0), there exists an absolutely

continuous function x : I→E satisfying (1.1).

Theorem 4.3. Let E be a separable Banach space, K : I ⇒ E and

F : I×Cr ⇒ E two multifunctions satisfying conditions (a′), (b ′), (c ′), (d ′),

(f ′), (l ′). Then for every φ ∈ Cr with φ(0) ∈ K(0), there exists an absolutely

continuous function x : I→E satisfying (1.1).

In order to prove the previous theorems we need the following result.

Lemma 4.4. Let K: I ⇒ E and F : I×Cr ⇒ E be two given multifunctions,

ψ : [−r, 0]×E →E be a continuous function such that, for every x∈E, ψ(0, x)=x.

For every t ∈ I, x ∈ K(t), let us put G(t, x) = F (t, ψ(·, x)). Suppose that K and

F fulfil one of the conditions from (b ′) to (l ′) at the beginning of this section:

then K and G fulfil the corresponding condition at the beginning of §3.
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Proof: We only show that (c′)⇒(c) and (e′)⇒(e), since the other implica-

tions can be checked directly. So, let us suppose that F fulfils (c′), and define µ

as in Prop. 2.4. Let t ∈ I, V a weakly closed subset of E: then C = F (t, ·)−1(V )

is closed in E, so that Prop. 2.4 ensures that µ−1(C) = G−1(V ) is closed in Cr,

since µ is continuous: then G satisfies condition (c). Now, let us suppose that

(e′) holds, and take an open set V ⊆ E: then S
.
= F−1(V ) ∈ L⊗B(Cr). On the

other hand, again thanks to the continuity of µ, the map ν : (t, x) 7→ (t, µ(x))

is certainly measurable from (I×E, L ⊗ B(E)) to (I×Cr, L ⊗ B(Cr)): hence

G−1(V ) = ν−1(S) ∈ L×B(E), and G fulfils (e).

Proof of Theorems 4.1, 4.2 and 4.3: Let n ∈ Z+: for every i ∈ {1, ..., n}
we put tin = i

n
T , J i

n = [ti−1n , tin]. By induction on the index i, we are going to

define the maps ψi
n : [−r, 0]×E → E, the multifunctions Gi

n : I×E → E, and the

functions xin : [−r, t
i
n]→ E. If i = 1, we put

ψ1n(s, x) =



















φ

(

s+
T

n

)

if −r ≤ s ≤ −
T

n
,

φ(0) +

(

1 +
ns

T

)

(

x− φ(0)
)

if −
T

n
≤ s ≤ 0 .

Then, for every t ∈ I, x ∈ E, we put G1
n(t, x) = F (t, ψ1n(·, x)). We remark that ψ1n

is continuous on [−r, 0]×E, and that ψ1n(0, x) = x, hence Lemma 4.4 and Thm. 3.1

or Thm. 3.2 or Thm. 3.3 ensure the existence of a solution ξ1n : [0, T ] → E of the

differential inclusion ξ′(t) ∈ G1
n(t, ξ(t)) such that ξ1n(0) = φ(0), and ξ1n(t) ∈ K(t)

for every t ∈ [0, T ]. Let

x1n(t) =

{

φ(t) if −r ≤ t ≤ 0 ,

ξ1n(t) if t ∈ J1n .

Now, let us suppose that ψk
n, G

k
n and xkn are already defined for k = 1, ..., i−1.

Then we put

ψi
n(s, x) =















xi−1n (s+ tin) if −r ≤ s ≤ −
T

n
,

xi−1n (ti−1n ) +

(

1 +
ns

T

)

(

x− xi−1n (ti−1n )
)

if −
T

n
≤ s ≤ 0 ,

and for every t ∈ I, x ∈ E, Gi
n(t, x) = F (t, ψi

n(·, x)). By the same argument as

in the case i=1, we find a viable solution ξin : [ti−1n , T ] → E of the differential

inclusion ξ′(t) ∈ Gi
n(t, ξ(t)) such that ξin(t

i−1
n ) = xi−1n (ti−1n ) and ξin(t) ∈ K(t) for
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all t ∈ [ti−1n , T ]. Let us put

xin(t) =

{

xi−1n (t) if −r ≤ t ≤ ti−1n ,

ξin(t) if t ∈ J i
n .

Now we can suppose that the function xn = xnn is defined on the whole interval

[−r, T ]. We notice that, by construction, xn ≡ xin on [−r, tin], and

x′n(t) ∈ Φn(t) = F (t, λn(·, t)) ,

where we put λn(s, t) = ψi
n(s, xn(t)) whenever t ∈ J i

n. In particular, λn(0, t) =

xn(t), so that, by virtue of condition (e′) or (e′1) we get ‖Φn(t)‖ ≤ a(t) (1+‖xn(t)‖)

a.e. on I (in particular, when (e′1) holds, we can take a(t) ≡ ‖D‖). Since ‖x′n(t)‖ ≤

‖Φn(t)‖ and xn(0)=φ(0) for every n, Gronwall’s Lemma ensures the existence of

a positive constant M = (1 + ‖φ(0)‖) exp(
∫

I a(τ) dτ) such that

(4.2) ‖xn‖∞ ≤M, ‖x′n(t)‖ ≤Ma(t) a.e. , n ∈ Z+ .

In particular, the functions xn are equibounded and equicontinuous on I. Since,

for every t ∈ I, the points xn(t) lie in the same compact set K(t), thanks to

Ascoli–Arzelà theorem it is right to suppose that the sequence (xn)n converges

uniformly on I to a continuous function u (indeed, this happens on a suitable

subsequence). Since all functions xn agree with φ on [−r, 0], we can obviously

say that xn→ u on [−r, T ], if we extend u in such a way that u ≡ φ on [−r, 0].

Furthermore, it is easy to see that u is absolutely continuous on I. Now we are

going to show that, for every t ∈ I, the functions λn(·, t) converge uniformly on

[−r, 0], as n→ +∞, to the function s 7→ u(t+ s). To this end, we put

ω(ρ) = sup
{

|xn(t)− xn(τ)|; n ∈ Z+, |t− τ | ≤ ρ
}

, ρ > 0 ,

δn = ‖xn − u‖∞, rn = 2ω(T/n) + δn , n ∈ Z+ .

We already know that δn→ 0 as n → +∞. Furthermore, since the functions xn
are equicontinuous, we argue that ω(ρ) → 0 as ρ → 0, so that rn→ 0 too, as

n → +∞. Let n ∈ Z+, t ∈ I be fixed, and let i ∈ {1, ..., n} be such that t ∈ J i
n:

then λn(s, t) = ψi
n(s, xn(t)). If n is large enough, we may suppose that T/n < r

and consider two cases, according to whether it is −r≤s≤−T/n or −T/n≤s≤0.

Now, in the first case, let us combine the equality λn(s, t) = xn(s+ tin) with the

following relations

(4.3)
∥

∥

∥xn(s+ tin)− xn(t+ s)
∥

∥

∥ ≤ ω(T/n) ,
∥

∥

∥xn(t+ s)− u(t+ s)
∥

∥

∥ ≤ δn .
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Then we get ‖λn(s, t)− u(t+s)‖ ≤ ω(T/n) + δn ≤ rn. In the second case, since

ψi
n(s, x) is linear with respect to s, we can exploit the inequality ‖ψi

n(s, x)−x‖ ≤

‖xn(t
i−1
n )− x‖, with x = xn(t), so as to get

(4.4) ‖λn(s, t)− xn(t
i−1
n )‖ ≤ ‖xn(t)− xn(t

i−1
n )‖ ≤ ω(T/n) .

Now, if we combine (4.4) with the inequality ‖xn(t
i−1
n )−xn(t+s)‖ ≤ ω(T/n) and

with the second inequality in (4.3), we get ‖λn(s, t)−u(t+s)‖ ≤ 2ω(T/n)+δn ≤

rn. Since rn→ 0 as n → +∞, we get indeed that λn(·, t) converge uniformly on

[−r, 0] to the function s 7→ u(t + s) (that is ut), as claimed. In particular, for

every t ∈ I, the setW (t) made up by the functions λn(·, t) is relatively compact in

Cr. Then, thanks to condition (c′) and general properties of u.s.c. multifunctions

[1, Prop. 3, p. 42], the set H(t) = F (t, clW (t)) is weakly compact in E. On the

other hand, x′n(t) ∈ H(t) almost everywhere, so that from (4.2) and Thm. 5.4 of

[3] we get that the sequence (x′n)n is relatively weakly compact in L1(I;E): then

we can suppose that it converges to an integrable function v (up to a subsequence,

as usual). It is easy to see that actually v = u′: then we can apply Theorem VI.4

of [7], and argue that u′(t) ∈ F (t, ut) almost everywhere in [0, T ]. Finally, since

the sets K(t) are closed, and it is xn(t) ∈ K(t) for every n ∈ Z+, t ∈ I, we get

obviously u(t) ∈ K(t) for every t ∈ I.
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