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EXISTENCE FOR ELLIPTIC EQUATIONS IN L1

HAVING LOWER ORDER TERMS
WITH NATURAL GROWTH

A. Porretta

Abstract: We deal with the following type of nonlinear elliptic equations in a
bounded subset Ω ⊂ RN :

(P)

{

−div
(

a(x, u,∇u)
)

+ g(x, u,∇u) = χ in Ω,

u = 0 on ∂Ω ,

where both a(x, s, ξ) and g(x, s, ξ) are Carathéodory functions such that a(x, s, ·) is co-
ercive, monotone and has a linear growth, while g(x, s, ξ) has a quadratic growth with

respect to ξ and satisfies a sign condition on s, that is g(x, s, ξ) s ≥ 0 for every s in R.

The datum χ is assumed in L1(Ω)+H−1(Ω). We prove the existence of a weak solution

u of (P) which belongs to the Sobolev space W 1,q
0 (Ω) for every q < N

N−1
, by adapting to

the framework of L1 data a technique used in [6], which simply relies on Fatou lemma

combined with the sign assumption on g.

1 – Introduction and statement of the result

An extensive literature has dealt with the Dirichlet problem in a bounded

subset Ω ⊂ RN , N ≥ 2,

(1.1)

{

A(u) + g(x, u,∇u) = χ in Ω,

u = 0 on ∂Ω ,

where A is a pseudomonotone operator in H1
0 (Ω) of the type introduced by

J. Leray and J.L. Lions (see [9]) and g(x, s, ξ) is a Carathéodory function having

at most quadratic growth with respect to the gradient:

(g1) |g(x, s, ξ)| ≤ b(|s|)
(

h(x) + |ξ|2
)

, ∀ s ∈ R, ∀ ξ ∈ RN , a.e. x∈Ω ,

with h(x) in L1(Ω) and b : R+→ R+ is a nondecreasing continuous function.
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Starting with the paper [5], where χ is taken in L∞(Ω), existence results for

problem (1.1) have been proved under a sign assumption on g:

(g2) g(x, s, ξ) s ≥ 0 , ∀ s ∈ R, ∀ ξ ∈ RN , a.e. x ∈ Ω ,

and in [6] it is found a solution of (1.1) if χ only belongs to H−1(Ω).
Here we consider the case in which

χ ∈ L1(Ω)+H−1(Ω) .

In this setting a solution can not in general be expected to belong to H1
0 (Ω),

and this is the main difficulty when trying to extend the previous results. Nev-

ertheless, a solution of (1.1) belonging to H1
0 (Ω) has been obtained in [3] and in

[4] if it is assumed in addition that g(x, s, ξ) sign(s) ≥ γ|ξ|2 for every |s| ≥ L,

where L, γ > 0 (hence, for example all functions going to zero at infinity are

not included). A more general result has been finally proved in [10] under the

only assumptions (g1) and (g2); by approximating (1.1) with more regular prob-

lems a distributional solution is obtained in the Sobolev space W 1,q
0 (Ω) for every

q < N
N−1 . This latter result, which applies to the extended framework in which

χ is a positive Radon measure, however essentially relies on the proof that the

truncations of the approximating solutions are compact in the strong topology of

H1
0 (Ω), which is a fundamental result in its own but rather technical in its proof,

indeed in the paper quoted above an assumption of positiveness on the datum is

made for simplicity.

The aim of this note is to provide a simpler proof of the existence of a solution

of (1.1) when χ belongs to L1(Ω) +H−1(Ω), by applying the same method used

in [6] for variational data, and recently adapted in [11] for unilateral problems

in L1, which only relies on a tricky use of Fatou lemma combined with the sign

condition (g2). In this sense we point out that the existence of a solution of (1.1)

with L1 data can be obtained without proving the strong convergence in H1
0 (Ω)

of the truncations of the approximating solutions and this technique also allows

to handle more easily the case of changing sign data and solutions.

We assume that Ω is a bounded open subset of RN , N ≥ 2, and we set

A(u) ≡ −div
(

a(x, u,∇u)
)

,

where a(x, s, ξ) is a Carathéodory function such that, for all s in R, all ξ, η in

RN and almost every x in Ω, it satisfies:

a(x, s, ξ) · ξ ≥ α |ξ|2 , α > 0 ,(a1)

|a(x, s, ξ)| ≤ β
(

d(x) + |s|+ |ξ|
)

, β > 0 ,(a2)
[

a(x, s, ξ)− a(x, s, η)
]

· [ξ − η] > 0 , ∀ ξ 6= η ,(a3)

with d(x) ∈ L2(Ω). We will prove the following theorem.
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Theorem 1.1. Let assumptions (a1)–(a3) hold true and let g(x, s, ξ) satisfy

(g1)–(g2). Then for every χ in L1(Ω)+H−1(Ω) there exists a function u inW 1,q
0 (Ω)

for every q < N
N−1 which is a solution of (1.1) in the sense of distributions.

We finally remark that the problem of existence of a solution of (1.1) with

g having a quadratic or a subquadratic growth with respect to ξ has also been

investigated in [7], [8].

2 – Proof of the result

Before giving the proof of our result, let us recall the definition of truncation,

that is, for every k > 0, Tk(s) = min{k,max{u,−k}}; moreover we want to point

out that the technique we adopt, based on the use of Fatou lemma, was first

introduced in [1], then used in [6] and in [11].

Proof of Theorem 1.1: First of all we write χ = f−div(F ), with f in L1(Ω)

and F in L2(Ω)N , and we take two sequences {fn} ⊂ L∞(Ω) and {Fn} ⊂ L∞(Ω)N

such that

(2.1)
fn → f strongly in L1(Ω) ,

Fn → F strongly in L2(Ω)N .

In [6] it is proved that there exists un in H1
0 (Ω) ∩ L∞(Ω) solution of

(2.2)

{

−div
(

a(x, un,∇un)
)

+ g(x, un,∇un) = fn − div(Fn) in Ω ,

un = 0 on ∂Ω .

If we take Tk(un) as test function in (2.2) we obtain, applying Young’s inequality,
∫

Ω

a(x, un,∇un)∇Tk(un) dx +

∫

Ω

g(x, un,∇un)Tk(un) dx ≤

≤
∫

Ω

fn Tk(un) dx+
α

2

∫

Ω

|∇Tk(un)|2 dx+ c0

∫

Ω

|Fn|2 dx ,

where c0 (like all the following ci’s) denotes a positive constant not depending on

n and k. Using assumption (a1) and the sign condition on g, we get:

(2.3)
α

2

∫

Ω

|∇Tk(un)|2 dx + k

∫

{|un|≥k}

|g(x, un,∇un)| dx ≤

≤
∫

Ω

fn Tk(un) dx + c0

∫

Ω

|Fn|2 dx .
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First of all (2.3) implies that for every fixed k > 0 the sequence {Tk(un)} is

bounded in H1
0 (Ω) (though not uniformly in k), and for k = 1 we have

∫

{|un|≥1}

|g(x, un,∇un)| dx ≤ c1 ,

which yields
∫

Ω

|g(x, un,∇un)| dx ≤ b(1)

∫

Ω

(

h(x) + |∇T1(un)|2
)

dx +

∫

{|un|≥1}

|g(x, un,∇un)| dx

≤ c2 .

Since g(x, un,∇un) is bounded in L1(Ω), we can apply all the compactness results

for equations with L1(Ω)+H−1(Ω) data (see [12], [2], [4] and the references cited

therein), that is there exist a function u in W
1,q
0 (Ω) for every q < N

N−1 and a

subsequence of un, not relabeled, such that

un → u strongly in W
1,q
0 (Ω) for every q < N

N−1 ,

∇un → ∇u a.e. in Ω ,

Tk(un)→ Tk(u) weakly in H1
0 (Ω) for every k > 0 .

As a consequence of Fatou lemma, we also have that g(x, u,∇u) is in L1(Ω);

moreover from (2.3) we get, for every M > 0,

α

2

∫

Ω

|∇Tk(un)|2 dx ≤ k

∫

{|un|>M}

|fn| dx + M

∫

{|un|≤M}

|fn| dx + c0

∫

Ω

|Fn|2 dx ,

hence we deduce:

α

2

∫

Ω

|∇Tk(un)|2
k

dx ≤
∫

{|un|>M}

|fn| dx + c3
M+ 1

k
.

If we let first k tend to infinity, then M go to infinity, we conclude, thanks to the

equi–integrability of the fn’s,

(2.4) lim
k→+∞

∫

Ω

|∇Tk(un)|2
k

dx = 0 uniformly on n .

This is the basic estimate we will use afterwards: now we define

B(s) ≡
s
∫

0

b(|t|) dt , ∀ s ∈ R ,
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and we take a function H ∈ C1(R) such that

H(s) ≡ 0 if |s| ≥ 1 ,

H(s) ≡ 1 if |s| ≤ 1

2
,

0 ≤ H(s) ≤ 1, ∀ s ∈ R .

Next we take, as in [6], v = ψ e−
B(u−n )

α H(un
k
) as test function in (2.2) with ψ in

H1
0 (Ω) ∩ L∞(Ω), ψ ≥ 0. It is essential to note that, by the properties of H, v is

identically zero on the subset {x ∈ Ω : |un| ≥ k}; then we have:

∫

Ω

a(x, un,∇un)∇ψ e−
B(u−n )

α H

(

un

k

)

dx +

+
1

α

∫

{un≤0}

a(x, un,∇un)∇Tk(un) b(u−n ) e−
B(u−n )

α ψH

(

un

k

)

dx +

+

∫

Ω

g(x, un,∇un) e−
B(u−n )

α ψH

(

un

k

)

dx =

=

∫

Ω

fn e
−B(u−n )

α ψH

(

un

k

)

dx −

− 1

k

∫

Ω

a(x, un,∇un)∇Tk(un)H ′
(

un

k

)

e−
B(u−n )

α ψ dx +

+

∫

Ω

Fn∇
[

e−
B(u−n )

α ψH

(

un

k

)]

dx .

Using assumption (a2) we obtain:

∫

Ω

a(x, un,∇un)∇ψ e−
B(u−n )

α H

(

un

k

)

dx +

+
1

α

∫

{un≤0}

a(x, un,∇un)∇Tk(un) b(u−n ) e−
B(u−n )

α ψH

(

un

k

)

dx +

(2.5)

+

∫

Ω

g(x, un,∇un) e−
B(u−n )

α ψH

(

un

k

)

dx =

=

∫

Ω

fn e
−B(u−n )

α ψH

(

un

k

)

dx +

+

∫

Ω

Fn∇
[

e−
B(u−n )

α ψH

(

un

k

)]

dx +

+ c4 ‖ψ‖L∞(Ω)
1

k

∫

Ω

[

d(x)2 + |Tk(un)|2 + |∇Tk(un)|2
]

dx .
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Setting

δk ≡ sup
n

(

1

k

∫

Ω

[

d(x)2 + |Tk(un)|2 + |∇Tk(un)|2
]

)

dx ,

we have by (2.4) that δk goes to zero as k tends to infinity: then from (2.5) we

get

∫

Ω

a(x, un,∇un)∇ψ e−
B(u−n )

α H

(

un

k

)

dx −

− 1

α

∫

Ω

a(x, un,∇un)∇Tk(u−n ) b(u−n ) e−
B(u−n )

α ψH

(

un

k

)

dx +

(2.6)

+

∫

Ω

g(x, un,∇un) e−
B(u−n )

α ψH

(

un

k

)

dx =

=

∫

Ω

fn e
−B(u−n )

α ψH

(

un

k

)

dx +

+

∫

Ω

Fn∇
[

e−
B(u−n )

α ψH

(

un

k

)]

dx + c4 ‖ψ‖L∞(Ω) δk .

In order to pass to the limit as n tends to infinity, first of all we observe that by

definition of H(s) we have

∫

Ω

a(x, un,∇un)∇ψ e−
B(u−n )

α H

(

un

k

)

dx =

=

∫

Ω

a(x, Tk(un),∇Tk(un))∇ψ e−
B(u−n )

α H

(

un

k

)

dx .

Since∇Tk(un) almost everywhere converges to∇Tk(u) then a(x, Tk(un),∇Tk(un))
weakly converges to a(x, Tk(u),∇Tk(u)) in L2(Ω)N , while ∇ψ e−

B(u−n )

α H(un
k
)

strongly converges in L2(Ω)N , hence we deduce that

(2.7)

lim
n→+∞

∫

Ω

a(x, un,∇un)∇ψ e−
B(u−n )

α H

(

un

k

)

dx =

=

∫

Ω

a(x, u,∇u)∇ψ e−
B(u−)
α H

(

u

k

)

dx .

Moreover using that Tk(un) converges to Tk(u) almost everywhere in Ω and

weakly in H1
0 (Ω), which implies that ∇[e−

B(u−n )

α ψH(un
k
)] weakly converges to
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∇[e−
B(u−)
α ψH(u

k
)] in L2(Ω)N , we obtain, by (2.1),

(2.8)

lim
n→+∞

∫

Ω

fn e
−B(u−n )

α ψH

(

un

k

)

dx +

∫

Ω

Fn∇
[

e−
B(u−n )

α ψH

(

un

k

)]

dx =

=

∫

Ω

f e−
B(u−)
α ψH

(

u

k

)

dx +

∫

Ω

F ∇
[

e−
B(u−)
α ψH

(

u

k

)]

dx .

It remains to deal with the second and third integrals in (2.6); but note that the

sequence {e−
B(u−n )

α ψH(un
k
) [− 1

α
a(x, un,∇un)∇Tk(u−n ) b(u−n ) + g(x, un,∇un)]}

converges almost everywhere in Ω and thanks to (g1), (g2) and (a1) it satisfies

e−
B(u−n )

α ψH

(

un

k

)[

− 1

α
a(x, un,∇un)∇Tk(u−n ) b(u−n ) + g(x, un,∇un)

]

≥

≥ e−
B(u−n )

α ψH

(

un

k

)[

g(x, un,∇un)χ{un≥0}

+
(

|∇Tk(un)|2 b(|un|)− |g(x, un,∇un)|
)

χ{un≤0}

]

≥ −Ck h(x) ∈ L1(Ω) ,

where Ck is a positive constant depending on k. Therefore we can apply Fatou

lemma and conclude that

(2.9)

lim inf
n→+∞

∫

Ω

e−
B(u−n )

α ψH

(

un

k

)[

− 1

α
a(x, un,∇un)∇Tk(u−n ) b(u−n )+g(x, un,∇un)

]

dx ≥

≥
∫

Ω

e−
B(u−)
α ψH

(

u

k

)[

− 1

α
a(x, u,∇u)∇Tk(u−) b(u−) + g(x, u,∇u)

]

dx .

By means of (2.7), (2.8) and (2.9) we obtain passing to the limit on n in (2.6):

(2.10)

∫

Ω

a(x, u,∇u)∇ψ e−
B(u−)
α H

(

u

k

)

dx −

− 1

α

∫

Ω

a(x, u,∇u)∇Tk(u−) b(u−) e−
B(u−)
α ψH

(

u

k

)

dx +

+

∫

Ω

g(x, u,∇u) e−
B(u−)
α ψH

(

u

k

)

dx ≤

≤
∫

Ω

f e−
B(u−)
α ψH

(

u

k

)

dx +

∫

Ω

F ∇
[

e−
B(u−)
α ψH

(

u

k

)]

dx + c4 ‖ψ‖L∞(Ω) δk .
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Let us now define p(k) such that B(p(k)) = α log 1√
δk
; this is possible since

B′(s) = b(|s|), hence B is one–to–one, and from the fact that δk goes to zero as

k tends to infinity it follows that

(2.11) lim
k→+∞

p(k) = +∞ .

We choose, again following [6], ψ = e
B(u−)
α H( u

p(k))ϕ
+ in (2.10), with ϕ in C∞c (Ω);

since H( u
p(k)) ≡ 0 if |s| ≥ p(k), we have in fact that ψ belongs to H1

0 (Ω)∩L∞(Ω),

it is positive and

‖ψ‖L∞(Ω) ≤ ‖ϕ‖L∞(Ω) e
B(p(k))

α ≤ ‖ϕ‖L∞(Ω)
1√
δk

.

Then we have from (2.10):

(2.12)

∫

Ω

a(x, u,∇u)∇ϕ+H
(

u

k

)

H

(

u

p(k)

)

dx +

∫

Ω

g(x, u,∇u)ϕ+H
(

u

k

)

H

(

u

p(k)

)

dx ≤

≤
∫

Ω

f ϕ+H

(

u

k

)

H

(

u

p(k)

)

dx +

∫

Ω

F ∇
[

ϕ+H

(

u

p(k)

)

H

(

u

k

)]

dx +

+ c4 ‖ϕ‖L∞(Ω)
√

δk −
1

p(k)

∫

Ω

a(x, u,∇u)∇Tp(k)(u)H ′
(

u

p(k)

)

H

(

u

k

)

ϕ+ dx .

Last term in (2.12) can be dealt with using (a2), so that

− 1

p(k)

∫

Ω

a(x, u,∇u)∇Tp(k)(u)H ′
(

u

p(k)

)

H

(

u

k

)

ϕ+ dx ≤

≤ c5 ‖ϕ‖L∞(Ω)
1

p(k)

∫

Ω

[

d(x)2 + |Tp(k)(u)|2 + |∇Tp(k)(u)|2
]

dx ,

and since

∫

Ω

[

d(x2) + |Tp(k)(u)|2 + |∇Tp(k)(u)|2
]

dx ≤

≤ lim inf
n→+∞

∫

Ω

[

d(x)2 + |Tp(k)(un)|2 + |∇Tp(k)(un)|2
]

dx ,

recalling the definition of δk, we get from (2.12):
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(2.13)

∫

Ω

a(x, u,∇u)∇ϕ+H
(

u

k

)

H

(

u

p(k)

)

dx +

∫

Ω

g(x, u,∇u)ϕ+H
(

u

k

)

H

(

u

p(k)

)

dx ≤

≤
∫

Ω

f ϕ+H

(

u

k

)

H

(

u

p(k)

)

dx +

∫

Ω

F ∇
[

ϕ+H

(

u

p(k)

)

H

(

u

k

)]

dx

+ c4 ‖ϕ‖L∞(Ω)
√

δk + c5 ‖ϕ‖L∞(Ω) δp(k) .

Now we pass to the limit as k tends to infinity; we have

∫

Ω

F ∇
[

ϕ+H

(

u

p(k)

)

H

(

u

k

)]

dx =

=

∫

Ω

F ∇ϕ+H
(

u

k

)

H

(

u

p(k)

)

dx +
1

k

∫

Ω

F ∇Tk(u)H ′
(

u

k

)

H

(

u

p(k)

)

ϕ+ dx

+
1

p(k)

∫

Ω

F ∇Tp(k)(u)H ′
(

u

p(k)

)

H

(

u

k

)

ϕ+ dx ,

and since assumption (a2) implies

∣

∣

∣

∣

∣

∣

1

k

∫

Ω

F ∇Tk(u)H ′
(

u

k

)

H

(

u

p(k)

)

ϕ+ dx +

+
1

p(k)

∫

Ω

F ∇Tp(k)(u)H ′
(

u

p(k)

)

H

(

u

k

)

ϕ+ dx

∣

∣

∣

∣

∣

∣

≤

≤ c6





1

k

∫

Ω

(

|F |2 + |∇Tk(u)|2
)

dx +
1

p(k)

∫

Ω

(

|F |2 + |∇Tp(k)(u)|2
)

dx



 ,

we get, in virtue of (2.11), (2.4) and the fact that H(u
k
)H( u

p(k)) converges to 1

almost everywhere in Ω,

lim
k→+∞

∫

Ω

F ∇
[

ϕ+H

(

u

p(k)

)

H

(

u

k

)]

dx =

∫

Ω

F ∇ϕ+ dx .

As far as the other terms in (2.13) are concerned, it is enough to use the Lebesgue

theorem, so that we finally obtain, recalling that δk and δp(k) go to zero,

(2.14)

∫

Ω

a(x, u,∇u)∇ϕ+ dx +

∫

Ω

g(x, u,∇u)ϕ+ dx ≤
∫

Ω

f ϕ+ dx +

∫

Ω

F ∇ϕ+ dx ,

for every ϕ in C∞c (Ω).
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To obtain the second half of the desired inequality, we will take

v = ψ e−
B(u+

n )

α H(un
k
) as test function in (2.2) with ψ in H1

0 (Ω) ∩ L∞(Ω), ψ ≤ 0;

as before, we will subsequently choose ψ = −ϕ− e
B(u+)
α H( u

p(k)), with p(k) defined

above. The same arguments used before then allow to conclude that

(2.15)

−
∫

Ω

a(x, u,∇u)∇ϕ− dx −
∫

Ω

g(x, u,∇u)ϕ− dx ≤

≤ −
∫

Ω

f ϕ− dx −
∫

Ω

F ∇ϕ− dx ,

for every ϕ in C∞c (Ω), and adding (2.14) and (2.15) we get

∫

Ω

a(x, u,∇u)∇ϕdx+
∫

Ω

g(x, u,∇u)ϕdx ≤
∫

Ω

f ϕ dx+

∫

Ω

F ∇ϕdx , ∀ϕ∈C∞c (Ω) ,

hence taking −ϕ it is proved that u is a distributional solution of (1.1).

Remark 2.1. The same method provides a proof of the existence of a

solution of

(1.1)

{

A(u) + g(x, u,∇u) = χ in Ω ,

u = 0 on ∂Ω ,

if A is an operator in the Sobolev space W 1,p
0 (Ω) and g(x, s, ·) has a growth of

order p; to be more precise, let p > 1, and let g satisfy

|g(x, s, ξ)| ≤ b(|s|)
(

h(x) + |ξ|p
)

, ∀ s ∈ R, ∀ ξ ∈ RN , a.e. x ∈ Ω ,(2.16)

g(x, s, ξ) s ≥ 0 , ∀ s ∈ R, ∀ ξ ∈ RN , a.e. x ∈ Ω ,(2.17)

with h(x) in L1(Ω), and set A(u) ≡−div(a(x, u,∇u)), where a is a Carathéodory

function such that

a(x, s, ξ) · ξ ≥ α |ξ|p , α > 0 ,(2.18)

|a(x, s, ξ)| ≤ β
(

d(x) + |s|p−1 + |ξ|p−1
)

, β > 0 ,(2.19)
[

a(x, s, ξ)− a(x, s, η)
]

· [ξ − η] > 0 , ∀ ξ 6= η ,(2.20)

for all s in R, all ξ, η in RN and almost every x in Ω, with d(x) ∈ Lp′(Ω)

(1
p
+ 1

p′
= 1). Then in the same way as above if χ is in L1(Ω) +W−1,p′(Ω) we

obtain a distributional solution u of (1.1). This solution belongs to W 1,q
0 (Ω) for
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every q < N(p−1)
N−1 if p > 2− 1

N
; since if p ≤ 2− 1

N
we have N(p−1)

N−1 ≤ 1, in this case

we should say that |∇u| is in the Marcinkiewicz space M
N(p−1)
N−1 (Ω), nevertheless

it is always true that a(x, u,∇u) belongs to Lq(Ω)N for every q < N
N−1 , hence the

weak formulation makes sense and u is a solution in the sense of distributions.

Remark 2.2. It should be noted that the proof of Theorem 1.1 essentially

relies on the estimate (2.4) for the approximating solutions:

lim
k→+∞

∫

Ω

|∇Tk(un)|2
k

dx = 0 uniformly on n ,

which is not true if the sequence fn only weakly converges to a Radon measure µ.

In this sense this method, differently from the one used in [10] and based on the

strong convergence in H1
0 (Ω) of the truncations of the approximating solutions,

better points out the difference between a datum in L1(Ω) + H−1(Ω) or in the

space of bounded Radon measures.
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[2] Boccardo, L. and Gallouët, T. – Nonlinear elliptic equations with right hand
side measures, Comm. Partial Differential Equations, 17(3&4) (1992), 641–655.
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