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EXISTENCE THEOREM OF PERIODIC POSITIVE SOLUTIONS
FOR THE RAYLEIGH EQUATION OF RETARDED TYPE

Genqiang Wang and Jurang Yan

Abstract: In this paper, by using the coincidence degree theory, we give four
sufficient conditions on the existence of periodic positive solutions of the following non-
autonomous Rayleigh equation of retarded type

x′′ + f(t, x′(t−σ)) + g(t, x(t−τ)) = p(t) .

1 – Introduction

In the papers [1–5] the authors studied the existence of periodic solutions of

the Rayleigh equation

x′′(t) + f(x′) + g(x) = p(t) .(1)

So, for the existence of periodic positive solutions of (1), we can not see any results

for it. Since theory of the existence of periodic positive solutions of the differential

equation with retarded argument will play an important role in mathematical

ecology, in this paper, we discuss the existence of periodic positive solutions of

the non-autonomous Rayleigh equation of retarded type

x′′(t) + f(t, x′(t−σ)) + g(t, x(t−τ)) = p(t) ,(2)

where σ, τ ≥ 0 are constants, f and g ∈ C(R2, R), f(t, x) and g(t, x) are functions

with period 2π for t, p ∈ C(R,R), p(t) = p(t+2π) for t ∈ R and
∫ 2π
0 p(t) = 0.

Using coincidence degree theory developed by Mawhin [6], we find four sufficient

conditions for the existence of periodic positive solutions of (2).
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2 – Main results

The following results provide sufficient conditions for the existence of periodic

positive solutions of (2).

Theorem 1. Suppose that there exist constants H > 0, M > 0, α > 0, β > 0

and γ > 0, such that

(i) |f(t, x)| ≤ H and |g(t, x)| ≤ α|x|γ + β, for (t, x) ∈ R2;

(ii) g(t, x) > H, for t ∈ R and x ≥M ;

(iii) f(t, 0) = 0 and g(t, 0) < 0, for t ∈ R.

Then there exists a periodic positive solution with period 2π of (2).

Theorem 2. Suppose that there exist constants H > 0, M > 0, α > 0, β > 0

and γ > 0, such that

(i) |f(t, x)| ≤ H and |g(t, x)| ≤ α|x|γ + β, for (t, x) ∈ R2;

(ii) g(t, x) < −H, for t ∈ R and x ≥M ;

(iii) f(t, 0) = 0 and g(t, 0) > 0, for t ∈ R.

Then there exists a periodic positive solution with period 2π of (2).

Theorem 3. Suppose that there exist constants M > 0, α > 0, β > 0 and

γ > 0, such that

(i) f(t, x) ≥ 0 and |g(t, x)| ≤ α|x|γ + β, for (t, x) ∈ R2;

(ii) g(t, x) > 0, for t ∈ R and x ≥M ;

(iii) f(t, 0) = 0 and g(t, 0) < 0, for t ∈ R.

Then there exists a periodic positive solution with period 2π of (2).

Theorem 4. Suppose that there exist constants M > 0, α > 0, β > 0 and

γ > 0, such that

(i) f(t, x) ≥ 0 and |g(t, x)| ≤ α|x|γ + β, for (t, x) ∈ R2;

(ii) g(t, x) < 0, for t ∈ R and x ≥M ;

(iii) f(t, 0) = 0 and g(t, 0) > 0, for t ∈ R.

Then there exists a periodic positive solution with period 2π of (2).
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To prove above results we need preliminaries. Set

X :=
{

x ∈ C1(R,R) | x(t+ 2π) = x(t)
}

and define the norm on X as ‖x‖1 = max
t∈[0,2π]

{|x(t)|, |x′(t)|}. Similarly, set

Z :=
{

z ∈ C(R,R) | z(t+ 2π) = z(t)
}

and define the norm on Z as ‖z‖0 = max
t∈[0,2π]

|z(t)|. Then both (X, ‖ · ‖1) and

(Z, ‖ · ‖0) are Banach space. Define respectively the operators L and N as

L : X ∩ C2(R,R)→ Z , x(t) 7→ x′′(t) ,

and

N : X→ Z , x(t) 7→ −f(t, x′(t−σ))− g(t, x(t−τ)) + p(t) .

We know that KerL = R. Define respectively the projective operators P and Q

as

P : X → KerL , x 7→ Px =
1

2π

∫ 2π

0
x(t) dt ,

and

Q : Z → Z/ Im , z 7→ Qz =
1

2π

∫ 2π

0
z(t) dt .

Then we have ImP = KerQ = ImL. For some positive number D, set

Ω :=
{

x ∈ X | 0 < x(t) < D, |x′(t)| < D
}

.

The following two lemmas which will be used in the proofs of our main results

are extracted from [6].

Lemma 1. L is the Fredholm operator with index null.

Lemma 2. N is L-compact on Ω̄.

Proof of Theorem 1: Consider the equation

x′′(t) + λ f(t, x′(t−σ)) + λ g(t, x(t−τ)) = λ p(t)(3)

where λ ∈ (0, 1). Suppose that x(t) is a periodic positive solution with period 2π

of (3). By integrating (3) from 0 to 2π we find

∫ 2π

0

[

f(t, x′(t−σ)) + g(t, x(t−τ))
]

dt = 0 .(4)
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Using condition (i) we have

∫ 2π

0

∣

∣

∣f(t, x′(t−σ))
∣

∣

∣ dt ≤ 2πH .(5)

It follows from (i) and (4) that

∫ 2π

0

[

g(t, x(t−τ))−H
]

dt ≤

∫ 2π

0

[

g(t, x(t−τ))−
∣

∣

∣f(t, x′(t−σ))
∣

∣

∣

]

dt

≤

∫ 2π

0

[

g(t, x(t−τ)) + f(t, x′(t−σ))
]

dt = 0 .

(6)

By applying (i) we have

|g(t, x)| ≤M1 for t ∈ R, x ∈ (0,M) ,(7)

where M1 = αMγ + β. Set

G+(t) = max
{

g(t, x(t−τ))−H, 0
}

(8)

and

G−(t) = max
{

H − g(t, x(t−τ)), 0
}

.(9)

Both G+(t) and G−(t) are nonnegative continuous functions, and

g(t, x(t−τ))−H = G+(t)−G−(t) ,(10)

∣

∣

∣g(t, x(t−τ))−H
∣

∣

∣ = G+(t) +G−(t) .(11)

Note that x(t) is a periodic positive solution with period 2π of (3). By (ii), when

g(t, x(t−τ)) < H, we find that t ∈ R and 0 < x(t−τ) < M . Hence by (7), we

have |g(t, x(t−τ))| ≤M1 and for any t ∈ [0, 2π],

G−(t) = |G−(t)| ≤ H +M1 .(12)

From (6), (10) and (12) we see

∫ 2π

0
G+(t) dt ≤

∫ 2π

0
G−(t) dt ≤ 2π(H +M1) .(13)

Using (11) and (13) we have

∫ 2π

0

∣

∣

∣g(t, x(t−τ))−H
∣

∣

∣ dt ≤ 4π(H +M1) .(14)
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Thus
∫ 2π

0

∣

∣

∣g(t, x(t−τ))
∣

∣

∣ dt ≤ M2 ,(15)

where M2 = 6πH+4πM1. Since x(2π) = x(0), there exists t0 ∈ [0, 2π], such that

x′(t0) = 0. Then by (3), (5) and (15), we conclude for any t ∈ [0, 2π] that

|x′(t)| =

∣

∣

∣

∣

∫ t

t0

x′′(s) ds

∣

∣

∣

∣

≤

∫ 2π

0
|x′′(t)| dt

≤ λ

∫ 2π

0

∣

∣

∣f(t, x′(t−σ))
∣

∣

∣ dt + λ

∫ 2π

0

∣

∣

∣g(t, x(t−τ))
∣

∣

∣ dt + λ

∫ 2π

0
|p(t)| dt

≤ 2πH +M2 + 2πm ,

where m = max
t∈[0,2π]

|p(t)|. Taking M3 = 2πH + M2 + 2πm, for any t ∈ [0, 2π], we

have

|x′(t)| ≤ M3 .(16)

By (ii) and (6), there exists t1 ∈ [0, 2π] such that 0 < x(t1−τ) < M . Taking

t1− τ = 2nπ+ t2 (n is one integer), and t2 ∈ [0, 2π], we have 0 < x(t2) < M , and

for any t ∈ [0, 2π]

0 < x(t) = x(t2) +

∫ t

t2

x′(s) ds ≤ M +

∫ 2π

0
|x′(t)| dt ≤ M + 2πM3 .(17)

Taking M4=M+2πM3, by (16) and (17), for any t∈ [0, 2π], we have 0<x(t)≤M4

and |x′(t)| ≤M4. Let M5 > 0, M5 > M4 and

Ω1 :=
{

x ∈ X | 0 < x(t) < M5, |x
′(t)| < M5

}

.

By Lemma 1 and Lemma 2, we know that L is the Fredholm operator with index

null and N is L-compact on Ω̄1 (see [6]). In terms of valuation of bound of

periodic positive solution as above, we know that for any x ∈ ∂Ω1∩ domL and

λ ∈ (0, 1), Lx 6= λNx. Since for any x ∈ ∂Ω1 ∩ KerL, x = M5 (>M) or x = 0,

then in view of (ii), (iii) and
∫ 2π
0 p(t) = 0, we have

QNx =
1

2π

∫ 2π

0

[

−f(t, x′(t−σ))− g(t, x(t−τ)) + p(t)
]

dt

=
1

2π

∫ 2π

0

[

−f(t, 0)− g(t, x(t−τ)) + p(t)
]

dt

=
1

2π

∫ 2π

0

[

−g(t, x(t−τ))
]

dt = −
1

2π

∫ 2π

0
g(t, x) dt 6= 0 .
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Set δ = M5/2 and define the transformation F as

F (x, µ) = µ(x−δ) + (1−µ)
1

2π

∫ 2π

0
g(t, x) dt, for µ ∈ [0, 1] .

Then we have

F (0, µ) = −µ δ + (1−µ)
1

2π

∫ 2π

0
g(t, 0) dt < 0, for µ ∈ [0, 1]

and

F (M5, µ) = M5 µ/2 + (1−µ)
1

2π

∫ 2π

0
g(t,M5) dt > 0, for µ ∈ [0, 1] .

Hence for any x ∈ ∂Ω1 ∩ KerL and µ ∈ [0, 1], F (x, µ) 6= 0. Thus F (x, µ) is a

homotopic transformation and

deg
{

QNx, Ω1∩KerL, 0
}

= deg

{

−
1

2π

∫ 2π

0
g(t, x) dt, Ω1∩KerL, 0

}

= deg
{

−x+δ, Ω1∩KerL, 0
}

6= 0 .

In view of Mawhin continuation theorem in [6], there exists a periodic positive

solution with period 2π of (2). This completes the proof.

By the same way, we can prove Theorem 2.

Proof of Theorem 3: Suppose that x(t) is a periodic positive solution with

period 2π of (3), then (4) holds. By (i) and (4) we have

∫ 2π

0
g(t, x(t−τ)) dt ≤ 0 .(18)

Taking M6 = αMγ + β, by (i) for t ∈ R and 0<x<M we find

|g(t, x)| ≤ M6 .(19)

Define the functions as

Ḡ+(t) = max
{

g(t, x(t−τ)), 0
}

and Ḡ−(t) = max
{

−g(t, x(t−τ)), 0
}

.

Both Ḡ+(t) and Ḡ−(t) are nonnegative continuously functions and

g(t, x(t−τ)) = Ḡ+(t)− Ḡ−(t) ;(20)
∣

∣

∣g(t, x(t−τ))
∣

∣

∣ = Ḡ+(t) + Ḡ−(t) .(21)
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By (ii), when g(t, x(t−τ)) ≤ 0, we have t ∈ R and 0 < x(t−τ) < M ; and then by

(19), |g(t, x(t−τ))| ≤M6. Hence for any t ∈ [0, 2π],

Ḡ−(t) = |Ḡ−(t)| ≤ M6 .(22)

Using (18), (20) and (22) it follows that

∫ 2π

0
Ḡ+(t) dt ≤

∫ 2π

0
Ḡ−(t) dt ≤ 2πM6 .(23)

By (21) and (23) we have

∫ 2π

0

∣

∣

∣g(t, x(t−τ))
∣

∣

∣ dt ≤ M7 ,(24)

where M7 = 4πM6. Then from (i), (4) and (24) we find that

∫ 2π

0

∣

∣

∣f(t, x′(t−σ))
∣

∣

∣ dt =

∫ 2π

0
f(t, x′(t−σ)) dt

= −

∫ 2π

0
g(t, x(t−τ)) dt ≤

∫ 2π

0

∣

∣

∣g(t, x(t−σ))
∣

∣

∣ dt ≤ M7 .

It follows that
∫ 2π

0

∣

∣

∣f(t, x′(t−σ))
∣

∣

∣ dt ≤ M7 .(25)

Since x(2π) = x(0), there exists t3 ∈ [0, 2π] such that x′(t3) = 0. Hence by (3),

(24) and (25) for any t ∈ [0, 2π] we have

|x′(t)| =

∣

∣

∣

∣

∫ t

t3

x′′(s) ds

∣

∣

∣

∣

≤

∫ 2π

0
|x′′(t)| dt

≤ λ

∫ 2π

0

∣

∣

∣f(t, x′(t−σ))
∣

∣

∣ dt + λ

∫ 2π

0

∣

∣

∣g(t, x(t−τ))
∣

∣

∣ dt + λ

∫ 2π

0
|p(t)| dt

≤ 2M7 + 2πm ,

where m = max
t∈[0,2π]

|p(t)|. Taking M8 = 2M7 + 2πm, for any t ∈ [0, 2π] we see

|x′(t)| ≤ M8 .(26)

By (ii) and (18), there exists t4 ∈ [0, 2π] such that 0 < x(t4−τ) < M . Taking

t4 − τ = 2kπ + t5 (k is an integer), t5 ∈ [0, 2π], we have 0 < x(t5) < M and for

any t ∈ [0, 2π]

0 < x(t) = x(t5) +

∫ t

t5

x′(s) ds ≤ M +

∫ 2π

0
|x′(t)| dt ≤ M + 2πM8 .(27)
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Taking M9 = M + 2πM8 and using (26) and (27), for any t ∈ [0, 2π], we have

0 < x(t) ≤M9 and |x′(t)| ≤M9. Let M10 > 0, M10 > M9 and

Ω2 :=
{

x ∈ X | 0 < x(t) < M10, |x
′(t)| < M10

}

.

We can prove the remainder parts by the same way of Theorem 1. The proof is

complete.

By the same way, we can prove Theorem 4.

ACKNOWLEDGEMENT – The authors are grateful to the referee for his/her valuable

suggestions for the improvement of this paper.

REFERENCES

[1] Mawhin, J. – An extension of a theorem of A.C. Lazer on forced nonlinear oscilla-
tions, J. Math. Anal. Appl., 40 (1972), 20–29.

[2] Reissig, R. – Application of the Contracting Mapping Principle to a system of
Duffing Type, Atti. Accad. Naz. Lincei–Rend Sc. Fis. Mat. Nat., 59 (1976), 51–56.

[3] Lazer, A.C. – Application of a lemma on bilinear forms to a problem in nonlinear
oscillation, Proc. Amer. Math. Soc., 33 (1972), 89–94.

[4] Liu Feng – Existence of the periodic solutions for a class of two order of second
order nonlinear differential equations, Acta Mathematica Sinica, 33 (1990), 260–269
(Chinese).

[5] Liu Feng – On the existence of the periodic solutions of Rayleigh equation, Acta

Mathematica Sinica, 37 (1994), 639–633 (Chinese).
[6] Gaines, R.E. and Mawhin, J.L. – Lecture Notes in Math., 568, Springer–Verlag,

1977.

Genqiang Wang,

Department of Mathematics, Hanshan Teacher’s College,

Chaozhou, Guangdong 521041 – PEOPLE’S REPUBLIC OF CHINA

and

Jurang Yan,

Department of Mathematics, Shanxi University,

Taiyuan, Shanxi 030006 – PEOPLE’S REPUBLIC OF CHINA


