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INVARIANCE PRINCIPLES IN HOLDER SPACES

D. HAMADOUCHE

Abstract: We study the weak convergence of random elements in the space of Holder
functions H,[0,1]. Using this space instead of C[0,1] enables us to obtain functional
limit theorems of a wider scope. Some examples of Holder continous functionals of
the paths are proposed to illustrate this improvement. A new tightness condition is
established. We obtain an Holderian version of Donsker—Prohorov’s invariance principle
about the polygonal interpolation of the partial sums process, generalizing Lamperti’s
i.i.d. invariance principle to the case of strong mixing or associated random variables.

Similar results are proved for the convolution smoothing of partial sums process.

1 — Introduction

Let (Xj)j>1 be a sequence of independent identically distributed random
variables with EX; = 0 and IE'IXJ2 = 1. Write &, for the random polygonal
lines obtained by linear interpolation between the points (j/n, S;/v/n), where
Sj = e Xn-

The Donsker Prokhorov’s invariance principle establishes then the C[0, 1] weak
convergence of &, to the Brownian motion W. This gives the weak convergence

of continuous functionals on C0, 1] for example: ||£,]|c0 = sup |&, ()]
t€[0,1]

It is well known that the paths of W are (with probability one) of Holder
regularity « for any oo < 1/2 and those of &, are of Holder regularity 1. It is then
natural to study for a < 1/2, the weak convergence of &, as random elements
in the Banach space H,[0, 1] of a-Hélder functions. Such a convergence gives
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more applications to continuous functionals than in the C|0, 1] framework. The
invariance principle in H, [0, 1] has been established by Lamperti [19] and derived
again recently by Kerkyacharian and Roynette [18] using the Faber—Schauder
basis of triangular functions.

Theorem 1 (Lamperti [19]). Let (X;)j>1 be a sequence of i.i.d. random
variables with EX; = 0 and IEXJ2 = 02. Suppose that for some constant v > 2,
E|X;|Y<oo. For alln € N*, 0 < j < n, define

1

1) Gltw) = A

a\/ﬁ{ > Xiw) + (nt =) Xja(w)] %§t<7.
0<k<j

Then the sequence (&,)n>1 converges weakly to the Brownian motion W in HY,
foralla <1/2—1/v.n

The present contribution is devoted to some extensions of this result. First,
we recall in Section 2 the Ciesielski’s study of the Banach Hélder space H, |0, 1].
For separability convenience, we consider its closed subspace H2[0,1]. Using the
Ciesielski’s characterization of the dual of H?, we give an intrinsic representation
of an element of (H?)" by a pair of signed measures and a list of examples of
continuous functionals on H?. In Section 3, we consider stochastic processes with
paths in HO. We treat them as random elements of HY. Their weak convergence
is equivalent to the tightness on H? and the convergence of the finite dimensional
distributions. For the tightness, a basic tool available in the literature is the
condition of Lamperti [19] based on the moment inequality

E|&,(t) —&n(s)]) < Clt —s|'*°,  s,te]0,1].

We prove that it is sufficient to verify this inequality for |t — s| > a,, where a,
decreases to zero, together with convergence in probability to zero of the Holder
modulus of continuity we (&, an). We propose to extend the result of Lamperti
to dependent random variables, namely we consider the cases of a-mixing and
association. These results rely on a moment inequality for sums of dependent
random variables and some central limit theorems. These dependence tools are
recalled in Section 4. Our invariance principles under dependence are presented in
Section 5. Next, we consider convolution smoothing of the process of normalized
partial sums of Donsker—Prokhorov for independent random variables and we
prove the weak convergence in HY of this smoothed process to the Brownian
motion. This last result is extended to a-mixing or associated random variables.
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2 — The functional framework
2.1. The Banach spaces H,[0,1] and HY[0, 1]
2.1.1. Definitions

We use the notations and results of Ciesielski [6] about the spaces of Holder
functions on [0, 1]. We define the Holder space H, [0, 1] (0 < o < 1) as the space
of functions f vanishing at 0 such that

£l = sup HOTON o
O<lt—s|<1 |t — 8]

Define the Holderian modulus of continuity of f by

walf,0) = sup LW =T

O<lt—s|<s |t —s|*
and the subspace H?[0, 1] of H,[0,1] by

fen? <« feH, and %in(l)wa(f,é)zo.

(Ha, || - |lo) is & non-separable Banach space. (HY,| - ||o) is a separable closed
subspace. (Hq,| - |la) is separable for the norm || - |3, for any 0 < # < a and is
topologically embedded in Hg.

2.1.2. Analysis by triangular functions

To obtain an isomorphism of the spaces H,[0,1] and H2[0,1] with some Ba-
nach sequence spaces, Ciesielski used the Faber—Schauder basis, obtained by
translations and dyadic changes of scales from the triangular function

2t ifo<t<1/2,
Aty =¢2(1—-t) if1/2<t<1,
0 elsewhere .

Putting for n = 27 +k, >0, 0<k<27, t€[0,1]

Ap(t) =0ju(t) = At —k) and  Ag=t1py(t).
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The addition of the function A_; defined by A_i(t) = 1jpy)(t) to the scale
{A,, n € N} gives a Schauder basis of (C[0,1],| - ||oc) the space of continuous
functions equipped with the supremum norm. {A,, n € N} is a Schauder basis
of the closed subspace Cy[0, 1] of functions vanishing at 0. More precisely we have

Lemma 1 (Faber-Schauder). For any function f of Cy|0, 1],
(2) f(t) = Z )‘n(f) An(t) >
n=0
where \o(f) = f(1) and forn =27+ k (j>0, 0<k< 27)

® a0 = = (B2 -5 {0 (5) ()}

The series (2) converges in the sense of the norm of Cy[0,1] (i.e. uniformly on
[0,1]). u

We adopt the classical notation £° for the Banach space of bounded sequences
u = (Un)nen equipped with the norm ||u||oc = sup,>q |un| and ¢o for the closed
subspace of sequences vanishing at infinity. Since angf function f of H,[0,1] is in
Co[0, 1], it has also the decomposition (2) and the series converges at least in the
Co[0, 1] sense.

Theorem 2 (Ciesielski [6]). For any function f of H?, the series

5O = 3 MlF) An)
n=0

converges in HY. {A,, n > 1)} is a Schauder basis of (H2, || - ||o)- u

Theorem 3 (Ciesielski [6]). Forn =2/ +k (j > 0,0 < k < 27), write
Al = 2=G+DaA, and AW = Ay, The spaces (Ha, || - ||lo) and (£, | - [loo) are
isomorphic by the operators S, and T, = S;! defined as follows:

So: Hy, — £%°

fr—u= (Un)nzﬂ
with u, = 200N, (f), n > 1 and ug = \o(f).

T,: ¢*° — H®

u= (up)n>0 — f :Z Up Aﬁla) )

n=0
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Moreover ||S,|| =1 and

2 2
3(20—1) (21->—1) < [Tl < (20 —1) (21— —1)

Theorem 4 (Ciesielski [6]). HO[0,1] is isomorphic by S, to the subspace co,q
of sequences (un)n>o of £ such that lim; . 204D supgp _os|ujx| = 0, where
Ujj = Up forn=2+k.u

Finally we have

fFEHL0,1] <= sup2UtDe sup |Nx(f)] < oo, [No(f)] < oo
j=0 0<k<27

and

FEHY0,1] < feHu[0,1] and lim 20"D sup |\;4(f)|=0.
Jj—o0 0<k<2J

2.2. Functionals and operators on H?0, 1]

Some operators and functionals useful in statistics and important operators in
analysis are continuous on H?. Since weak convergence is preserved by continuous
mappings, the weak convergence in H, provides weak convergence results for
HY-continuous functionals of paths and for some image process. Moreover, since
H, is topologically embedded in C|0, 1], there are more continuous functionals on
H,[0, 1] than on C[0, 1]. In this section are presented some examples of continuous
functionals and operators on H,. We begin by the dual of H.

2.2.1. Dual of H[0,1]

Denote by (€%, - |l;x) the space of real sequences a = (ag, a1, ...) such that
lallp = 3,50 |an| < 0o. The dual of HY[0, 1] is given by the following results.

Theorem 5 (Ciesielski [6]). Any continuous linear functional ¢ on (H2, || ||«)
has the form

() o) =3 anun
n=0
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where ug = Ao(f), un = 20T\ (f), n=2"+k (j >0, 0 < k < 2/) and
a = (ap,a1,...) € £*. Moreover ||y < [[Sall - llaller, llalle < [1Tall - llello)
and the constants ||S,|| and || T,|| are optimal. u

This theorem allows us to propose a more intrinsic characterization of (H?)".

Theorem 6. ¢ is a continuous linear functional on HY if and only if there
exists a signed measure y on [0, 1] and a signed measure v on [0,1]? such that

2 (1) = f(t+u) — f(t—w)

[0,1]2 u®

(dt, du)

B)  elf) = }f(t)u(dt)Jr

0,1

where the second integrand vanishes at w = 0, which amounts to extend it by
continuity since f € H2[0,1].

Proof: Recall that a signed measure is a difference of two positive measures
each with finite mass. Clearly ¢ defined by (5) is a linear functional and

o (F) < Mlflloo 1l ([0,1]) + 21 flla Il ([0,1]2) -

Thus |o(f)] < ¢||flla where ¢ = |u| ([0,1]) + 2 |v| ([0,1]?) and ¢ is continuous.
Conversely, if ¢ is a continuous linear functional on HY[0,1], by theorem 5,
there exists a = (a,)n>0 € ¢! such that

o(f) = Z antun  where ug = Xo(f) and w,= 20N (f), n>1.
n>0

Writing i = ag 01 (0 is a Dirac measure) and

27 -1
1 k+1/2
v= Z Z 5 B2+k 0t;,® Og—j-1,  where ;) = 2],/ ,
§>0 k=0
we have
- = / k k
—~ 1 k+1/2 +1 e
= aOf(1)+Z Z 2a2j+k{2f< Y ) —f(y) —f(2j>}2(]+)
720 k=0
— / £ p(dt) +/ 2f(t) - f(t‘i‘;i) — ft—u) v(dt, du)
[0,1] [0,1]2 U

thus ¢ has the representation (5). m
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Remark. It is clear that the decomposition (5) is not unique. The dual (H?)’
is in fact isomorphic to a quotient of the Banach space M[0,1] & M][0,1]?. The
interest of the decomposition (5) is to clarify the structure of a linear continuous
functional on HY. Tts first component p charges the values of f, like a linear
continuous functional on C[0,1]. The second component v charges the second
differences of f with weight ©u=®. Roughly speaking, v charges the Holderian
increments of f. o

2.2.2. Examples of functionals

We give now some examples of continuous functionals on H2[0, 1].

Example 1: This example borrowed to Ciesielski, requires the introduction
of a particular class of continuous linear functionals on C[0,1]. Let f € CJ0,1]
and ¢ a function with bounded variation V(g) on [0, 1]. We consider the integral
o(f) = fol g df whose existence is not obvious since f is not supposed to be of
bounded variation, so we can not consider p(f) as a Stieltjes integral. In fact we
construct it as follows

1 1 N
© o) = [o0dr) = im [ v dre) = fim 3 anb,
0 N—oo Jo N—oo =0
where gy = Ziv:o anXn 18 the partial sum of the Haar series of g and

b = [ a7 (0) = 2a(5)

is the n-th Schauder coefficient of f. Remark that if f is C'!', the integral so
defined coincides with the classical definition (i.e. in Riemann’s sense) since
fol Xn(t) f'(t)dt = M\y(f). The existence of the limit in (6) follows from the
following elementary lemma.

Lemma 2. If g is a function with bounded variation V(g) on [0,1] and
(an(g))n>0 is the sequence of its Haar coefficients then > > |an(g)| < co.

Proof: We have xo(t) = 1o 1)(t) and for j >0, 0 <k < 27,

X2j+k = 23/2 (]—[k k+1_/2[ - 1[k+1‘/2 M[) .

277 27 Y REY]
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Clearly, |ao(g)| = |f01 g(t) dt| < oo since g is bounded. Next

azi+1(9) :/ Xoik(t) g(t) dt

B I/t +2k t+2k+ 1\
= 2,2]/2 o I\ i ) TI\ T g5 :

which can easily be bounded by

271 1
]g |02j+k(g)| < mv(g) .
Hence
271 i
Vg
ZE:MMMﬁ_———ZC—) ,
>0 k=0 2 SH\V2

whence the conclusion follows. n

Using these continuous linear functionals ¢ on C[0, 1],with other regularity
conditions on g, Ciesielski has obtained continuous functionals on H% [0, 1].

Theorem 7 (Ciesielski [6]). Let 0<a<1, a+3 =1 and g € HP[0,1].
We suppose moreover that g has a bounded variation V (g) on [0,1]. The linear
functional

o) = [ o aro)

is continuous on HY [0, 1] and its norm satisfies the inequality

1 1/2
lellagy < | [ otdt|+ AG) [Vio) gl
where A(Oé) = m. | ]
Example 2
LI
o(f) = otHﬁdt B<a.

It is clear that ¢ is a linear functional and

dt
r<>L_wm/pﬁﬁ;<m for B<a.
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Example 3: This one is more general than the former. For 0 < ¢y < 1 and
0 < 8 < «a, we consider

F(t)sgn(t —t
o(f) = / I S_gIth|1+ﬁ o) dt
. to=e — f(t) L f(t)
_ ili%{/o e R R e dt} .

The continuity of ¢ can be checked by elementary computations.

M FO=F6)
_/o u /{t—ssu} dsdtptdn)

|t — 5|

where (4 is a signed measure on [0, 1]. ¢ is a linear functional and

11
P < Il [ - dsdtlalan)
< 204} (0.1)) 1/

Example 4:

thus ¢ is continuous.

Example 5: We list here some non linear functionals on H? whose continuity
is obvious

() = fles w2(f) = walfod),  ws(f) = sup LY =Sl

tefo] It —tol®

Example 6: The p-variation in the sense of Wiener for p > 1/a.
Let f be a function [0,1] — R. We suppose that there exists ¢ = ¢(f) such
that for any family (I, k > 1) of disjointed intervals (I = |ag, bx[) of [0, 1]

(7) (3| - f<ak>\”)l/p <ec<oo.
k

Then we say that f has a bounded p-variation and we define the p-variation of f
the infimum V),(f) of constants ¢ satisfying (7). If f € Hy, V,,(f) is finite for any
p > 1/a, in fact

1/p ~ fla P 1/p
(gl -soof)” = (- M=)

k k

(1512)"" (0 o)

k

1o (St 00) "

k

IN

IN
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since pa > 1 and by —ax < 1. As Y . (br — ar) < 1, we obtain

(Z‘f(bk) - f(ak)‘p)l/pﬁ I flla < o0
!

Hence V,,(f) < ||fllo and since V,, satisfies the triangular inequality, V,,(f) is
continuous.

2.2.3. Examples of operators

Example 1: Fractional integral

We consider the fractional integration operator with order 3, of Riemann—Liou-
ville (cf. for example M. Riesz [23])

1 xT
8 Iﬁfx:—/ -t ) dt, xelo,1].
(8) (z) 5 Jo (z —1)7" f(2) [0,1]
The integral converges at least for 5 > 0 and f continuous. The operator I”
satisfies the following properties

°(1) = 17 %(Iﬂ“) =1°.

Proposition 1. We suppose o, § > 0 and a+ 3 < 1. Then I? is a continuous
linear operator from H,[0, 1] in H,4g[0,1].

Proof: The result follows from an easy adaptation of the proof of theorem 14
in Hardy Littlewood [16] by expliciting in terms of || f||o the constants involved
in the O(h*+7)'s. u

Example 2: Fractional derivation

The operator of fractional derivation of order § of a function f is formally defined
by
d

(9) DI f(w) = — (""" f)(x)

where I'=# is the operator of fractional integration of order 1— /3 of Riemann—
Liouville.

We begin by a result of Hardy—Littlewood on the existence and definition of
the operator D on H,[0, 1].
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Theorem 8 (Hardy—Littlewood [16]). If 0 < f < o < 1 and f € H,[0,1],
then DP f exists and f = I®DP f. Moreover

DP(Hg4[0,1]) = Ha—p[0,1] and DP(HJ[0,1]) = HJ_4[0,1] . w

Proposition 2. DP is a continuous operator from H,[0,1] in H,_ 5[0, 1].

Proof: By theorem 8, I°Df = Idy, for 0 < 3 < a. We verify that D°I® =
IdHa_g- Let g € Ha_g,

DPIg(e) = {1 @) = S(1'g) =

= 2 ([awdr) = gt

We deduce that I7 is a bijection from H,_g on H,. I A is a continuous linear
operator and is bijective from H,_j3 on H,. Then its inverse D? is also continuous
from H, in H,_g, by a classical corollary of the theorem of the open map (cf. for
example Brézis [5], corollary I1.6 p.19). »

3 — Random elements in H,

3.1. Weak convergence in H,

We consider in this section processes with Holderian paths as random elements
of the functional space H,[0,1]. We observe directly the whole path, which
corresponds to select at random a function § with distribution P¢. This situation
is frequent for example in studying invariance principles where we can observe
directly all the path &,(¢) (polygon line). The study of weak convergence of
random elements of H? is based on the following result.

Proposition 3. The weak convergence in HY of a sequence of processes
(€, n > 1) is equivalent to the tightness in H, of the sequence of distributions
P, = P& of random elements &, and the convergence of the finite-dimensional
distributions of &,,.

Proof: Clearly tightness and convergence of finite dimensional distributions
are necessary conditions for the weak-Holder convergence of a sequence of pro-
cesses (&, n>1). On the other hand, if a sequence of distributions (Pp,)n>1



138 D. HAMADOUCHE

is tight, there exists at least a subsequence of (P,),>1 which converges to the
distribution P, of some random element & of H2. It suffices then to prove that
the limit distribution is unique. For that, recall that if X' is a separable Banach
space, its Borelian o-field By coincides with its cylindrical o-field Cy, spanned
by the functionals ¢ of the topological dual X”.

Writing

Le(p) = Eexp(i(€, ) = Eexp(ip(€)), ¢e&’,

for the characteristic functional of £, we have
Le(p) = Le(p) <= € and ¢ have the same distribution .

By Lebesgue’s Dominated convergence theorem, we see easily that the charac-
teristic functional is continuous on X’. It suffices then to prove the equality in
distribution of £ and (.

We return to HY, let ¢ be an element of the dual (H2)'. By theorem 5 there
exists a sequence a = (a,) € ¢}(N) such that

(10) o) = an f)+ 3 an 205000 (F), feH0,1]

n=1
Moreover [|¢||oy < ||Sall [|allsr. By this inequality and Cauchy’s criterion we
verify that the series (10) converges for the topology of the norm of (H%). So
the set of functionals {\,, n > 0} defined by (3) is total in (H?)". Tt follows
immediately that the family of evaluation to dyadic points (f +— f(k277)) is
total in (HY). To conclude, suppose that (P,),>1 has two subsequences with
distributions which converge respectively to P: and P;. By the convergence of
finite-dimensional distributions of (P,),>1, we deduce the equality of P and FPr. m

3.2. Tightness in H,[0, 1]

In the sequel it is more convenient to work with H? instead of H,. As the
canonical injection of H2[0, 1] in H,[0, 1] is continuous, weak convergence in the
former implies weak convergence in the latter. A first sufficient condition for the
tightness in H? is given by

Theorem 9 (Kerkyacharian, Roynette [18]). Let (§,)n>1 be a sequence of
processes vanishing at 0 and suppose there are v > 0, § > 0 and ¢ > 0 such that

(11) VA>0,  P(lg(t) = &) > A) < A—i It — s+ .

Then (&,)n>1 is tight in H2[0,1] for 0 < av < 6 /7. m
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In the applications, this condition is essentially used in its moments version,
obtained via Markov’s inequality from (11).

Corollary 1 (Lamperti [19]). Let (¢,)n>1 be a sequence of processes vanishing
at 0. Suppose there are v > 0, § > 0 and ¢ > 0 such that

(12) E [&0(t) = &a(s) < cft —s'"F0.
Then the sequence (£,)n>1 is tight in HO[0,1] for 0 < a < §/7. u

On the other hand the Holder version of Ascoli’s theorem gives the following
sufficient and necessary condition which can be useful to test the optimality of
certain results.

Theorem 10 (Rackauskas, Suquet [24]). Let (£,)n>1 be a sequence of random
elements of HY[0,1]. (£,)n>1 is tight if and only if

VYe>0, lim supP(wa(fn,é) > 6) =0.n

6—0 n>1

Last, we have obtained the following result, inspired from a Davydov’s theo-
rem in the D[0, 1] setting (Skorokhod space) [10], which allows more flexibility in
the handling of moment inequalities.

Theorem 11 (Hamadouche [14]). Let (&,(t))n>1 be a sequence of random
elements of HY[0, 1], satisfying the following conditions

a) There exists constants a > 1, b > 1, ¢ > 0 and a sequence of positive
numbers (a,) | 0 such that

(13) E [en(t) = &n(s)* < clt—s],
for all |t —s| > an, 0<s,t<1andn > 1.
b) For any € > 0, Jim P{wq(&n,an) > €} =0.
Then for all a < a~!(min(a,b) — 1), (&,)n>1 is tight in HO[0,1].
Sketched Proof: For a complete proof, we refer to [14]. In fact, we introduce
a new process (, defined by linear interpolation at the points t = ka, (0<k<ky,)
with k, = [é] and ty,+1 = 1. The paths of (,, are polygon lines and therefore

are in H2[0,1] for all @ < 1. We use a) to show the tightness of {(,,n > 1}
and b) to prove the convergence in probability to 0 of ||, — (ulla. The tightness
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of {&,, n > 1} will follow by the sequential characterization of tightness in the
Polish space HY.

Tightness of {(,, n > 1} is obtained by the sufficient condition of Lamperti
(corollary 1) for y=a, § = min(a, b) — 1, by discussing the location of s and t with
respect to the grid (kay,, 0 <k <mn). This discussion gives us too the following
estimation

1Cn = &nlla < 4wa(bn,an) ,

from which the convergence of the finite-dimensional distributions follows. m

4 — Some dependence tools

Recall that the strong mixing coefficient between two o-fields A and B is
defined by
(14) a(A,B) = sup |P(ANB) - P(A)P(B)| .
(A,B)e AxB
Let (X, )n>1 be a sequence of random variables defined on the same probability
space. We define the strong mixing coefficient a,, by

(15) ap = sup{a(ff,f:fz), ke N*}

where .7-'; is the o-field spanned by the variables (X;, 7 < i <[). The sequence
(Xn)n>1 is said a-mixing or strong mixing if av, goes to zero as n goes to infinity.
For a recent review about mixing, we refer to [11].

We say that X1, Xo, -+, X, is a finite sequence of associated random variables
if
(16) Cov(f(Xl,...,Xm), g(Xl,...,Xm)) >0,
for any pair f, g of functions R™ — R coordinatewise non decreasing such that
this covariance exists. A sequence (X),>1 is said associated if any finite subse-
quence is associated. Known results about association show that the dependence
structure of a sequence of associated random variables is strongly determined by
its covariance structure that is by the coefficient

(17) u(n) = sup Z Cov(X;, Xy) .

* . .
REN" 5. |j—k|>n

Remark. If (X,),>1 is a sequence of stationary variables

u(n) =2 Y Cov(Xy,Xj) .o
j=n+1
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The invariance principles under dependence rely on some central limit theo-
rems and classical moment inequalities, we begin with.

Theorem 12 (Davydov [9]). Let X,Y be real random variables with EX =
EY = 0 and finite variances. For p,q,r > 1 and }10 + % + % =1,

(18) |Cov(X,Y)| < 8 a(X,Y)/P EVIX|2EV"|Y|" . u

Theorem 13 (Yokoyama [25]). Let (X;);>1 be a strictly stationary sequence
of a-mixing random variables such that EX1= 0, E|X |7t <oo fory > 2, >0

and
o0

Z(n%—l)”ﬂ_l as/0+e) < oo
n=0
Then there exists C > 0 such that

(19) E|X;+Xo+ -+ X,[” <Cn™/? . u

Theorem 14 (Odaira, Yoshihara [22]). Let (X;);j>1 be a sequence of a-
mixing random variables satisfying for some constants € > 0, v > 2 the following
conditions

o
Z af/0Fe) < oo |
n=1

supE | X7 < oo .
j=1

Then (X)) >1 satisfies the functional central limit theorem in D[0,1].

This last result has been improved by Doukhan, Massart and Rio [12]. Their
method to prove the tightness does not seem transposable to the Holderian func-
tional framework.

We return now to theorems about association.

Theorem 15 (Birkel[3]). Let (X;);>1 be a sequence of associated and cen-
tered random variables such that supj211[~3|Xj|7+*S < oo fory > 2 and € > 0.
We suppose that the coefficient u(n) defined by (17) satisfies

(20) u(n) = O(n—(7—2)(7+6)/(26)> '
Then there exists some constant b such that for all n > 1
k
(21) SUp E|Spym—Sm|?” < bn/?,  where S, = ZXJ' .u

J=1
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Theorem 16 (Newman, Wright [20]). Let (X;);>1 be a strictly stationary
sequence of centered and associated random variables with finite variance such
that

0® = E(X7)+2) Cov(X1,X;) < 0.
Jj>2
For all n > 1, we define the process
J Jj+1 .
Wt (ZXk+ )Xﬁl) SSt<——, 0<j<n.

Then W,, converges weakly in C[0,1] to the Brownian motion W.

Hence the finite-dimensional distributions of W,, converge to those of W. u

. . . . 0
5 — Invariance principles in H

5.1. Polygonal smoothing of partial sums process

We present here two extensions of Lamperti’s invariance principle to depen-
dent random variables.

Theorem 17. Let (X;);>1 be a strictly stationary sequence of a-mixing and
centered random variables. We suppose that there are v > 2 and € > 0 such that
E|X1|7" < 0o and

(22) Z (n+1)7271 [, ]5/0+9) < oo .

Define for alln e N* and 0 < j <n

1 J J Jj+1
(23) fn(t)——{ZXw(nt—j)Xm = <t<—,
ovn L= n n
where -
(24) o’ =EX]+2)» Cov(X1,X;) < o0

j=2

Then &, converges weakly to the Brownian motion in HY for all o < 1/2 —1/7.

Proof: We prove that under assumptions of theorem 17

E|&,(t) — &n(s)]” < K |t — s|'*°  with 1+5=%>1.
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First, if j/n < s <t < j+1/n, we have |&,(t) — & (s)] = [t — s]|Xj41] v
(we suppose that o = 1). Next

Elén(t) = &a()]” < [t =" (VR)TE[X1]” < [t —s[7/2 (E| X+ 049

since n|t — s| < 1.
Now if for some j and k, (j—1)/n <s<j/n<(j+k)/n <t < (j+k+1)/n,
E|gn(t) = &n(s)]” <

we have by convexity
-6 0+ fel8)- e fet28)-caf )

We shall just estimate the middle term, the two others terms can be treated as

v Y
< 3 HE +E +E

in the precedent case.

off)-e(5)

By theorem 13,

of2)-+(22)

Finally, we obtain

1 Y

25) E

(Xj+1 + X2+ +Xj+k>

v E\1/2
< K’(—) < K'lt—s["?  since |t—s| >

k
n n

(26) E

(27) E|é,(t) — Ea(s)| < K|t — s with 1+6 = % >1.

Thus by theorem 9 and Markov’s inequality, the sequence of distributions (P, ),>1
of processes &, is tight in H?, for any o < 6/y = 1/2 — 1/.

To conclude, the finite-dimensional distributions of £,, converges to those of
W using the theorem 14 whose assumptions are more general that those of the-
orem 17 since for v > 2,

Vn>1, (an)¥0%) < (n41)72 a0+ a

Theorem 18. Let (X;);j>1 be a strictly stationary sequence of centered
and associated random variables such that E|X|7¢ < oo for v > 2 and ¢ > 0.
Suppose that

(28) u(n) = 2 > Cov(Xy, X;) = o(n—(w—2)<v+e)/<2e))
jzn+l
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and
0<o?=E|X1]*+u(l) < co.

Then (&,)n>1 converges weakly to the Brownian motion W in HY for all a <
1/2 —1/~.

Proof: The tightness is proved like in the precedent case, using Birkel’s
moment inequality (theorem 15) instead of Yokoyama’s one. The convergence of
finite-dimensional distributions follows from theorem 16. m

5.2. Convolution smoothing of partial sums process

Let (Xj);j>1 be a sequence of independent random variables, identically dis-
tributed such that EX; = 0 and E|X;|” < oo for some v > 2. We denote again
o2 =EX? S = 22:1 X, So =0 and we consider the Donsker—Prokhorov’s
normalized partial sums process:

(29) gn(t) = U\l/ﬁ S[nt] ) te [Oa 1] ’

where [nt] is the integer part of nt. For the sake of convenience, we shall use in
the one of the following expressions of &,:

1 n
n(t) = o ;Sil[%‘j%l[(t) ;

1 n
&n(t) = —= D> Xkl (1) .
Let K be a probability density on the real line such that
(30) / lul K (u) du < oo
R
and (by)n>1 a sequence of positive numbers such that lim, .. b, = O and

1 1
(31) b—:O(nT/z), 0<r<s.

We define the sequence (Kj,),>1 of convolution kernels by

(32) Kot) = %K(é) . teR.
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We consider the smoothed partial sums process defined by:

(33) Cn(t) = (&nx Kn)(t) = (§n * Kn)(0),  t€[0,1].
The term (&,*K,,)(0) is subtracted in order to have a process with paths vanishing
at zero. We will impose some conditions on K, to ensure that any path of (,

belongs to Hy /o and so to HY for o < 1/2. These conditions are provided by the
following lemma.

Lemma 3. Let f be a bounded measurable function with support in [0, 1]
and K a convolution kernel satisfying

(34) K e L'([-1,1])nLY?([-1,1]) ,

(35) |K(z) = K(y)| < a(K)|z—yl, =zyel-1,1],

for some constant a(K). Then the restriction to [0,1] of fxK — f«K(0) is in
Hl/Q[Ov 1]

Proof: Clearly f*K is bounded. On the other hand

\f*K(x)—f*K(y)] S/ \f(u)\‘K(I—u)—K(y_u)’du

[0,1]
1/2
< e alB) 2 o=yl 2 [ K (=)~ K(y—w)| "
[0,1]
< 2 fllwar) 2l =y [ K@) do

[_1’1]
< oK) |-y

Hence

[fxKll12 = wipo(f*K, 1) < oo . u

Theorem 19. Let (X;);>1 be a sequence of independent random variables,
identically distributed such that EX; =0 and E|X;|" < co for some v > 2.
Suppose that the convolution kernels K,, satisfy (32), (30), (34) and (35). Then
the sequence of smoothed partial sums processes (, defined by (33) converges
weakly to the Brownian motion W in H2[0,1] for all a < 1/2 — max(7,1/7).
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Proof: By lemma 3, ¢, is in HY[0, 1], for all o < 1/2.

Tightness

We apply theorem 11 with a,, = 1/n. This leads us to study separately the
casest —s >1/nand 0 <t —s < 1/n. without loss of generality we can assume
that s < t.

First case: |t —s| > 1/n.
E[Gn(t) = Cu(s)]" = E |§u#x Kn(t) — &nxKn(s)
1
=B A / (Stote—u) = Stnts—u)) Kn(u) du

Y

‘ Y

i

[n(t—u)]

:]Eg\/_/ > XiKn(u

i=[n(s—u)]+1

By Jensen’s inequality with respect to K, (u) du and Fubini’s theorem, we obtain

. [n(t=u)

sl XX

i=[n(s—u)]+1

v

E[Gu(t) = Cals)" < /R E Ko(u) du .

Using Marcinkiewicz—Zygmund’s inequality for the moments of sums of i.i.d. ran-
dom variables, it follows

—Uu)|l —nm{s—u 7/2
36 ElG0 -Gl < [ (W = [nd ”) ey Ko (u) du

n

2\7/2
< /(]t—s—i——) ey Ky (u) du
R n

since [n(t —u)] — [n(s —u)] < n(t—s)+2. Hence, there is some constant ¢, such

that )
E|Ga(t) — Cu(s)|” < €, [t —s[7/2, since |t—s|> = .

3

Second case: 0 <t—s < 1/n.

We proceed as follows

/R v ZX( Kn(s—u)) 1[%71](10 du
< _ _ _

< oo LIl |(1 ok

|<n(t) - Cn(5)| =




INVARIANCE PRINCIPLES IN HOLDER SPACES 147

Since 1 —i/n < 1, it follows

() = Galo) < 5 IZ\XW

and hence
|G (t) — Gn(s)] 1-a

‘t—8|0‘ —bQU\/_Z’XHt ‘ .

Thus
l _ |Cn(t) — Cn(s)‘
Wy (Cna n) - It_SEZ% ‘t _ 8|a
K n 1 11—«

(37) < o 21 (5)

a(K) 1 &

By (31), b2 n® /2 goes to 0 as soon as 1/2 — a > 7. By the strong law of large
numbers, n~ 1 3" 1| X;| goes to E|X| almost surely. Hence w,(€,1/n) goes to 0
in probability as n goes to infinity, for all « < 1/2 — 7.

We conclude about tightness by the theorem 11, noticing that its hypothesis
are satisfied for a =, b =~/2, (y>2), ¢ = ¢/, and a, = 1/n.

We obtain then the tightness of (¢,,) in H[0, 1] for all a satisfying @ < 1/2—7
and o < 1/2 —1/~, so for all & < 1/2 —max(,1/7).

Convergence of the finite-dimensional distributions of {(,, n>1}

Since the finite-dimensional distributions of &,, converge to those of the Brow-
nian motion by Lindeberg—Levy’s central limit theorem, it will be the same for
those of (,, if we prove for instance the convergence to 0 of E|(,(t) — &,(¢)]? for
all ¢ € [0,1]. We begin by noting that

2

B[+ Kn(t) — (0] = E| [ (6at=0) = &(0)) Kn(w) du

1
)

:E/ \1/_ZXK

i=[nt]+1

2
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Applying the Jensen’s inequality with respect to K,,(u)du and Fubini’s theorem,
we obtain

89 Elera0-aof < [El— Sl

i=[nt]+1

Using Marcinkiewicz—Zygmund’s inequality, we obtain
’ (t—u)] — [nt] ’
/ K, (u)du

C/R(M + n) Kp(u)du .

]E’gn*Kn(t)—gn( )‘ < c< /|v]K( )dv + i) :

Since K has the first order moment and b, goes to 0 as n goes to infinity, we
deduce that &, K, (t) — &,(t) goes to 0 in L2(Q) for all ¢ € [0,1]. In particular
for t=0, E|&,+ K, (0)|? goes to 0. Since for all ¢t € [0, 1],

2
E ¢ Kn(t) — & (1)

IN

(39)

IN

Hence

ElGo(t) = (0 < 5 (E[éusKalt) = 6000 + E[6uriaO)] ) |

this achieves the proof of the convergence of the finite-dimensional distributions
and of Theorem 19. n

The arguments used in the proof above allow an extension of the result to
dependent random variables case.

Theorem 20. Let (X;);>1 be a strictly stationary sequence of a-mixing
centered random variables. Suppose that there exists v > 2 and € > 0 such that
E |X1 |’Y+‘E <00,

(n 4172 [ O04) < oo,

NE

(40)

n=1

(41) o’ = EX7+2) Cov(X1,X;) < oo .
Jj=2

We suppose moreover that the convolution kernels satisfy (32), (30), (34) and
(35). Then the sequence of smoothed partial sums processes (, defined by
(33) converges weakly to the Brownian motion W in H2[0,1] for all o < 1/2 —
max(7,1/7).
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Proof: The tightness is obtained as in the proof of theorem 19. In the case
|t — s| > 1/n, we use the Yokoyama’s inequality (theorem 13) instead of the
Marcinkiewicz—Zygmund’s one. To prove the convergence in probability to 0 of
Wa(Cn, 1/n), it suffices to observe that the estimates leading to (37) remain valid
and to apply the Markov’s inequality

a(K) 1 a(K) 1 &
P{iab%nl/za - ;|X,~\ > 5} S SRalan ;E\Xi\ :
Since E|X;| < MY (+2) this estimate is well an O(b;,2n®'/2) and goes to 0 for
all o < 1/2 —7.

Now the finite-dimensional distributions of £,, converge to those of the Brow-
nian motion by the Odaira—Yoshihara’s theorem (theorem 14). The problem is
then reduced to prove the convergence to 0 of E |, () — &,(t)|? as in the indepen-
dent case. The unique difference is the passage from (38) to (39), where instead of
Marcinkiewicz—Zygmund’s inequality, we use the following variance estimation,

based on a Davydov’s inequality (theorem 12)

m m j—1
Var(;Xi) = mVar X7 + 2;;COV(X1,X]‘Z'+1)

o0
mVar X1 +16m S ap/PEV X, 9BV X, |
k=1

IN

Taking g = r = v 4 € in Davydov’s inequality, it follows

Var(3°X;) < mVar X + 16m (E\X1\7+5)2/ (rte) 3 a2
=1 k=1

Since v > 2, the convergence of the series above follows from the assumptions
(40) on mixing coefficients. We have then

Var(i XZ-) = O(m)
i=1

and applying this with m = |[n (t—u)] — [nt]|, we can conclude as in the indepen-
dent case. n

Theorem 21. Let (X;);>1 be a strictly stationary sequence of associated
and centered random variables such that E|X1][7T¢ <oo for some v>2 and > 0.
Suppose that

(42) u(n) = 2 ) Cov(Xy, X;) = O(n—(7—2)(7+a)/(25))
jzn+l
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0<o?=E[X|>+u(l) < oco.

Suppose moreover that the convolution kernels satisfy (32), (30), (34) and (35).
Then the sequence of smoothed partial sums processes ¢, defined by (33) con-
verges weakly to the Brownian motion W in H% [0, 1] for all & < 1/2—max(T,1/7).

Proof: It is similar to the a-mixing case, using Birkel’s moment inequality

(Theorem 15) instead of Yokoyama’s one and the Newman—-Wright’s central limit
theorem instead of Odaira—Yoshihara’s one. The variance inequality is now a

direct consequence of hypothesis u(1) < co. n
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