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INVARIANCE PRINCIPLES IN HÖLDER SPACES

D. Hamadouche

Abstract: We study the weak convergence of random elements in the space of Hölder

functions Hα[0, 1]. Using this space instead of C[0, 1] enables us to obtain functional

limit theorems of a wider scope. Some examples of Hölder continous functionals of

the paths are proposed to illustrate this improvement. A new tightness condition is

established. We obtain an Hölderian version of Donsker–Prohorov’s invariance principle

about the polygonal interpolation of the partial sums process, generalizing Lamperti’s

i.i.d. invariance principle to the case of strong mixing or associated random variables.

Similar results are proved for the convolution smoothing of partial sums process.

1 – Introduction

Let (Xj)j≥1 be a sequence of independent identically distributed random

variables with EXj = 0 and EX2
j = 1. Write ξn for the random polygonal

lines obtained by linear interpolation between the points (j/n, Sj/
√
n), where

Sj =
∑j

k=1Xk.

The Donsker Prokhorov’s invariance principle establishes then the C[0, 1] weak

convergence of ξn to the Brownian motion W . This gives the weak convergence

of continuous functionals on C[0, 1] for example: ‖ξn‖∞ = sup
t∈[0,1]

|ξn(t)|.

It is well known that the paths of W are (with probability one) of Hölder

regularity α for any α < 1/2 and those of ξn are of Hölder regularity 1. It is then

natural to study for α < 1/2, the weak convergence of ξn as random elements

in the Banach space Hα[0, 1] of α-Hölder functions. Such a convergence gives
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more applications to continuous functionals than in the C[0, 1] framework. The

invariance principle in Hα[0, 1] has been established by Lamperti [19] and derived

again recently by Kerkyacharian and Roynette [18] using the Faber–Schauder

basis of triangular functions.

Theorem 1 (Lamperti [19]). Let (Xj)j≥1 be a sequence of i.i.d. random

variables with EXj = 0 and EX2
j = σ2. Suppose that for some constant γ > 2,

E |Xj |γ<∞. For all n ∈ N∗, 0 ≤ j < n, define

ξn(t, ω) =
1

σ
√
n

[

∑

0<k≤j

Xk(ω) + (n t− j)Xj+1(ω)

]

,
j

n
≤ t <

j+1

n
.(1)

Then the sequence (ξn)n≥1 converges weakly to the Brownian motion W in H0
α

for all α < 1/2− 1/γ.

The present contribution is devoted to some extensions of this result. First,

we recall in Section 2 the Ciesielski’s study of the Banach Hölder space Hα[0, 1].

For separability convenience, we consider its closed subspace H0
α[0, 1]. Using the

Ciesielski’s characterization of the dual of H0
α, we give an intrinsic representation

of an element of (H0
α)
′ by a pair of signed measures and a list of examples of

continuous functionals on H0
α. In Section 3, we consider stochastic processes with

paths in H0
α. We treat them as random elements of H0

α. Their weak convergence

is equivalent to the tightness on H0
α and the convergence of the finite dimensional

distributions. For the tightness, a basic tool available in the literature is the

condition of Lamperti [19] based on the moment inequality

E |ξn(t)− ξn(s)|γ < C |t− s|1+δ , s, t ∈ [0, 1] .

We prove that it is sufficient to verify this inequality for |t − s| ≥ an, where an
decreases to zero, together with convergence in probability to zero of the Hölder

modulus of continuity wα(ξn, an). We propose to extend the result of Lamperti

to dependent random variables, namely we consider the cases of α-mixing and

association. These results rely on a moment inequality for sums of dependent

random variables and some central limit theorems. These dependence tools are

recalled in Section 4. Our invariance principles under dependence are presented in

Section 5. Next, we consider convolution smoothing of the process of normalized

partial sums of Donsker–Prokhorov for independent random variables and we

prove the weak convergence in H0
α of this smoothed process to the Brownian

motion. This last result is extended to α-mixing or associated random variables.
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2 – The functional framework

2.1. The Banach spaces Hα[0, 1] and H0
α[0, 1]

2.1.1. Definitions

We use the notations and results of Ciesielski [6] about the spaces of Hölder

functions on [0, 1]. We define the Hölder space Hα[0, 1] (0 < α ≤ 1) as the space

of functions f vanishing at 0 such that

‖f‖α = sup
0<|t−s|≤1

|f(t)− f(s)|
|t− s|α < ∞ .

Define the Hölderian modulus of continuity of f by

wα(f, δ) = sup
0<|t−s|<δ

|f(t)− f(s)|
|t− s|α

and the subspace H0
α[0, 1] of Hα[0, 1] by

f ∈ H0
α ⇐⇒ f ∈ Hα and lim

δ→0
wα(f, δ) = 0 .

(Hα, ‖ · ‖α) is a non-separable Banach space. (H0
α, ‖ · ‖α) is a separable closed

subspace. (Hα, ‖ · ‖α) is separable for the norm ‖ · ‖β , for any 0 < β < α and is

topologically embedded in Hβ .

2.1.2. Analysis by triangular functions

To obtain an isomorphism of the spaces Hα[0, 1] and H0
α[0, 1] with some Ba-

nach sequence spaces, Ciesielski used the Faber–Schauder basis, obtained by

translations and dyadic changes of scales from the triangular function

∆(t) =















2 t if 0 ≤ t ≤ 1/2 ,

2 (1− t) if 1/2 ≤ t ≤ 1 ,

0 elsewhere .

Putting for n = 2j + k, j≥0, 0≤k<2j , t∈ [0, 1]

∆n(t) = ∆j,k(t) = ∆(2jt− k) and ∆0 = t1[0,1](t) .
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The addition of the function ∆−1 defined by ∆−1(t) = 1[0,1](t) to the scale

{∆n, n ∈ N} gives a Schauder basis of (C[0, 1], ‖ · ‖∞) the space of continuous

functions equipped with the supremum norm. {∆n, n ∈ N} is a Schauder basis

of the closed subspace C0[0, 1] of functions vanishing at 0. More precisely we have

Lemma 1 (Faber–Schauder). For any function f of C0[0, 1],

f(t) =
∞
∑

n=0

λn(f)∆n(t) ,(2)

where λ0(f) = f(1) and for n = 2j+ k (j≥0, 0≤k< 2j)

λn(f) = λj,k(f) = f

(

k + 1/2

2j

)

− 1

2

{

f

(

k

2j

)

+ f

(

k + 1

2j

)}

.(3)

The series (2) converges in the sense of the norm of C0[0, 1] (i.e. uniformly on

[0, 1]).

We adopt the classical notation `∞ for the Banach space of bounded sequences

u = (un)n∈N equipped with the norm ‖u‖∞ = supn≥0 |un| and c0 for the closed

subspace of sequences vanishing at infinity. Since any function f of Hα[0, 1] is in

C0[0, 1], it has also the decomposition (2) and the series converges at least in the

C0[0, 1] sense.

Theorem 2 (Ciesielski [6]). For any function f of H0
α, the series

f(t) =
∞
∑

n=0

λn(f)∆n(t)

converges in H0
α. {∆n, n ≥ 1)} is a Schauder basis of (H0

α, ‖ · ‖α).

Theorem 3 (Ciesielski [6]). For n = 2j + k (j ≥ 0, 0 ≤ k < 2j), write

∆
(α)
n = 2−(j+1)α∆n and ∆

(α)
0 = ∆0. The spaces (Hα, ‖ · ‖α) and (`∞, ‖ · ‖∞) are

isomorphic by the operators Sα and Tα = S−1
α defined as follows:

Sα : Hα −→ `∞

f 7−→ u = (un)n≥0

with un = 2(j+1)αλn(f), n ≥ 1 and u0 = λ0(f).

Tα : `
∞ −→ Hα

u = (un)n≥0 7−→ f =
∞
∑

n=0

un ∆
(α)
n .
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Moreover ‖Sα‖ = 1 and

2

3 (2α−1) (21−α−1)
≤ ‖Tα‖ ≤

2

(2α−1) (21−α−1)
.

Theorem 4 (Ciesielski [6]). H0
α[0, 1] is isomorphic by Sα to the subspace co,α

of sequences (un)n≥0 of `
∞ such that limj→∞ 2(j+1)α sup0≤k<2j |uj,k| = 0, where

uj,k = un for n = 2j + k.

Finally we have

f ∈ Hα[0, 1] ⇐⇒ sup
j≥0

2(j+1)α sup
0≤k<2j

|λj,k(f)| <∞, |λ0(f)| <∞

and

f ∈ H0
α[0, 1] ⇐⇒ f ∈ Hα[0, 1] and lim

j→∞
2(j+1)α sup

0≤k<2j
|λj,k(f)| = 0 .

2.2. Functionals and operators on H0
α[0, 1]

Some operators and functionals useful in statistics and important operators in

analysis are continuous on H0
α. Since weak convergence is preserved by continuous

mappings, the weak convergence in Hα provides weak convergence results for

H0
α-continuous functionals of paths and for some image process. Moreover, since

Hα is topologically embedded in C[0, 1], there are more continuous functionals on

Hα[0, 1] than on C[0, 1]. In this section are presented some examples of continuous

functionals and operators on Hα. We begin by the dual of H0
α.

2.2.1. Dual of H0
α[0, 1]

Denote by (`1, ‖ · ‖`1) the space of real sequences a = (a0, a1, . . .) such that

‖a‖`1 =
∑

n≥0 |an| <∞. The dual of H0
α[0, 1] is given by the following results.

Theorem 5 (Ciesielski [6]). Any continuous linear functional ϕ on (H0
α, ‖·‖α)

has the form

ϕ(f) =
∞
∑

n=0

an un(4)
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where u0 = λ0(f), un = 2(j+1)αλn(f), n = 2j + k (j ≥ 0, 0 ≤ k < 2j) and

a = (a0, a1, . . .) ∈ `1. Moreover ‖ϕ‖(H0
α)′ ≤ ‖Sα‖ · ‖a‖`1 , ‖a‖`1 ≤ ‖Tα‖ · ‖ϕ‖(H0

α)′

and the constants ‖Sα‖ and ‖Tα‖ are optimal.

This theorem allows us to propose a more intrinsic characterization of (H0
α)
′.

Theorem 6. ϕ is a continuous linear functional on H0
α if and only if there

exists a signed measure µ on [0, 1] and a signed measure ν on [0, 1]2 such that

ϕ(f) =

∫

[0,1]
f(t)µ(dt) +

∫

[0,1]2

2 f(t)− f(t+u)− f(t−u)
uα

ν(dt, du)(5)

where the second integrand vanishes at u = 0, which amounts to extend it by

continuity since f ∈ H0
α[0, 1].

Proof: Recall that a signed measure is a difference of two positive measures

each with finite mass. Clearly ϕ defined by (5) is a linear functional and

|ϕ(f)| ≤ ‖f‖∞ |µ| ([0, 1]) + 2 ‖f‖α |ν| ([0, 1]2) .

Thus |ϕ(f)| ≤ c ‖f‖α where c = |µ| ([0, 1]) + 2 |ν| ([0, 1]2) and ϕ is continuous.

Conversely, if ϕ is a continuous linear functional on H0
α[0, 1], by theorem 5,

there exists a = (an)n≥0 ∈ `1 such that

ϕ(f) =
∑

n≥0

an un where u0 = λ0(f) and un= 2(j+1)αλn(f), n ≥ 1 .

Writing µ = a0 δ1 (δ is a Dirac measure) and

ν =
∑

j≥0

2j−1
∑

k=0

1

2
a2j+k δtj,k⊗ δ2−j−1 , where tj,k =

k + 1/2

2j
,

we have

ϕ(f) =
∑

n≥0

an un

= a0 f(1) +
∑

j≥0

2j−1
∑

k=0

1

2
a2j+k

{

2 f

(

k+1/2

2j

)

− f

(

k+1

2j

)

− f

(

k

2j

)

}

2(j+1)α

=

∫

[0,1]
f(t)µ(dt) +

∫

[0,1]2

2 f(t)− f(t+u)− f(t−u)
uα

ν(dt, du)

thus ϕ has the representation (5).
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Remark. It is clear that the decomposition (5) is not unique. The dual (H0
α)
′

is in fact isomorphic to a quotient of the Banach space M[0, 1]⊕M[0, 1]2. The

interest of the decomposition (5) is to clarify the structure of a linear continuous

functional on H0
α. Its first component µ charges the values of f , like a linear

continuous functional on C[0, 1]. The second component ν charges the second

differences of f with weight u−α. Roughly speaking, ν charges the Hölderian

increments of f .

2.2.2. Examples of functionals

We give now some examples of continuous functionals on H0
α[0, 1].

Example 1: This example borrowed to Ciesielski, requires the introduction

of a particular class of continuous linear functionals on C[0, 1]. Let f ∈ C[0, 1]
and g a function with bounded variation V (g) on [0, 1]. We consider the integral

ϕ(f) =
∫ 1
0 g df whose existence is not obvious since f is not supposed to be of

bounded variation, so we can not consider ϕ(f) as a Stieltjes integral. In fact we

construct it as follows

ϕ(f) =

∫ 1

0
g(t) df(t) = lim

N→∞

∫ 1

0
gN (t) df(t) = lim

N→∞

N
∑

n=0

an bn ,(6)

where gN =
∑N

n=0 anχn is the partial sum of the Haar series of g and

bn =

∫ 1

0
χn(t) df(t) := λn(f)

is the n-th Schauder coefficient of f . Remark that if f is C1, the integral so

defined coincides with the classical definition (i.e. in Riemann’s sense) since
∫ 1
0 χn(t) f

′(t) dt = λn(f). The existence of the limit in (6) follows from the

following elementary lemma.

Lemma 2. If g is a function with bounded variation V (g) on [0, 1] and

(an(g))n≥0 is the sequence of its Haar coefficients then
∑∞

n=0 |an(g)| <∞.

Proof: We have χ0(t) = 1[0,1](t) and for j ≥ 0, 0 ≤ k < 2j ,

χ2j+k = 2j/2
(

1[ k
2j

,
k+1/2

2j
[ − 1[ k+1/2

2j
, k+1

2j
[

)

.
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Clearly, |a0(g)| = |
∫ 1
0 g(t) dt| <∞ since g is bounded. Next

a2j+k(g) =

∫ 1

0
χ2j+k(t) g(t) dt

=
1

2 · 2j/2
∫ 1

0

[

g

(

t+ 2k

2j+1

)

− g

(

t+ 2k + 1

2j+1

)]

dt .

which can easily be bounded by

2j−1
∑

k=0

|a2j+k(g)| ≤
1

2 · 2j/2 V (g) .

Hence

∑

j≥0

2j−1
∑

k=0

|a2j+k(g)| ≤
V (g)

2

∑

j≥0

(

1√
2

)j

< ∞ ,

whence the conclusion follows.

Using these continuous linear functionals ϕ on C[0, 1],with other regularity

conditions on g, Ciesielski has obtained continuous functionals on H0
α[0, 1].

Theorem 7 (Ciesielski [6]). Let 0 < α < 1, α + β = 1 and g ∈ Hβ [0, 1].

We suppose moreover that g has a bounded variation V (g) on [0, 1]. The linear

functional

ϕ(f) =

∫ 1

0
g(t) df(t)

is continuous on H0
α[0, 1] and its norm satisfies the inequality

‖ϕ‖(H0
α)′ ≤

∣

∣

∣

∫ 1

0
g(t) dt

∣

∣

∣+A(α)
[

V (g) ‖g‖β
]1/2

where A(α) = 1√
2 (2α/2−1)

.

Example 2:

ϕ(f) =

∫ 1

0

f(t)

t1+β
dt , β < α .

It is clear that ϕ is a linear functional and

|ϕ(f)| ≤ ‖f‖α
∫ 1

0

dt

t1+β−α
< ∞ for β < α .
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Example 3: This one is more general than the former. For 0 < t0 < 1 and

0 < β < α, we consider

ϕ(f) = v.p.

∫ 1

0

f(t) sgn(t− t0)

|t− t0|1+β
dt

= lim
ε→0

{
∫ t0−ε

0

−f(t)
(t0 − t)1+β

dt +

∫ 1

t0+ε

f(t)

(t− t0)1+β
dt

}

.

The continuity of ϕ can be checked by elementary computations.

Example 4:

ϕ(f) =

∫ 1

0

1

u

∫

{|t−s|≤u}

f(t)− f(s)

|t− s|α ds dt µ(du)

where µ is a signed measure on [0, 1]. ϕ is a linear functional and

|ϕ(f)| ≤ ‖f‖α
∫ 1

0

1

u

∫

{|t−s|≤u}
ds dt |µ|(du)

≤ 2 |µ| ([0, 1]) ‖f‖α ,

thus ϕ is continuous.

Example 5: We list here some non linear functionals on H0
α whose continuity

is obvious

ϕ1(f) = ‖f‖α , ϕ2(f) = wα(f, δ) , ϕ3(f) = sup
t∈[0,1]

|f(t)− f(t0)|
|t− t0|α

.

Example 6: The p-variation in the sense of Wiener for p ≥ 1/α.

Let f be a function [0, 1] → R. We suppose that there exists c = c(f) such

that for any family (Ik, k ≥ 1) of disjointed intervals (Ik = ]ak, bk[) of [0, 1]
(

∑

k

∣

∣

∣f(bk)− f(ak)
∣

∣

∣

p
)1/p

≤ c < ∞ .(7)

Then we say that f has a bounded p-variation and we define the p-variation of f

the infimum Vp(f) of constants c satisfying (7). If f ∈ Hα, Vp(f) is finite for any

p ≥ 1/α, in fact

(

∑

k

∣

∣

∣f(bk)− f(ak)
∣

∣

∣

p
)1/p

=

(

∑

k

(bk − ak)
pα

∣

∣

∣f(bk)− f(ak)
∣

∣

∣

p

(bk − ak)pα

)1/p

≤
(

‖f‖pα
)1/p

(

∑

k

(bk − ak)
pα
)1/p

≤ ‖f‖α
(

∑

k

(bk − ak)

)1/p

,
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since pα ≥ 1 and bk − ak ≤ 1. As
∑

k(bk − ak) ≤ 1, we obtain

(

∑

k

∣

∣

∣f(bk)− f(ak)
∣

∣

∣

p
)1/p

≤ ‖f‖α < ∞ .

Hence Vp(f) ≤ ‖f‖α and since Vp satisfies the triangular inequality, Vp(f) is

continuous.

2.2.3. Examples of operators

Example 1: Fractional integral

We consider the fractional integration operator with order β, of Riemann–Liou-

ville (cf. for example M. Riesz [23])

Iβf(x) =
1

Γ(β)

∫ x

0
(x− t)β−1 f(t) dt , x ∈ [0, 1] .(8)

The integral converges at least for β > 0 and f continuous. The operator Iβ

satisfies the following properties

Iβ(Iγ) = Iβ+γ ,
d

dx
(Iβ+1) = Iβ .

Proposition 1. We suppose α, β > 0 and α+β < 1. Then Iβ is a continuous

linear operator from Hα[0, 1] in Hα+β[0, 1].

Proof: The result follows from an easy adaptation of the proof of theorem 14

in Hardy Littlewood [16] by expliciting in terms of ‖f‖α the constants involved

in the O(hα+β)′s.

Example 2: Fractional derivation

The operator of fractional derivation of order β of a function f is formally defined

by

Dβf(x) =
d

dx
(I1−βf)(x)(9)

where I1−β is the operator of fractional integration of order 1−β of Riemann–

Liouville.

We begin by a result of Hardy–Littlewood on the existence and definition of

the operator Dβ on Hα[0, 1].
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Theorem 8 (Hardy–Littlewood [16]). If 0 < β < α ≤ 1 and f ∈ Hα[0, 1],

then Dβf exists and f = IβDβf . Moreover

Dβ(Hα[0, 1]) = Hα−β [0, 1] and Dβ(H0
α[0, 1]) = H0

α−β [0, 1] .

Proposition 2. Dβ is a continuous operator from Hα[0, 1] in Hα−β [0, 1].

Proof: By theorem 8, IβDβ = IdHα for 0 < β < α. We verify that DβIβ =

IdHα−β
. Let g ∈ Hα−β ,

DβIβg(x) =
d

dx

{

I1−β(Iβg)
}

(x) =
d

dx
(I1g) =

=
d

dx

(
∫ x

0
g(t) dt

)

= g(x) .

We deduce that Iβ is a bijection from Hα−β on Hα. I
β is a continuous linear

operator and is bijective from Hα−β on Hα. Then its inverse Dβ is also continuous

from Hα in Hα−β , by a classical corollary of the theorem of the open map (cf. for

example Brézis [5], corollary II.6 p. 19).

3 – Random elements in Hα

3.1. Weak convergence in Hα

We consider in this section processes with Hölderian paths as random elements

of the functional space Hα[0, 1]. We observe directly the whole path, which

corresponds to select at random a function ξ with distribution Pξ. This situation

is frequent for example in studying invariance principles where we can observe

directly all the path ξn(t) (polygon line). The study of weak convergence of

random elements of H0
α is based on the following result.

Proposition 3. The weak convergence in H0
α of a sequence of processes

(ξn, n ≥ 1) is equivalent to the tightness in H0
α of the sequence of distributions

Pn = Pξ−1
n of random elements ξn and the convergence of the finite-dimensional

distributions of ξn.

Proof: Clearly tightness and convergence of finite dimensional distributions

are necessary conditions for the weak-Hölder convergence of a sequence of pro-

cesses (ξn, n ≥ 1). On the other hand, if a sequence of distributions (Pn)n≥1
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is tight, there exists at least a subsequence of (Pn)n≥1 which converges to the

distribution Pξ, of some random element ξ of H0
α. It suffices then to prove that

the limit distribution is unique. For that, recall that if X is a separable Banach

space, its Borelian σ-field BX coincides with its cylindrical σ-field CX , spanned
by the functionals ϕ of the topological dual X ′.

Writing

Lξ(ϕ) = E exp(i〈ξ, ϕ〉) = E exp(i ϕ(ξ)) , ϕ ∈ X ′ ,
for the characteristic functional of ξ, we have

Lξ(ϕ) = Lζ(ϕ) ⇐⇒ ξ and ζ have the same distribution .

By Lebesgue’s Dominated convergence theorem, we see easily that the charac-

teristic functional is continuous on X ′. It suffices then to prove the equality in

distribution of ξ and ζ.

We return to H0
α, let ϕ be an element of the dual (H0

α)
′. By theorem 5 there

exists a sequence a = (an) ∈ `1(N) such that

ϕ(f) = a0 f(1) +
∞
∑

n=1

an 2
(j+1)α λn(f) , f ∈ H0

α[0, 1] .(10)

Moreover ‖ϕ‖(H0
α)′ ≤ ‖Sα‖ ‖a‖`1 . By this inequality and Cauchy’s criterion we

verify that the series (10) converges for the topology of the norm of (H0
α)
′. So

the set of functionals {λn, n ≥ 0} defined by (3) is total in (H0
α)
′. It follows

immediately that the family of evaluation to dyadic points (f 7→ f(k 2−j)) is

total in (H0
α)
′. To conclude, suppose that (Pn)n≥1 has two subsequences with

distributions which converge respectively to Pξ and Pζ . By the convergence of

finite-dimensional distributions of (Pn)n≥1, we deduce the equality of Pξ and Pζ .

3.2. Tightness in Hα[0, 1]

In the sequel it is more convenient to work with H0
α instead of Hα. As the

canonical injection of H0
α[0, 1] in Hα[0, 1] is continuous, weak convergence in the

former implies weak convergence in the latter. A first sufficient condition for the

tightness in H0
α is given by

Theorem 9 (Kerkyacharian, Roynette [18]). Let (ξn)n≥1 be a sequence of

processes vanishing at 0 and suppose there are γ > 0, δ > 0 and c > 0 such that

∀λ > 0 , P
(

|ξn(t)− ξn(s)| > λ
)

≤ c

λγ
|t− s|1+δ .(11)

Then (ξn)n≥1 is tight in H0
α[0, 1] for 0 < α < δ/γ.
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In the applications, this condition is essentially used in its moments version,

obtained via Markov’s inequality from (11).

Corollary 1 (Lamperti [19]). Let (ξn)n≥1 be a sequence of processes vanishing

at 0. Suppose there are γ > 0, δ > 0 and c > 0 such that

E |ξn(t)− ξn(s)|γ ≤ c |t− s|1+δ .(12)

Then the sequence (ξn)n≥1 is tight in H0
α[0, 1] for 0 < α < δ/γ.

On the other hand the Hölder version of Ascoli’s theorem gives the following

sufficient and necessary condition which can be useful to test the optimality of

certain results.

Theorem 10 (Račkauskas, Suquet [24]). Let (ξn)n≥1 be a sequence of random

elements of H0
α[0, 1]. (ξn)n≥1 is tight if and only if

∀ ε > 0 , lim
δ→0

sup
n≥1

P
(

wα(ξn, δ) ≥ ε
)

= 0 .

Last, we have obtained the following result, inspired from a Davydov’s theo-

rem in the D[0, 1] setting (Skorokhod space) [10], which allows more flexibility in

the handling of moment inequalities.

Theorem 11 (Hamadouche [14]). Let (ξn(t))n≥1 be a sequence of random

elements of H0
α[0, 1], satisfying the following conditions

a) There exists constants a > 1, b > 1, c > 0 and a sequence of positive

numbers (an) ↓ 0 such that

E |ξn(t)− ξn(s)|a ≤ c |t− s|b ,(13)

for all |t− s| ≥ an, 0 ≤ s, t ≤ 1 and n ≥ 1.

b) For any ε > 0, lim
n→∞P{wα(ξn, an) > ε} = 0.

Then for all α < a−1(min(a, b)− 1), (ξn)n≥1 is tight in H0
α[0, 1].

Sketched Proof: For a complete proof, we refer to [14]. In fact, we introduce

a new process ζn defined by linear interpolation at the points tk = k an (0≤k≤kn)
with kn = [ 1

an
] and tkn+1 = 1. The paths of ζn are polygon lines and therefore

are in H0
α[0, 1] for all α ≤ 1. We use a) to show the tightness of {ζn, n ≥ 1}

and b) to prove the convergence in probability to 0 of ‖ξn − ζn‖α. The tightness
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of {ξn, n ≥ 1} will follow by the sequential characterization of tightness in the

Polish space H0
α.

Tightness of {ζn, n ≥ 1} is obtained by the sufficient condition of Lamperti

(corollary 1) for γ=a, δ = min(a, b)−1, by discussing the location of s and t with

respect to the grid (k an, 0≤ k≤ n). This discussion gives us too the following

estimation

‖ζn − ξn‖α ≤ 4wα(ξn, an) ,

from which the convergence of the finite-dimensional distributions follows.

4 – Some dependence tools

Recall that the strong mixing coefficient between two σ-fields A and B is

defined by

α(A,B) = sup
(A,B)∈A×B

∣

∣

∣P (A ∩B)− P (A)P (B)
∣

∣

∣ .(14)

Let (Xn)n≥1 be a sequence of random variables defined on the same probability

space. We define the strong mixing coefficient αn by

αn = sup
{

α(Fk
1 ,F+∞

n+k), k ∈ N∗
}

(15)

where F l
j is the σ-field spanned by the variables (Xi, j ≤ i ≤ l). The sequence

(Xn)n≥1 is said α-mixing or strong mixing if αn goes to zero as n goes to infinity.

For a recent review about mixing, we refer to [11].

We say thatX1, X2, · · · , Xm is a finite sequence of associated random variables

if

Cov
(

f(X1, . . . , Xm), g(X1, . . . , Xm)
)

≥ 0 ,(16)

for any pair f, g of functions Rm→ R coordinatewise non decreasing such that

this covariance exists. A sequence (Xn)n≥1 is said associated if any finite subse-

quence is associated. Known results about association show that the dependence

structure of a sequence of associated random variables is strongly determined by

its covariance structure that is by the coefficient

u(n) = sup
k∈N∗

∑

j: |j−k|≥n

Cov(Xj , Xk) .(17)

Remark. If (Xn)n≥1 is a sequence of stationary variables

u(n) = 2
∑

j≥n+1

Cov(X1, Xj) .
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The invariance principles under dependence rely on some central limit theo-

rems and classical moment inequalities, we begin with.

Theorem 12 (Davydov [9]). Let X,Y be real random variables with EX =

EY = 0 and finite variances. For p, q, r ≥ 1 and 1
p + 1

q + 1
r = 1,

|Cov(X,Y )| ≤ 8 α(X,Y )1/p E1/q|X|q E1/r|Y |r .(18)

Theorem 13 (Yokoyama [25]). Let (Xj)j≥1 be a strictly stationary sequence

of α-mixing random variables such that EX1= 0, E |X1|γ+ε<∞ for γ > 2, ε > 0

and ∞
∑

n=0

(n+1)γ/2−1 αε/(γ+ε)
n < ∞ .

Then there exists C > 0 such that

E |X1 +X2 + · · ·+Xn|τ ≤ C nτ/2 .(19)

Theorem 14 (Odäıra, Yoshihara [22]). Let (Xj)j≥1 be a sequence of α-

mixing random variables satisfying for some constants ε > 0, γ > 2 the following

conditions ∞
∑

n=1

αε/(γ+ε)
n < ∞ ,

sup
j≥1

E |Xj |γ+ε < ∞ .

Then (Xj)j≥1 satisfies the functional central limit theorem in D[0, 1].

This last result has been improved by Doukhan, Massart and Rio [12]. Their

method to prove the tightness does not seem transposable to the Hölderian func-

tional framework.

We return now to theorems about association.

Theorem 15 (Birkel[3]). Let (Xj)j≥1 be a sequence of associated and cen-

tered random variables such that supj≥1 E |Xj |γ+ε < ∞ for γ > 2 and ε > 0.

We suppose that the coefficient u(n) defined by (17) satisfies

u(n) = O
(

n−(γ−2)(γ+ε)/(2ε)
)

.(20)

Then there exists some constant b such that for all n ≥ 1

sup
m

E|Sn+m−Sm|γ ≤ b nγ/2, where Sk =
k
∑

j=1

Xj .(21)
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Theorem 16 (Newman, Wright [20]). Let (Xj)j≥1 be a strictly stationary

sequence of centered and associated random variables with finite variance such

that

σ2 = E (X2
1 ) + 2

∑

j≥2

Cov(X1, Xj) < ∞ .

For all n ≥ 1, we define the process

Wn(t) =
1

σ
√
n

( j
∑

k=1

Xk + (n t− j)Xj+1

)

,
j

n
≤ t <

j+1

n
, 0 ≤ j < n .

Then Wn converges weakly in C[0, 1] to the Brownian motion W .

Hence the finite-dimensional distributions of Wn converge to those of W .

5 – Invariance principles in H0
α

5.1. Polygonal smoothing of partial sums process

We present here two extensions of Lamperti’s invariance principle to depen-

dent random variables.

Theorem 17. Let (Xj)j≥1 be a strictly stationary sequence of α-mixing and

centered random variables. We suppose that there are γ > 2 and ε > 0 such that

E |X1|γ+ε <∞ and

∞
∑

n=1

(n+1)γ/2−1 [αn]
ε/(γ+ε) < ∞ .(22)

Define for all n ∈ N∗ and 0 ≤ j < n

ξn(t) =
1

σ
√
n

[ j
∑

k=1

Xk + (n t− j)Xj+1

]

,
j

n
≤ t <

j + 1

n
,(23)

where

σ2 = EX2
1 + 2

∞
∑

j=2

Cov(X1, Xj) < ∞ .(24)

Then ξn converges weakly to the Brownian motion in H0
α for all α < 1/2− 1/γ.

Proof: We prove that under assumptions of theorem 17

E |ξn(t)− ξn(s)|γ ≤ K |t− s|1+δ with 1 + δ =
γ

2
> 1 .
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First, if j/n ≤ s ≤ t ≤ j + 1/n, we have |ξn(t) − ξn(s)| = |t − s| |Xj+1|
√
n

(we suppose that σ = 1). Next

E |ξn(t)− ξn(s)|γ ≤ |t− s|γ (
√
n)γ E |X1|γ ≤ |t− s|γ/2 (E |X1|γ+ε)γ/(γ+ε) ,

since n|t− s| ≤ 1.

Now if for some j and k, (j−1)/n ≤ s ≤ j/n ≤ (j+k)/n ≤ t ≤ (j+k+1)/n,

we have by convexity

E |ξn(t)− ξn(s)|γ ≤

≤ 3γ−1

(

E
∣

∣

∣

∣

ξn(s)− ξn

(

j

n

)
∣

∣

∣

∣

γ

+ E
∣

∣

∣

∣

ξn

(

j

n

)

− ξn

(

j+k

n

)
∣

∣

∣

∣

γ

+ E
∣

∣

∣

∣

ξn

(

j+k

n

)

− ξn(t)

∣

∣

∣

∣

γ
)

.

We shall just estimate the middle term, the two others terms can be treated as

in the precedent case.

E
∣

∣

∣

∣

ξn

(

j

n

)

− ξn

(

j+k

n

)∣

∣

∣

∣

γ

= E
∣

∣

∣

∣

1√
n

(

Xj+1 +Xj+2 + · · ·+Xj+k

)

∣

∣

∣

∣

γ

.(25)

By theorem 13,

E
∣

∣

∣

∣

ξn

(

j

n

)

− ξn
(

j+k

n

)
∣

∣

∣

∣

γ

≤ K ′
(

k

n

)γ/2

≤ K ′|t− s|γ/2 since |t−s| ≥ k

n
.(26)

Finally, we obtain

E |ξn(t)− ξn(s)|γ ≤ K|t− s|1+γ with 1 + δ =
γ

2
> 1 .(27)

Thus by theorem 9 and Markov’s inequality, the sequence of distributions (Pn)n≥1

of processes ξn is tight in H0
α, for any α < δ/γ = 1/2− 1/γ.

To conclude, the finite-dimensional distributions of ξn converges to those of

W using the theorem 14 whose assumptions are more general that those of the-

orem 17 since for γ > 2,

∀n ≥ 1 , (αn)
ε/(γ+ε) < (n+1)γ/2−1(αn)

ε/(γ+ε).

Theorem 18. Let (Xj)j≥1 be a strictly stationary sequence of centered

and associated random variables such that E |X1|γ+ε< ∞ for γ > 2 and ε > 0.

Suppose that

u(n) = 2
∑

j≥n+1

Cov(X1, Xj) = O
(

n−(γ−2)(γ+ε)/(2ε)
)

(28)
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and

0 < σ2 = E |X1|2 + u(1) < ∞ .

Then (ξn)n≥1 converges weakly to the Brownian motion W in H0
α for all α <

1/2− 1/γ.

Proof: The tightness is proved like in the precedent case, using Birkel’s

moment inequality (theorem 15) instead of Yokoyama’s one. The convergence of

finite-dimensional distributions follows from theorem 16.

5.2. Convolution smoothing of partial sums process

Let (Xj)j≥1 be a sequence of independent random variables, identically dis-

tributed such that EX1 = 0 and E |X1|γ < ∞ for some γ > 2. We denote again

σ2 = EX2
1 , Si =

∑i
k=1Xk, S0 = 0 and we consider the Donsker–Prokhorov’s

normalized partial sums process:

ξn(t) =
1

σ
√
n
S[nt] , t ∈ [0, 1] ,(29)

where [nt] is the integer part of nt. For the sake of convenience, we shall use in

the one of the following expressions of ξn:

ξn(t) =
1

σ
√
n

n
∑

i=1

Si 1[ i
n
, i+1

n
[(t) ,

ξn(t) =
1

σ
√
n

n
∑

k=1

Xk 1[ k
n
,1](t) .

Let K be a probability density on the real line such that

∫

R
|u|K(u) du < ∞(30)

and (bn)n≥1 a sequence of positive numbers such that limn→∞ bn = O and

1

bn
= O(nτ/2) , 0 < τ <

1

2
.(31)

We define the sequence (Kn)n≥1 of convolution kernels by

Kn(t) =
1

bn
K

(

t

bn

)

, t ∈ R .(32)
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We consider the smoothed partial sums process defined by:

ζn(t) = (ξn ∗Kn)(t)− (ξn ∗Kn)(0) , t ∈ [0, 1] .(33)

The term (ξn∗Kn)(0) is subtracted in order to have a process with paths vanishing

at zero. We will impose some conditions on Kn to ensure that any path of ζn
belongs to H1/2 and so to H0

α for α < 1/2. These conditions are provided by the

following lemma.

Lemma 3. Let f be a bounded measurable function with support in [0, 1]

and K a convolution kernel satisfying

K ∈ L1([−1, 1]) ∩ L1/2([−1, 1]) ,(34)

|K(x)−K(y)| ≤ a(K) |x− y| , x, y ∈ [−1, 1] ,(35)

for some constant a(K). Then the restriction to [0, 1] of f ∗K − f ∗K(0) is in

H1/2[0, 1].

Proof: Clearly f ∗K is bounded. On the other hand

∣

∣

∣f ∗K(x)− f ∗K(y)
∣

∣

∣ ≤
∫

[0,1]
|f(u)|

∣

∣

∣K(x−u)−K(y−u)
∣

∣

∣ du

≤ ‖f‖∞ a(K)1/2 |x− y|1/2
∫

[0,1]

∣

∣

∣K(x−u)−K(y−u)
∣

∣

∣

1/2
du

≤ 2 ‖f‖∞ a(K)1/2 |x− y|1/2
∫

[−1,1]
|K(v)|1/2 dv

≤ c(K) |x− y|1/2 .

Hence

‖f ∗K‖1/2 = w1/2(f ∗K, 1) < ∞ .

Theorem 19. Let (Xj)j≥1 be a sequence of independent random variables,

identically distributed such that EX1 = 0 and E |X1|γ < ∞ for some γ > 2.

Suppose that the convolution kernels Kn satisfy (32), (30), (34) and (35). Then

the sequence of smoothed partial sums processes ζn defined by (33) converges

weakly to the Brownian motion W in H0
α[0, 1] for all α < 1/2−max(τ, 1/γ).
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Proof: By lemma 3, ζn is in H0
α[0, 1], for all α < 1/2.

Tightness

We apply theorem 11 with an = 1/n. This leads us to study separately the

cases t− s ≥ 1/n and 0 < t− s < 1/n. without loss of generality we can assume

that s < t.

First case: |t− s| ≥ 1/n.

E |ζn(t)− ζn(s)|γ = E
∣

∣

∣ξn∗Kn(t)− ξn∗Kn(s)
∣

∣

∣

γ

= E
∣

∣

∣

∣

∣

1

σ
√
n

∫

R

(

S[n(t−u)] − S[n(s−u)]

)

Kn(u) du

∣

∣

∣

∣

∣

γ

= E
∣

∣

∣

∣

∣

1

σ
√
n

∫

R

[n(t−u)]
∑

i=[n(s−u)]+1

XiKn(u) du

∣

∣

∣

∣

∣

γ

.

By Jensen’s inequality with respect to Kn(u) du and Fubini’s theorem, we obtain

E |ζn(t)− ζn(s)|γ ≤
∫

R
E
∣

∣

∣

∣

∣

1

σ
√
n

∫

R

[n(t−u)]
∑

i=[n(s−u)]+1

Xi

∣

∣

∣

∣

∣

γ

Kn(u) du .

Using Marcinkiewicz–Zygmund’s inequality for the moments of sums of i.i.d. ran-

dom variables, it follows

E |ζn(t)− ζn(s)|γ ≤
∫

R

(

[n (t−u)]− [n (s−u)]
n

)γ/2

cγ Kn(u) du(36)

≤
∫

R

(

|t− s|+ 2

n

)γ/2

cγ Kn(u) du ,

since [n(t− u)]− [n(s− u)] ≤ n(t− s) + 2. Hence, there is some constant c′γ such

that

E |ζn(t)− ζn(s)|γ ≤ c′γ |t− s|γ/2, since |t− s| ≥ 1

n
.

Second case: 0 ≤ t−s < 1/n.

We proceed as follows

|ζn(t)− ζn(s)| =
∣

∣

∣

∣

∣

∫

R

1

σ
√
n

i
∑

i=1

Xi

(

Kn(t−u)−Kn(s−u)
)

1[ i
n
,1](u) du

∣

∣

∣

∣

∣

≤ a(K)

b2n σ
√
n

n
∑

i=1

|Xi| |t− s|
(

1− i

n

)

.
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Since 1− i/n ≤ 1, it follows

|ζn(t)− ζn(s)| ≤
a(K)

b2n σ
√
n

n
∑

i=1

|Xi| |t− s|

and hence
|ζn(t)− ζn(s)|
|t− s|α ≤ a(K)

b2n σ
√
n

n
∑

i=1

|Xi| |t− s|1−α .

Thus

wα

(

ζn,
1

n

)

= sup
|t−s|≤ 1

n

|ζn(t)− ζn(s)|
|t− s|α

≤ a(K)

b2n σ
√
n

n
∑

i=1

|Xi|
(

1

n

)1−α

(37)

≤ a(K)

σ b2n n
1/2−α

1

n

n
∑

i=1

|Xi| .

By (31), b−2
n nα−1/2 goes to 0 as soon as 1/2− α > τ . By the strong law of large

numbers, n−1∑n
i=1|Xi| goes to E |X1| almost surely. Hence wα(ξ, 1/n) goes to 0

in probability as n goes to infinity, for all α < 1/2− τ .

We conclude about tightness by the theorem 11, noticing that its hypothesis

are satisfied for a = γ, b = γ/2, (γ>2), c = c′γ and an = 1/n.

We obtain then the tightness of (ζn) in H0
α[0, 1] for all α satisfying α < 1/2−τ

and α < 1/2− 1/γ, so for all α < 1/2−max(τ, 1/γ).

Convergence of the finite-dimensional distributions of {ζn, n≥1}
Since the finite-dimensional distributions of ξn converge to those of the Brow-

nian motion by Lindeberg–Levy’s central limit theorem, it will be the same for

those of ζn if we prove for instance the convergence to 0 of E |ζn(t) − ξn(t)|2 for

all t ∈ [0, 1]. We begin by noting that

E
∣

∣

∣ξn∗Kn(t)− ξn(t)
∣

∣

∣

2
= E

∣

∣

∣

∣

∫

R

(

ξn(t−u)− ξn(t)
)

Kn(u) du

∣

∣

∣

∣

2

= E
∣

∣

∣

∣

∫

R

1

σ
√
n

(

S[n(t−u)] − S[nt]

)

Kn(u) du

∣

∣

∣

∣

2

= E
∣

∣

∣

∣

∫

R

1

σ
√
n

[n(t−u)]
∑

i=[nt]+1

XiKn(u) du

∣

∣

∣

∣

2

.
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Applying the Jensen’s inequality with respect to Kn(u)du and Fubini’s theorem,

we obtain

E
∣

∣

∣ξn∗Kn(t)− ξn(t)
∣

∣

∣

2
≤
∫

R
E
∣

∣

∣

∣

∣

1

σ
√
n

[n(t−u)]
∑

i=[nt]+1

Xi

∣

∣

∣

∣

∣

2

Kn(u) du .(38)

Using Marcinkiewicz–Zygmund’s inequality, we obtain

E
∣

∣

∣ξn∗Kn(t)− ξn(t)
∣

∣

∣

2
≤ c

∫

R

∣

∣

∣[n (t−u)]− [n t]
∣

∣

∣

n
Kn(u) du

≤ c

∫

R

(

|u|+ 2

n

)

Kn(u) du .(39)

Hence

E
∣

∣

∣ξn∗Kn(t)− ξn(t)
∣

∣

∣

2
≤ c

(

bn

∫

R
|v|K(v) dv +

2

n

)

.

Since K has the first order moment and bn goes to 0 as n goes to infinity, we

deduce that ξn∗Kn(t) − ξn(t) goes to 0 in L2(Ω) for all t ∈ [0, 1]. In particular

for t=0, E |ξn∗Kn(0)|2 goes to 0. Since for all t ∈ [0, 1],

E |ζn(t)− ξn(t)|2 ≤
1

2

(

E
∣

∣

∣ξn∗Kn(t)− ξn(t)
∣

∣

∣

2
+ E

∣

∣

∣ξn∗Kn(0)
∣

∣

∣

2
)

,

this achieves the proof of the convergence of the finite-dimensional distributions

and of Theorem 19.

The arguments used in the proof above allow an extension of the result to

dependent random variables case.

Theorem 20. Let (Xj)j≥1 be a strictly stationary sequence of α-mixing

centered random variables. Suppose that there exists γ > 2 and ε > 0 such that

E |X1|γ+ε<∞,
∞
∑

n=1

(n+1)γ/2−1 [αn]
ε/(γ+ε) < ∞ ,(40)

σ2 = EX2
1 + 2

∑

j≥2

Cov(X1, Xj) < ∞ .(41)

We suppose moreover that the convolution kernels satisfy (32), (30), (34) and

(35). Then the sequence of smoothed partial sums processes ζn defined by

(33) converges weakly to the Brownian motion W in H0
α[0, 1] for all α < 1/2 −

max(τ, 1/γ).
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Proof: The tightness is obtained as in the proof of theorem 19. In the case

|t − s| ≥ 1/n, we use the Yokoyama’s inequality (theorem 13) instead of the

Marcinkiewicz–Zygmund’s one. To prove the convergence in probability to 0 of

wα(ζn, 1/n), it suffices to observe that the estimates leading to (37) remain valid

and to apply the Markov’s inequality

P

{

a(K)

σ b2n n
1/2−α

1

n

n
∑

i=1

|Xi| ≥ δ

}

≤ a(K)

σ δ b2n n
1/2−α

1

n

n
∑

i=1

E |Xi| .

Since E |Xi| ≤M1/(γ+ε), this estimate is well an O(b−2
n nα−1/2) and goes to 0 for

all α < 1/2− τ .

Now the finite-dimensional distributions of ξn converge to those of the Brow-

nian motion by the Odäıra–Yoshihara’s theorem (theorem 14). The problem is

then reduced to prove the convergence to 0 of E |ζn(t)− ξn(t)|2 as in the indepen-

dent case. The unique difference is the passage from (38) to (39), where instead of

Marcinkiewicz–Zygmund’s inequality, we use the following variance estimation,

based on a Davydov’s inequality (theorem 12)

Var
(

m
∑

i=1

Xi

)

= mVarX1 + 2
m
∑

j=2

j−1
∑

i=1

Cov(X1, Xj−i+1)

≤ mVarX1 + 16m
∞
∑

k=1

α
1/p
k E 1/q|X1|q E 1/r|X1|r .

Taking q = r = γ + ε in Davydov’s inequality, it follows

Var
(

m
∑

i=1

Xi

)

≤ mVarX1 + 16m
(

E |X1|γ+ε
)2/(γ+ε)

∞
∑

k=1

α
(γ−2+ε)/(γ+ε)
k .

Since γ > 2, the convergence of the series above follows from the assumptions

(40) on mixing coefficients. We have then

Var
(

m
∑

i=1

Xi

)

= O(m)

and applying this with m = |[n (t−u)]− [n t]|, we can conclude as in the indepen-

dent case.

Theorem 21. Let (Xj)j≥1 be a strictly stationary sequence of associated

and centered random variables such that E |X1|γ+ε<∞ for some γ>2 and ε>0.

Suppose that

u(n) = 2
∑

j≥n+1

Cov(X1, Xj) = O
(

n−(γ−2)(γ+ε)/(2ε)
)

(42)
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and

0 < σ2 = E |X1|2 + u(1) < ∞ .

Suppose moreover that the convolution kernels satisfy (32), (30), (34) and (35).

Then the sequence of smoothed partial sums processes ζn defined by (33) con-

verges weakly to the Brownian motionW in H0
α[0, 1] for all α < 1/2−max(τ, 1/γ).

Proof: It is similar to the α-mixing case, using Birkel’s moment inequality

(Theorem 15) instead of Yokoyama’s one and the Newman–Wright’s central limit

theorem instead of Odäıra–Yoshihara’s one. The variance inequality is now a

direct consequence of hypothesis u(1) <∞.
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