PORTUGALIAE MATHEMATICA

Vol. 57 Fasc. 1 - 2000

LINES ON DEL PEZZO SURFACES WITH $K_{S}^{2}=1$ IN CHARACTERISTIC 2 IN THE SMOOTH CASE

P. Cragnolini and P.A. Oliverio

Abstract

In the case when the branch divisor of the antibicanonical map is smooth, we prove the existence in characteristic 2 of $240(-1)$-curves on a smooth projective surface with $q=0, K_{S}^{2}=1,\left|-K_{S}\right|$ ample and containing an irreducible reduced curve, concluding in this case the proof of Castelnuovo's criterion of rationality.

1 - Introduction

In this paper we prove the following theorem:
Theorem 1.1. Let S be a smooth, projective surface over an algebraically closed field \mathbb{K} of characteristic 2. Assume that:
(i) $q(S)=0$;
(ii) $-K_{S}$ is ample;
(iii) $K_{S}^{2}=1$.

Then the anti bicanonical map $\phi_{2}=\phi_{\left|-2 K_{S}\right|}$ is a $2: 1$ morphism whose image is a quadric cone $\mathcal{Q} \subset \mathbb{P}^{3}$. Suppose moreover that the branch divisor $A \subset \mathcal{Q}$ of ϕ_{2} is smooth. Then S contains $240(-1)$-curves.

More precisely, there are 120 distinct planes H in \mathbb{P}^{3} not passing through the vertex V of the cone \mathcal{Q} such that $\phi_{2}^{*}(H)=\Gamma_{1}+\Gamma_{2}$ where Γ_{1}, Γ_{2} are two (-1)-curves such that $\Gamma_{1} \cdot \Gamma_{2}=3$. Every (-1)-curve arises in this way.

Call a pair $\left\{\Gamma_{1}, \Gamma_{2}\right\}$ of (-1)-curves of type $(1,1,1),(2,1),(3)$ if $\Gamma_{1} \cap \Gamma_{2}$ contains 3 points, respectively 2 , respectively 1 point (cf. 2.3) and denote $n_{(1,1,1)}, n_{(2,1)}$, $n_{(3)}$ the number of such pairs. Then the possible values of $n_{(1,1,1)}, n_{(2,1)}, n_{(3)}$ are shown in (72) and table 1.

[^0]Since the surface S can't be minimal, Theorem 1.1 gives together with the results proved in [10], [11] a proof in positive characteristic of Castelnuovo's rationality criterion $q=P_{2}=0$ for a smooth algebraic surface in all cases but $K_{S}^{2}=1, \operatorname{Char}(\mathbb{K})=2$ and the branch divisor of ϕ_{2} is not smooth (cf. 2.5 (iv)). Indeed, (see [5]) a minimal surface S for which $q=P_{2}=0$ is either rational or else
(1) $\operatorname{Pic}(S)=\mathbb{Z}\left[-K_{S}\right]$,
(2) $\left|-K_{S}\right|$ contains an irreducible reduced curve,
(3) $K_{S}^{2}>0$.

We are left to exclude the second possibility, which is done in [10] in the case $K_{S}^{2} \geq 2$ and in [11] and Theorem 1.1 in the case $K_{S}^{2}=1$ when Char $\mathbb{K} \neq 2$ or the branch divisor A of ϕ_{2} is smooth.

Our proof uses elementary methods and is based on the fact that the (-1)-curves in S occur as the pull-back $\phi_{2}^{*}(H)$ having at least 3 singular points of planes $H \subset \mathbb{P}^{3}$ (see 2.2).

There exists a Segre-Hirzebruch \mathbb{F}_{10} surface \mathbb{F} over $A \cong \mathbb{P}^{1}$ and a morphism $\psi: \mathbb{F} \rightarrow \mathbb{P}^{3 \vee}$ with the property that the planes through $Q \in A$ such that their pullback is singular above Q are parametrized up to a purely inseparable extension of degree 2 by the image $\psi\left(\mathbb{F}_{Q}\right)$ of the fiber of \mathbb{F} over Q (see (7)). Then the pairs of (-1)-curves correspond to the triple points of $\psi(\mathbb{F})$, hence to triples of nodes of the double curve Λ of ψ.

To prove the irreducibility of Λ and count the number of nodes, we determine the contribution to its arithmetic genus of the other singularities, and this requires heavy computer calculations. On the other side, we find all the (-1)-curves on the given surface and not just prove the existence of one and get information on their type and configuration.

To perform the computations in section 6 we used CoCoA, a Gröbner-basis based symbolic system (by A. Capani, G. Niesi, L. Robbiano, Dept. of Mathematics, University of Genova) running on a unix machine.

The rationality criterion is proved or sketched in [1], [2], [3], [4], [6], [8], [9].

Notations and conventions

If C is a curve, $p_{a}(C)=h^{1}\left(C, \mathcal{O}_{C}\right)$ is its arithmetic genus. If S is a smooth surface, $q(S)=h^{1}\left(S, \mathcal{O}_{S}\right), K_{S}$ is a canonical divisor and $P_{2}(S)=h^{0}\left(S, 2 K_{S}\right)$. A (-1)-curve in S is an irreducible curve Γ s.t. $\Gamma^{2}=\Gamma K_{S}=-1$.

Char (\mathbb{K}) is its characteristic of the field $\mathbb{K} . \mathbb{F}_{d}$ is the Segre-Hirzebruch surface $\mathbb{P}\left(\mathcal{O}_{\mathbb{P}^{1}} \oplus \mathcal{O}_{\mathbb{P}^{1}}(d)\right) . \mathbb{P}^{n \vee}$ is the projective space of the hyperplanes of $\mathbb{P}^{n} . T \mathcal{Q}_{Q}$ is the tangent space of the hypersurface \mathcal{Q} at $Q \in \mathcal{Q}$.
$\mathbb{K}[[t]]$ is the ring of formal power series, (t) is its maximal ideal and $\mathbb{K}[[t]]^{*}=$ $\{\xi \in \mathbb{K}[[t]]: \xi(0) \neq 0\} ; o_{n}(t) \in\left(t^{n}\right)$. By a formal neighborhood of a point P on a curve C we mean the finite set of local parametrizations of C by power series centered at P; each parametrization corresponds to a branch of C through P. If f is a polynomial, $f_{X}=\frac{\partial f}{\partial X}$; if $\xi(t) \in \mathbb{K}[[t]]$ then $\xi^{\prime}(t)=\frac{d \xi}{d t}$.
$M(n, m, \mathcal{S})$ is the vector space of $m \times n$ matrices with entries in a ring \mathcal{S}; if $M \in M(n, m, \mathbb{K}), S_{R}(M)$ is the subspace of \mathbb{K}^{m} generated by its rows. If Char $\mathbb{K}=2$ and $N=\left(n_{i, j}\right) \in M(n, m, \mathbb{K})$, then $N^{[2]}=\left(n_{i, j}^{2}\right), N^{\left[\frac{1}{2}\right]}=\left(\sqrt{n_{i, j}}\right)$.
W^{\perp} is the orthogonal of the subspace W of \mathbb{K}^{n} with respect to the standard bilinear symmetric form ${ }^{t} X \cdot Y$. \#A is the number of elements of a finite set A. $\operatorname{Im} f$ is the image of the function f.

2 - The anticanonical model of S

Let S be a smooth, projective surface defined over an algebraically closed field \mathbb{K} of characteristic 2 satisfying the hypothesis (i), (ii), (iii) of Theorem 1.1. Remark that (i), (ii), (iii) imply that every divisor in the linear system $\left|-K_{S}\right|$ is irreducible and reduced, and $\left|-K_{S}\right|$ has projective dimension equal to 1 , as shown in [11]. The following facts up to 2.3 are based on [7] and proved in [11].

If $\mathcal{S}=\mathbb{K}\left[X_{0}, X_{1}, W, Z\right]$ is graded by $\operatorname{deg} X_{0}=\operatorname{deg} X_{1}=1, \operatorname{deg} W=2, \operatorname{deg} Z=3$, and $\mathcal{R}=\bigoplus_{n \geq 0} \mathcal{R}_{n}, \mathcal{R}_{n}=H^{0}\left(S,-n K_{S}\right)$, is the anticanonical ring of S, there exists a surjective graded \mathbb{K}-algebra homomorphism $\mathcal{S} \rightarrow \mathcal{R}$ mapping X_{0}, X_{1}, W, Z to $x_{0}, x_{1} \in \mathcal{R}_{1}, w \in \mathcal{R}_{2}, z \in \mathcal{R}_{3}$. An isomorphism $\mathcal{S} /(\sigma) \cong \mathcal{R}$ is induced, where $\sigma=Z^{2}+Z a\left(X_{0}, X_{1}, W\right)+b\left(X_{0}, X_{1}, W\right)$, and σ, a, b are homogeneous of degree $6,3,6$ respectively.

If $\Sigma=\operatorname{Proj} \mathcal{R} \subset \mathbb{P}(1,1,2,3)=\operatorname{Proj} \mathcal{S}$ is the anticanonical model of S, then $\eta: S \rightarrow \Sigma, \eta=\left(x_{0}, x_{1}, w, z\right)$, is an isomorphism, as $-K_{S}$ is ample.

The map $j: \mathbb{P}(1,1,2) \rightarrow \mathbb{P}^{3}, j\left(x_{0}, x_{1}, w\right)=\left(x_{0}^{2}, x_{0} x_{1}, x_{1}^{2}, w\right)$, induces an isomorphism between $\mathbb{P}(1,1,2)$ and the quadric cone $\mathcal{Q}=\left\{T_{0} T_{2}-T_{1}^{2}=0\right\}$ in \mathbb{P}^{3}, and the antibicanonical map $\phi_{2}: S \rightarrow \mathbb{P}^{3}, \phi_{2}=\left(x_{0}^{2}, x_{0} x_{1}, x_{1}^{2}, w\right)$, factors through \mathcal{Q}. The projection $\Pi: \mathbb{P}(1,1,2,3) \rightarrow \mathbb{P}(1,1,2)$ sending $\left(x_{0}, x_{1}, w, z\right)$ to $\left(x_{0}, x_{1}, w\right)$ induces $\pi: \Sigma \rightarrow \mathbb{P}(1,1,2)$, which corresponds to the antibicanonical map after the identifications $S \cong \Sigma$ and $\mathbb{P}(1,1,2) \cong \mathcal{Q}$, which we shall assume from now on. It follows that ϕ_{2} is $2: 1$ onto \mathcal{Q}.

In conclusion, Σ is the $2: 1$ covering of $\mathbb{P}(1,1,2)$ defined by

$$
\begin{equation*}
\sigma=Z^{2}+Z a\left(X_{0}, X_{1}, W\right)+b\left(X_{0}, X_{1}, W\right)=0 \tag{1}
\end{equation*}
$$

Remark 2.1. Let $V=(0,0,0,1)$ be the vertex of the quadric cone \mathcal{Q}. Then
(i) if $E \in\left|-K_{S}\right|$ then $\phi_{2}(E)$ is a line in \mathcal{Q} passing through the vertex V;
(ii) if $\Gamma \subset S$ is a (-1)-curve, then $\left.\phi_{2}\right|_{\Gamma}: \Gamma \rightarrow \phi_{2}(\Gamma)$ is $1: 1$ and $\phi_{2}(\Gamma)$ is a smooth conic in \mathcal{Q}, the intersection of \mathcal{Q} with a plane H in \mathbb{P}^{3} s.t. $V \notin H$;
(iii) $p_{a}\left(\mathcal{A}^{*}\right)=p_{a}\left(A^{*}\right)=4$.

Key-lemma 2.2. Let H be a plane in $\mathbb{P}^{3}, H \not \supset V$; then the divisor $\phi_{2}^{*}(H)$ has a (-1)-curve as component \Longleftrightarrow it has (at least) 3 (maybe infinitely near) singular points. If this happens, $\phi_{2}^{*}(H)=\Gamma_{1}+\Gamma_{2}$ where Γ_{i} are (-1)-curves for $i=1,2$ and $\Gamma_{1} \cdot \Gamma_{2}=3$. Every (-1)-curve in S arises in this way.

Remark 2.3. If Γ_{1}, Γ_{2} is as in 2.2 then $\Gamma_{1}+\Gamma_{2}$ is smooth outside the ramification and singular in $\Gamma_{1} \cap \Gamma_{2}$, hence $1 \leq \#\left(\Gamma_{1} \cap \Gamma_{2}\right) \leq 3$ and $\Gamma_{1} \cap \Gamma_{2}=A^{*} \cap \Gamma_{i}$. We call Γ_{1}, Γ_{2} a pair of (-1)-curves of type $(1,1,1)$, respectively $(2,1)$, respectively (3) if $\#\left(\Gamma_{1} \cap \Gamma_{2}\right)$ is $3,2,1$.

Let $a=\alpha_{3}+\alpha_{1} W, b=\beta_{6}+\beta_{4} W+\beta_{2} W^{2}+\beta_{0} W^{3}$, where $\alpha_{i}, \beta_{i} \in \mathbb{K}\left[X_{0}, X_{1}\right]_{i}$.
Remark 2.4. The non-singularity of Σ implies:
(i) $\beta_{0} \neq 0$;
(ii) $a \neq 0$.

Proof: The non-singularity of Σ in $\mathbb{P}(1,1,2,3)$ is equivalent to

$$
\left\{\sigma=\sigma_{X_{0}}=\sigma_{X_{1}}=\sigma_{W}=\sigma_{Z}=0\right\}=\emptyset
$$

(i) If $\beta_{0}=0$ then Σ is singular in $\pi^{-1}(0,0,1)$.
(ii) Otherwise, $\sigma=z^{2}+b$.

We want to show that $\emptyset \neq\left\{b_{X_{0}}=b_{X_{1}}=b_{W}=0\right\}$. The last set is equal to $\left\{\beta_{4}^{2} \beta_{2 X_{i}}^{2}+\beta_{4} \beta_{4 X_{i}}^{2}+\beta_{6 X_{i}}^{2}=0, W^{2}=\beta_{4}\right\}_{i=1,2}$. The first equation has 10 solutions in \mathbb{P}^{1}; if for $i=0$ we have a solution $\left(a_{0}, a_{1}\right) \in \mathbb{P}^{1}$ with $a_{1} \neq 0$, then Euler's Theorem on homogeneous functions, gives the relation $X_{0} b_{X_{0}}+X_{1} b_{X_{1}}=0$ and we are done. The same if for $i=1$ we have a solution $\left(a_{0}, a_{1}\right)$ with $a_{0} \neq 0$. We are left with the case $\beta_{4}^{2} \beta_{2 X_{0}}^{2}+\beta_{4} \beta_{4 X_{0}}^{2}+\beta_{6 X_{0}}^{2}=X_{1}^{10}$ and $\beta_{4}^{2} \beta_{2 X_{1}}^{2}+\beta_{4} \beta_{4 X_{1}}^{2}+\beta_{6 X_{1}}^{2}=X_{0}^{10}$. Multiplying the first by X_{0}^{2}, the second by X_{1}^{2}, summing up, using Euler's relation $X_{0} \beta_{d X_{0}}+X_{1} \beta_{d X_{1}}=0$ for d even and the fact that Char $\mathbb{K}=2$, we get $0=X_{0}^{2} X_{1}^{10}+X_{1}^{2} X_{0}^{10}$ as polynomials, excluded.

It follows that π has $\mathcal{A}=\{a=0\}$ as branch divisor and $\mathcal{A}^{*}=\pi^{-1}(\mathcal{A})$ as ramification divisor; then $A=j(\mathcal{A})$ and $A^{*}=\eta^{-1}\left(\mathcal{A}^{*}\right)$ are the branch divisor and the ramification divisor of ϕ_{2}. The vertex $V=(0,0,0,1)$ of the quadric cone \mathcal{Q} is an isolated branch point, since S is smooth.

Remark 2.5. We have:
(i) $p_{a}\left(A^{*}\right)=p_{a}(A)=4$;
(ii) $V \in A \subset \mathcal{Q}$ and $\operatorname{deg} A=3, V$ being the vertex of the cone \mathcal{Q};
(iii) A is smooth $\Longleftrightarrow\left\{\alpha_{3}=\alpha_{1}=0\right\}=\emptyset$ in \mathbb{P}^{1};
(iv) the following cases may occur:
(1) if A is smooth, then it is a twisted cubic curve in \mathbb{P}^{3}; if A is not smooth then it decomposes into:
(2) a smooth conic and a line;
(3) three distinct lines;
(4) a double line and a line;
(5) a triple line.

Proof:

(i) holds because $\left.\phi_{2}\right|_{\mathcal{A}^{*}}: \mathcal{A}^{*} \rightarrow \mathcal{A}$ is purely inseparable and by 2.1 (iii).
(ii) The fact that the vertex V of the cone \mathcal{Q} lies in A follows from (iv); moreover $\mathcal{A}^{*} \in\left|-2 K_{\Sigma}\right|$ so $\operatorname{deg} A \cdot \operatorname{deg} \phi_{2}=\mathcal{A}^{*} \cdot\left(-2 K_{\Sigma}\right)=6$.
(iii) \Rightarrow If $\left\{\alpha_{3}=\alpha_{1}=0\right\} \neq \emptyset$, we may choose projective coordinates s.t. $a=X_{0} W+X_{0} q, q \in \mathbb{K}\left[X_{0}, X_{1}\right]_{2}$. Then $\left(a_{X_{0}}, a_{X_{1}}, a_{W}\right)=(0,0,0)$ in $\left(X_{0}, X_{1}, W\right)=$ $(0,1, q(0,1))$.
$\Leftarrow \quad$ If α_{1} and α_{2} have no common roots, we may assume projective coordinates s.t. $\alpha_{1}=X_{0}, \alpha_{3}=m X_{1}^{3}+X_{0} q, m \in \mathbb{K}-\{0\}, q$ as before. Then if $\left(a_{X_{0}}, a_{X_{1}}, a_{W}\right)=(0,0,0)$, we get $X_{0}=0, X_{1}=0, q=0, W=0$, excluded.
(iv) $(0,0,1) \in \mathcal{A}$ implies $V=j((0,0,1)) \in A$. Suppose A smooth; we may assume $\alpha_{1}=X_{0}$ and after $W \mapsto n^{-1} W+q, q$ as before, $X_{1} \mapsto n X_{1}$ for suitable $n \in \mathbb{K}-\{0\}$, we get $a=X_{0} W+X_{1}^{3}$. Then

$$
\begin{equation*}
\alpha: \mathbb{P}^{1} \rightarrow \mathbb{P}^{3} \quad \alpha\left(x_{0}, x_{1}\right)=\left(x_{0}^{3}, x_{0}^{2} x_{1}, x_{0} x_{1}^{2}, x_{1}^{3}\right) \tag{2}
\end{equation*}
$$

is an isomorphism and $A=\alpha\left(\mathbb{P}^{1}\right)$ is a twisted cubic curve.
If A is not smooth, we get in the same way for a the normal forms $W X_{0}$, $X_{1}\left(X_{1}+X_{0}\right)\left(X_{1}+p X_{0}\right), p \in \mathbb{K}-\{0,1\}, X_{1}^{2}\left(X_{1}+X_{0}\right), X_{1}^{3}$, which correspond to cases (2), (3), (4), (5).

From now on we make the assumption of Theorem 1.1 that $A \cong \mathcal{A}$ is smooth. We choose coordinates $\left(x_{0}, x_{1}, w\right)$ on $\mathbb{P}(1,1,2)$ so that $a=X_{0} W+X_{1}^{3}$ and $A=$ $\alpha\left(\mathbb{P}^{1}\right)$ is the twisted cubic curve defined by (2).

We shall identify A to \mathbb{P}^{1} by α and choose on A the canonical coordinates $X=\left(x_{0}, x_{1}\right)$ of \mathbb{P}^{1}, so that $V=(0,1)$.

3 - The surface \mathbb{F} and the map $\psi: \mathbb{F} \rightarrow \mathbb{P}^{3 V}$

To apply 2.2, we look for hyperplanes H in \mathbb{P}^{3} for which $H \nexists V$ and $\phi_{2}^{*}(H)$ has at least 3 singular points.

Let $H=\left\{h_{0} T_{0}+h_{1} T_{1}+h_{2} T_{2}+h_{3} T_{3}=0\right\}, h_{3} \neq 0$. Consider $H \in \mathbb{P}^{3 \vee}$ and choose on $\mathbb{P}^{3 \vee}$ the dual coordinates; then $H=\left(h_{0}, h_{1}, h_{2}, h_{3}\right)$ and

$$
\phi_{2}^{*}(H):\left\{\begin{array}{l}
Z^{2}+a Z+b=0 \\
h_{0} X_{0}^{2}+h_{1} X_{0} X_{1}+h_{2} X_{2}^{2}+h_{3} W=0
\end{array}\right.
$$

For $Q^{\prime}=\left(x_{0}, x_{1}, w\right) \in \mathcal{A}-\{(0,0,1)\}, \quad Q=j\left(Q^{\prime}\right)=\left(x_{0}^{2}, x_{0} x_{1}, x_{1}^{2}, w\right) \in A-\{V\}$, consider

$$
F_{Q}=\left\{H \in \mathbb{P}^{3 \vee} \mid H \ni Q, \exists Q^{*} \in \phi_{2}^{-1}(Q) \text { s.t. } \phi_{2}^{*}(H) \text { is singular in } Q^{*}\right\} .
$$

The singularity of $\phi_{2}^{*}(H)$ at Q^{*} can be expressed by

$$
\operatorname{rank}\left(\begin{array}{cccc}
a_{X_{0}} Z+b_{X_{0}} & a_{X_{1}} Z+b_{X_{1}} & a_{W} Z+b_{W} & a \tag{3}\\
h_{1} X_{1} & h_{1} X_{0} & h_{3} & 0
\end{array}\right)\left(Q^{\prime}\right) \leq 1
$$

As $h_{3} \neq 0$, if $Q \notin A$ then $F_{Q}=\emptyset$, while if $Q \in A-\{V\}$

$$
F_{Q} \neq \emptyset \Longleftrightarrow\left(h_{3} f_{X_{0}}+h_{1} X_{1} f_{W}\right)(Q)=\left(h_{3} f_{X_{1}}+h_{1} X_{0} f_{W}\right)(Q)=0
$$

Let

$$
M=\left(\begin{array}{cccc}
X_{0}^{2} & X_{0} X_{1} & X_{1}^{2} & W \tag{4}\\
0 & X_{1} \sigma_{W} & 0 & \sigma_{X_{0}} \\
0 & X_{0} \sigma_{W} & 0 & \sigma_{X_{1}}
\end{array}\right) \in M(3,4, \mathcal{S})
$$

Euler's Theorem applied to σ gives $X_{0} \sigma_{X_{0}}+X_{1} \sigma_{X_{1}}=0$. The smoothness of \mathcal{A} implies $\operatorname{rank} M\left(Q^{\prime}\right)=2$ if $Q^{\prime} \in \mathcal{A}-\{(0,0,1)\}, \operatorname{rank} M((0,0,1))=1$. Let $S_{R}\left(M\left(Q^{\prime}\right)\right)$ be the subspace of \mathbb{K}^{4} generated by the rows of $M\left(Q^{\prime}\right)$, and denote by \perp the orthogonality in \mathbb{K}^{4} with respect to $\langle X, Y\rangle={ }^{t} X \cdot Y$.

Remark 3.1. For all $Q \in A-\{V\}, L(Q)=\mathbb{P}\left(S_{R}\left(M\left(Q^{\prime}\right)\right)\right.$ is a line in \mathbb{P}^{3} and $Q \in L(Q) \subset T \mathcal{Q}_{Q}$, where $T \mathcal{Q}_{Q}$ is the tangent plane to \mathcal{Q} in Q. Moreover

$$
\begin{equation*}
F_{Q}=\mathbb{P}\left(S_{R}\left(M\left(Q^{\prime}\right)\right)^{\perp}\right)=\left\{H \in \mathbb{P}^{3 \vee} \mid H \supset L(Q)\right\} \subset \mathbb{P}^{3 \vee} \tag{5}
\end{equation*}
$$

is a line in $\mathbb{P}^{3 \vee}$ which represents the net of the planes in \mathbb{P}^{3} containing $L(Q)$.

To determine F_{Q}, remark that $x_{0} \neq 0$ for $Q^{\prime} \in \mathcal{A}-\{(0,0,1)\}$, so we can multiply by X_{0} the equations to modify degrees. Looking at the rows of M, we define the following matrix

$$
N=\left(\begin{array}{cccc}
X_{1}^{2} X_{0}^{4} & 0 & X_{0}^{6} & 0 \\
0 & X_{1} \sigma_{X_{0}} & X_{0} \sigma_{X_{0}}+W \sigma_{W} & X_{1}^{2} \sigma_{W} \\
X_{1} \sigma_{X_{1}}+W \sigma_{W} & X_{0} \sigma_{X_{1}} & 0 & X_{0}^{2} \sigma_{W}
\end{array}\right)
$$

Remark 3.2. $N \in M\left(3,4, \mathcal{S}_{6}\right)$ and the following properties hold:
(i) $\operatorname{rank} N\left(Q^{\prime}\right)=2 \quad \forall Q^{\prime} \in \mathcal{A}$;
(ii) $\quad S_{R}\left(N\left(Q^{\prime}\right)\right)=S_{R}\left(M\left(Q^{\prime}\right)\right)^{\perp} \quad \forall Q^{\prime} \in \mathcal{A}-\{(0,0,1)\}$.

Proof: Using Euler's relation we get $S_{R}(N) \subset S_{R}(M)^{\perp}$; moreover we have $\operatorname{rank} N\left(Q^{\prime}\right) \geq 2$ if $Q^{\prime} \in \mathcal{A}-\{(0,0,1)\}, \operatorname{rank} M((0,0,1))=2$.

Using the relation $X_{0} W=X_{1}^{3}$ on \mathcal{A} and remarking that W has exponent at most 3 , we can eliminate W multiplying by X_{0}^{3}. On \mathcal{A} we have $Z=\sqrt{b}$, so taking the square we eliminate Z. Thus let $\tilde{N}=X_{0}^{6} N^{[2]}$, where $N^{[2]}$ is the matrix
obtained taking the square of each entry of N. Then

$$
\begin{align*}
& \tilde{N}=\left(\begin{array}{c}
\nu_{0} \\
\nu_{1} \\
\nu_{2}
\end{array}\right)=\left(\begin{array}{cccc}
R_{2} & 0 & R_{1} & 0 \\
0 & F_{1} & R_{0} & G_{1} \\
R_{0} & F_{2} & 0 & G_{2}
\end{array}\right), \tag{6}\\
& R_{0}=X_{0}^{8} \sigma_{X_{0}}^{2}+X_{0}^{6} W^{2} \sigma_{W}^{2}=\beta_{0}^{2} X_{1}^{18}+X_{0} S, \quad S \in \mathbb{K}\left[X_{0}, X_{1}\right]_{17}, \\
& R_{1}=X_{0}^{18}, \quad R_{2}=X_{0}^{14} X_{1}^{4}, \\
& F_{1}=X_{0}^{6} X_{1}^{2} \sigma_{X_{0}}^{2}=X_{0}^{4} X_{1}^{4} \sigma_{X_{1}}^{2}, \quad F_{2}=X_{0}^{8} \sigma_{X_{1}}^{2}, \\
& G_{1}=X_{0}^{6} X_{1}^{4} \sigma_{W}^{2}, \quad G_{2}=X_{0}^{10} \sigma_{W}^{2} .
\end{align*}
$$

Remark 3.3. The following properties are consequences of 3.2.
(i) $\tilde{N} \in M\left(3,4, \mathbb{K}\left[X_{0}, X_{1}\right]_{18}\right)$;
(ii) $R_{0} \nu_{0}+R_{1} \nu_{1}+R_{2} \nu_{2}=0$ and for all $X=\left(x_{0}, x_{1}\right) \in \mathbb{P}^{1} \cong A$ we have:
(1) $\operatorname{rank} \tilde{N}(X)=2, \operatorname{rank}\left(R_{0}, R_{1}, R_{2}\right)(X)=1$;
(2) $x_{0} \neq 0 \Longrightarrow \nu_{0}(X), \nu_{2}(X)$ are independent;
(3) $X=V=(0,1) \Longrightarrow \nu_{1}(V), \nu_{2}(V)$ are independent.
(iii) $S_{R}(\tilde{N}(Q))=S_{R}\left(M^{[2]}\left(Q^{\prime}\right)\right)^{\perp}, \forall Q=j\left(Q^{\prime}\right) \in A-\{V\}$.

The Kernel of the surjective linear map $\mathbb{K}^{3} \rightarrow S_{R}(\tilde{N}), Y \mapsto y_{0} \nu_{0}+y_{1} \nu_{1}+y_{2} \nu_{2}$, where $Y=\left(Y_{0}, Y_{1}, Y_{2}\right)$, is spanned by the relations $\left(R_{0}, R_{1}, R_{2}\right)$.

Let $\mathcal{V}=\mathbb{P}_{X}^{1} \times \mathbb{K}_{Y}^{3} \xrightarrow{\pi} \mathbb{P}^{1}$ be the trivial vector bundle with fiber \mathbb{K}^{3} and let $\mathcal{K}=\left\{(X, Y) \in \mathcal{V} \mid Y \in\left\langle\left(R_{0}, R_{1}, R_{2}\right)(X)\right\rangle\right\}$ be the sub bundle generated by the relations. Define

$$
\mathbb{F}=\mathbb{P}(\mathcal{V} / \mathcal{K}) \xrightarrow{p} \mathbb{P}^{1} \cong A \cong \mathcal{A}
$$

to be the associated \mathbb{P}^{1}-bundle and denote by $\mathbb{F}_{X}=p^{-1}(X)$ its fiber. Let

$$
\psi: \mathbb{F} \rightarrow \mathbb{P}^{3 \vee} \quad \psi(X, Y)=y_{0} \nu_{0}(X)+y_{1} \nu_{1}(X)+y_{2} \nu_{2}(X) .
$$

Let $\left({ }_{-}\right)^{[2]}: \mathbb{P}^{n} \rightarrow \mathbb{P}^{n}$ be the purely inseparable morphism $\left(x_{i}\right) \mapsto\left(x_{i}^{2}\right)$ and ()$\left.^{-}\right)^{\left[\frac{1}{2}\right]}$ be the inverse bijection.

Remark 3.4. From 3.3 it follows

(i) ψ is a morphism and for all $X=Q=j\left(Q^{\prime}\right) \in \underset{\sim}{A}$ the restriction map $\left.\psi\right|_{\mathbb{F}_{Q}}: \mathbb{F}_{Q} \rightarrow \mathbb{P}^{3 \vee}$ is linear, so that $\psi\left(\mathbb{F}_{Q}\right)=\mathbb{P} S_{R}(\tilde{N}(Q))$ is a line in $\mathbb{P}^{3 \vee}$. Moreover, if $Q \neq V$ then

$$
\psi\left(\mathbb{F}_{Q}\right)^{\left[\frac{1}{2}\right]}=\mathbb{P}\left(S_{R}\left(M\left(Q^{\prime}\right)\right)^{\perp}\right)=F_{Q} .
$$

(ii) For $H \in F_{Q}$, we have $H \supset L(Q) \ni Q$ and $\operatorname{deg} A=3$, so ψ is finite, $\# \psi^{-1}(H) \leq 3$ for all $H \in \psi(\mathbb{F})$, and $\psi(\mathbb{F})$ is a surface.

We have determined F_{Q}, the planes H for which $\phi_{2}^{*}(H)$ is singular over Q; by 2.2 the (-1)-curves on S correspond to $F_{Q_{1}} \cap F_{Q_{2}} \cap F_{Q_{3}}$, hence to the triple points of the surface $\psi(\mathbb{F})$. The proof of Theorem 1.1 reduces therefore to show that the surface $\psi(\mathbb{F})-\left\{h_{3}=0\right\}$ contains 120 triple points.

We need normal forms for F_{i}, G_{i} up to coordinate change in $\mathbb{P}(1,1,2,3)$. The projective transformations $\operatorname{PGL}(2, \mathbb{K})$ of $\mathbb{P}_{\left(x_{0}, x_{1}\right)}^{1}$ send any 3 distinct points to any 3 distinct points; since we are in case (1) of 2.5 (iv) as in that proof we may fix 1 of the 3 points and get $a=X_{0} W+X_{1}^{3}$.

After $X_{0} \mapsto \beta_{0}^{1 / 3} X_{0}$ and $W \mapsto W / \beta_{0}^{1 / 3}$, we may assume $\beta_{0}=1$. Denote by \square the square of a polynomial. Then $Z \mapsto Z+\gamma_{1}\left(X_{0}, X_{1}\right)(W)+\gamma_{1}\left(X_{0}, X_{1}\right)$, $\gamma_{i} \in \mathbb{K}\left[X_{0}, X_{1}\right]_{i}$, gives $b \mapsto b+a \gamma_{1} W+a \gamma_{3}+\square=W^{3}+\left(\beta_{2}+X_{0} \gamma_{1}\right) W^{2}+$ $\left(\beta_{4}+X_{0} \gamma_{3}+X_{1}^{3} \gamma_{1}\right) W+\beta_{6}+X_{1}^{3} \gamma_{3}+\square$. Choose γ_{1} so that $\left(\beta_{2}+X_{0} \gamma_{1}\right) W^{2}=$ $c X_{1}^{2} W^{2}=\square$ and γ_{3} so that $\beta_{4}+X_{0} \gamma_{3}+X_{1}^{3} \gamma_{1}=c_{3} X_{1}^{4}$.

Hence $a=X_{0} W+X_{1}^{3}$ and $b=W^{3}+c_{3} X_{1}^{4} W+X_{0} X_{1} H^{2}+L^{2}$, where $H=$ $c_{0} X_{0}^{2}+c_{1} X_{0} X_{1}+c_{2} X_{1}^{2}$ and $L=d_{0} X_{0}^{3}+d_{1} X_{0}^{2} X_{1}+d_{2} X_{0} X_{1}^{2}+d_{3} X_{1}^{3}+d_{4} W X_{1}$, with $c_{i}, d_{j} \in \mathbb{K},\left(c_{0}, d_{0}\right) \neq(0,0)$ because Σ is smooth above ($1,0,0$).

Setting $t=X_{1} / X_{0}$ it follows

$$
\begin{align*}
& F_{1}=t^{4} F_{2}, \\
& G_{1}=t^{4} G_{2}, \\
& R_{0}=X_{1}^{18}+c_{3}^{2} X_{0}^{4} X_{1}^{14}+X_{0}^{8} X_{1}^{2} H^{4}, \tag{8}\\
& F_{2}=X_{0}^{5} X_{1}^{13}+c_{3} X_{0}^{7} X_{1}^{11}+X_{0}^{9} X_{1}^{5} H^{2}+X_{0}^{8} X_{1}^{4} L^{2}+X_{0}^{10} H^{4}, \\
& G_{2}=X_{0}^{6} X_{1}^{12}+X_{0}^{9} X_{1}^{9}+c_{3}^{2} X_{0}^{10} X_{1}^{8}+c_{3} X_{0}^{11} X_{1}^{7}+X_{0}^{13} X_{1} H^{2}+X_{0}^{12} L^{2} .
\end{align*}
$$

The \mathbb{P}^{1}-bundle \mathbb{F} is a Segre-Hirzebruch surface $\mathbb{F}_{d}=\mathbb{P}\left(\mathcal{O}_{\mathbb{P}^{1}} \oplus \mathcal{O}_{\mathbb{P}^{1}}(d)\right)$. We want to find generators of Pic \mathbb{F} and determine d.

For $i=1,2$ and $j=0,1,2$ let $r_{j}=R_{j}(1, t), \quad f_{i}=F_{i}(1, t), \quad g_{i}=G_{i}(1, t)$; $t_{V}=1 / t=X_{0} / X_{1}, r_{V, j}=R_{j}\left(t_{V}, 1\right), f_{V, i}=F_{i}\left(t_{V}, 1\right), g_{V, i}=G_{i}\left(t_{V}, 1\right)$. Then

$$
\begin{align*}
& r_{0}=\left(t^{9}+c_{3} t^{7}+t h^{2}\right)^{2}=t^{2} g^{4}, \quad r_{1}=1, \quad r_{2}=t^{4} \\
& f_{2}=t^{13}+c_{3} t^{11}+t^{5} h^{2}+t^{4} l^{2}+h^{4} \tag{9}\\
& g_{2}=t^{12}+t^{9}+c_{3}^{2} t^{8}+c_{3} t^{7}+t h^{2}+l^{2}
\end{align*}
$$

where $h=c_{0}+c_{1} t+c_{2} t^{2}, l=d_{0}+d_{1} t+d_{2} t^{2}+d_{3} t^{3}+d_{4} t^{4}$. It follows

$$
\begin{align*}
g_{2}^{\prime} & =\frac{d}{d t} g_{2}(t)=g^{2} \\
g & =c_{0}+c_{1} t+c_{2} t^{2}+\sqrt{c_{3}} t^{3}+t^{4} \tag{10}\\
t^{4} g_{2}+f_{2} & =g^{4}
\end{align*}
$$

Proposition 3.5. For $Q \in A-\{V\}$, the line $L(Q)$ defined in 3.1 verifies
(i) $L(Q)$ is the tangent to A in $Q \Longleftrightarrow g(Q)=0 \Longleftrightarrow g_{2}^{\prime}(Q)=0$;
(ii) $L(Q) \ni V \Longleftrightarrow g_{2}(Q)=0$.

From the geometry of the twisted cubic A and (10) it follows $\left\{g_{2}=g_{2}^{\prime}=0\right\}=$ $\left\{f_{2}=g_{2}=0\right\}=\emptyset$, i.e. g_{2} has 12 distinct roots in \mathbb{K}.

Proof:

(i) The line $L(Q)=\mathbb{P}\left(S_{R}\left(M\left(Q^{\prime}\right)\right)\right.$ is tangent to $A=\alpha\left(\mathbb{P}^{1}\right)$ in $Q \Longleftrightarrow$ $\alpha^{\prime}(t)=\left(0,1,0, t^{2}\right) \in S_{R}(M)$. But $x_{0} \neq 0$, so the condition is equivalent to the fact that the 2 vectors $\left(1, X_{1} \sigma_{W}, X_{0} \sigma_{W}\right)$ and $\left(t^{2}, \sigma_{X_{0}}, \sigma_{X_{1}}\right)$ are dependent, which is equivalent - by Euler's relation and by $\left(X_{0} \sigma_{W}, \sigma_{X_{1}}\right) \neq(0,0)$ (smoothness of A) - to $\sigma_{X_{1}}+t^{2} X_{0} \sigma_{W}=0$ and to $X_{0}^{8}\left(\sigma_{X_{1}}^{2}+t^{4} X_{0}^{2} \sigma_{W}^{2}\right)=0$ and finally to $t^{4} g_{2}+f_{2}=g^{4}=0$.
(ii) $V=(0,0,0,1) \in\left(S_{R}\left(M\left(Q^{\prime}\right)\right) \Longleftrightarrow\right.$ the first 3 columns of M have rank 1 $\Longleftrightarrow f_{W}=0 \Longleftrightarrow g_{2}(Q)=0$.

Let $U=\left\{\left(x_{0}, x_{1}\right) \in \mathbb{P}^{1} \mid x_{0} \neq 0\right\}, \quad U_{V}=\left\{\left(x_{0}, x_{1}\right) \in \mathbb{P}^{1} \mid R_{0}\left(x_{0}, x_{1}\right) \neq 0\right\}$.
By 3.3 (ii) it follows that $\left\{U, U_{V}\right\}$ is an open cover of $\mathbb{P}^{1}, U_{V} \ni V$, and that $\nu_{0}(X), \nu_{2}(X)$ are independent for $X \in U, \nu_{1}(X), \nu_{2}(X)$ are independent for $X \in U_{V}$. Local affine coordinates on $\mathcal{V} / \mathcal{K}$ are

$$
\begin{array}{ll}
\text { on } \pi^{-1}(U) & t=x_{1} / x_{0} \text { and } y_{0}, y_{2}, \quad \text { where } y_{i}=\left.y_{i}\right|_{U} \\
\text { on } \pi^{-1}\left(U_{V}\right) & t_{V}=x_{0} / x_{1} \text { and } y_{V, 1}, y_{V, 2}, \quad \text { where } y_{V, i}=\left.y_{i}\right|_{U_{V}} .
\end{array}
$$

Let $\mathbb{F}=\tilde{U} \cup \tilde{U}_{V}, \quad$ where $\tilde{U}=p^{-1}(U)=\tilde{U}_{0} \cup \tilde{U}_{2}, \quad \tilde{U}_{V}=p^{-1}\left(U_{V}\right)=\tilde{U}_{V, 1} \cup \tilde{U}_{V, 2}$

$$
\begin{aligned}
& \tilde{U}_{0}=\left\{(X, Y) \in \tilde{U} \mid Y_{0} \neq 0\right\} \\
& \tilde{U}_{2}=\left\{(X, Y) \in \tilde{U} \mid Y_{2} \neq 0\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \tilde{U}_{V, 1}=\left\{(X, Y) \in \tilde{U}_{V} \mid Y_{V, 1} \neq 0\right\}, \\
& \tilde{U}_{V, 2}=\left\{(X, Y) \in \tilde{U}_{V} \mid Y_{V, 2} \neq 0\right\} .
\end{aligned}
$$

Affine coordinates are

$$
\begin{array}{ll}
\text { on } \tilde{U}_{0} & \left(t, u_{0}\right) \text { where } u_{0}=y_{2} / y_{0}, \\
\text { on } \tilde{U}_{2} & \left(t, u_{2}\right) \text { where } u_{2}=y_{0} / y_{2}, \\
\text { on } \tilde{U}_{V, 1} & \left(t_{V}, v_{1}\right) \text { where } v_{1}=y_{V, 2} / y_{V, 1}, \\
\text { on } \tilde{U}_{V, 2} & \left(t_{V}, v_{2}\right) \text { where } v_{2}=y_{V, 1} / y_{V, 2} .
\end{array}
$$

Let $\psi_{\tilde{U}}, \psi_{\tilde{U}_{V}}, \psi_{i}, \psi_{V, i}$, be the restrictions of ψ to $\tilde{U}, \tilde{U}_{V}, \tilde{U}_{i}, \tilde{U}_{V, i}$.
By (6), we have $\nu_{0}=\left(t^{4}, 0,1,0\right), \nu_{2}=\left(r_{0}, f_{2}, 0, g_{2}\right), \nu_{V, 1}=\left(0, f_{V, 1}, r_{V, 0}, g_{V, 1}\right)$, $\nu_{V, 2}=\left(r_{V, 0}, f_{V, 2}, 0, g_{V, 2}\right)$. It follows

$$
\begin{align*}
& \psi_{\tilde{U}}=Y_{0} \nu_{0}+Y_{2} \nu_{2}, \quad \psi_{\tilde{U}_{V}}=Y_{V, 1} \nu_{V, 1}+Y_{V, 2} \nu_{V, 2}, \\
& \psi_{0}=\nu_{0}+u_{0} \nu_{2}=\left(t^{4}+u_{0} r_{0}, u_{0} f_{2}, 1, u_{0} g_{2}\right), \\
& \psi_{2}=u_{2} \nu_{0}+\nu_{2}=\left(t^{4} u_{2}+r_{0}, f_{2}, u_{2}, g_{2}\right), \tag{11}\\
& \psi_{V, 1}=\nu_{V, 1}+v_{1} \nu_{V, 2}=\left(v_{1} r_{V, 0}, f_{V, 1}+v_{1} f_{V, 2}, r_{V, 0}, g_{V, 1}+v_{1} g_{V, 2}\right), \\
& \psi_{V, 2}=v_{2} \nu_{V, 1}+\nu_{V, 2}=\left(r_{V, 0}, v_{2} f_{V, 1}+f_{V, 2}, v_{2} r_{V, 0}, v_{2} g_{V, 1}+g_{V, 2}\right) .
\end{align*}
$$

We define on \mathbb{F} the divisors $D, E, \mathbb{F}_{X}=p^{-1}(X)$ for $X \in \mathbb{P}^{1}$.
Remarking that $R_{0} \neq 0$ in U_{V}

$$
\begin{aligned}
D & =\psi^{*}\left\{h_{2}=0\right\}=\left\{Y_{0} X_{0}^{18}+Y_{1} R_{0}=0\right\} \\
& =\left\{\left(\tilde{U}, Y_{0} X_{0}^{18}\right),\left(\tilde{U}_{V}, Y_{V, 1} R_{0}=0\right)\right\} \\
& =\left\{\left(\tilde{U}_{0}, 1\right),\left(\tilde{U}_{2}, u_{2}\right),\left(\tilde{U}_{V, 1}, 1\right),\left(\tilde{U}_{V, 2}, v_{2}\right)\right\}, \\
E & =\left\{\left(\tilde{U}, Y_{2}\right),\left(\tilde{U}_{V}, X_{1}^{4} Y_{V, 1}+X_{0}^{4} Y_{V, 2}\right)\right\} \\
& =\left\{\left(\tilde{U}_{0}, u_{0}\right),\left(\tilde{U}_{2}, 1\right),\left(\tilde{U}_{V, 1}, 1+t_{V}^{4} v_{1}\right),\left(\tilde{U}_{V, 2}, v_{2}+t_{V}^{4}\right)\right\} .
\end{aligned}
$$

Proposition 3.6. D, E, \mathbb{F}_{X} are irreducible, smooth, rational divisors on \mathbb{F}. If we denote their classes in Pic \mathbb{F} respectively by d, e, f and by h^{\vee} the class of a hyperplane H^{\vee} in $\mathbb{P}^{3 \vee}$, then

$$
\begin{aligned}
f^{2} & =0, \quad d \cdot f=e \cdot f=1, \quad d \cdot e=4, \\
\psi^{*}\left(h^{\vee}\right) & =d=e+14 f, \quad d^{2}=18, \quad e^{2}=-10 .
\end{aligned}
$$

Hence \mathbb{F} is a Segre-Hirzebruch surface \mathbb{F}_{10}. Moreover, for all $(a, b) \in \mathbb{P}^{1}$

$$
\begin{equation*}
\psi^{*}\left\{a h_{1}+b h_{3}=0\right\}=E+\left.\left\{a f_{2}(t)+b g_{2}(t)=0\right\}\right|_{\tilde{U}}+r \mathbb{F}_{V} \tag{12}
\end{equation*}
$$

where $r=1 \Leftrightarrow a \neq 0$ and $r=2 \Leftrightarrow a=0$.
In particular, $\psi^{*}\left\{h_{3}=0\right\}=E+\left.\left\{g_{2}(t)=0\right\}\right|_{\tilde{U}}+2 \mathbb{F}_{V}$, according to 3.5 and the fact that $\left\{h_{3}=0\right\}=\left\{H^{\vee} \in \mathbb{P}^{3 \vee} \mid H^{\vee} \ni V\right\}$.

Proof: $\quad E$ is a divisor since $\frac{1}{y_{2}}\left(x_{1}^{4} y_{V, 1}+x_{0}^{4} y_{V, 2}\right)=t^{4} \neq 0$ in $\tilde{U} \cap \tilde{U}_{V}$.
The other assertions follow from the local definition of D, E and the fact that $\psi^{*}\left(h^{\vee}\right)=e+14 f$, which is a consequence of (12).

The proof of 12 goes as follows: $\psi^{*}\left\{a h_{1}+b h_{3}=0\right\}=\left\{a\left(Y_{1} F_{1}+Y_{2} F_{2}\right)+\right.$ $\left.b\left(Y_{1} G_{1}+Y_{2} G_{2}\right)=0\right\}=\left\{\left(\tilde{U}, Y_{2}\left(a F_{2}+b G_{2}\right)\right),\left(\tilde{U}_{V},\left(Y_{V, 1}+t_{V}^{4} Y_{2}\right)\left(a F_{1}+b G_{1}\right)\right)\right\}$, $((6),(8))$. The value of r follows from $a F_{1}+b G_{1}=a X_{0} X_{1}^{17}+b X_{0}^{2} X_{1}^{16}+X_{0}^{3}(\ldots)$ and $\mathbb{F}_{V}=\left\{X_{0}=0\right\}$.

Corollary 3.7. Let L_{0} be the line $\left\{h_{1}=h_{3}=0\right\} \subset \mathbb{P}^{3 \vee}$.
(i) $\psi(E)$ and $\psi\left(\mathbb{F}_{X}\right)$, for all $X \in \mathbb{P}^{1}$, are lines in $\mathbb{P}^{3 \vee}$;
(ii) $\psi(E)=\psi\left(\mathbb{F}_{V}\right)=L_{0}$ and $\psi\left(\mathbb{F}_{X}\right) \neq L_{0}$, for all $X \in U$;
(iii) $\left.\psi\right|_{E}: E \rightarrow L_{0}$ is a purely inseparable morphism of degree 4 ;
(iv) $\operatorname{deg} \psi(\mathbb{F})=18$ and $\psi: \mathbb{F} \rightarrow \psi(\mathbb{F})$ is a birational morphism.

Proof:

(iii) $\left.E\right|_{\tilde{U}_{0}}=\left\{Y_{2}=0\right\}$ and $\psi\left(E \cap \tilde{U}_{0}\right)=Y_{0} \nu_{0}=Y_{0}\left(t^{4}, 0,1,0\right)$.

The second assertion of (ii) follows from the injectivity of $\left.\psi\right|_{E}$.
(iv) $\operatorname{deg} \psi(\mathbb{F})$ divides $d^{2}=18$ and $\operatorname{deg} \psi(\mathbb{F}) \geq 12$, because by 3.5 (ii), 3.6 and (i), (ii) above $\psi(\mathbb{F}) \cap\left\{h_{3}=0\right\}$ contains the distinct lines $\psi\left(\mathbb{F}_{c_{i}}\right), i=1 \ldots 12$, where c_{i} are the distinct roots of g_{2}.

Remark 3.8. The critical set $\{\operatorname{rank} d \psi<2\}$ of ψ is $E \cup \bigcup_{\{\rho \in U \mid g(\rho)=0\}} \mathbb{F}_{\rho}$. From 3.4 (ii) it follows that the singularities of $\psi(\mathbb{F})$ are

$$
\begin{equation*}
\operatorname{Sing}(\psi(\mathbb{F}))=L_{0} \cup \bigcup_{g(\rho)=0} \psi\left(\mathbb{F}_{\rho}\right) \cup\{\text { double points }\} \cup\{\text { triple points }\} \tag{13}
\end{equation*}
$$

Proof: By $3.4(\mathrm{i})$, the critical set is $\left\{(x, y) \in \mathbb{F} \left\lvert\, \frac{\partial \psi}{\partial x}(x, y)=0\right.\right\}$. In \tilde{U} by (11) we have $\partial \psi_{\tilde{U}} / \partial t=Y_{2}\left(0, t^{4} g_{2}^{\prime}, 0, g_{2}^{\prime}\right)$, while in $\mathbb{F}_{V}=\left\{t_{V}=0\right\} \subset \tilde{U}_{V}$, $\partial \psi_{\tilde{U}_{V}} / \partial t_{V}=\left(Y_{V, 1}+t_{V}^{4} Y_{V, 2}\right)\left(0, f_{V, 1}^{\prime}, 0, g_{V, 1}^{\prime}\right)$ and $f_{V, 1}^{\prime}=1$ for $t_{V}=0$.

4 - The map ξ and the double curve $\Lambda \subset \mathbb{F}$

The map ψ can be better understood through the following definition. For every $t \in U \subset \mathbb{P}^{1}$, the lines $\psi\left(\mathbb{F}_{t}\right)$ and $L_{0}=\psi(E)$ in $\mathbb{P}^{3 \vee}$ are distinct by 3.7 and intersect in $\psi\left(E \cap \mathbb{F}_{t}\right)$, hence span a plane $\xi(t)=\left\langle\psi\left(\mathbb{F}_{t}\right), L_{0}\right\rangle \in \Phi$, where $\Phi=\left\{H^{\vee} \subset \mathbb{P}^{3 \vee} \mid H^{\vee} \supset L_{0}\right\}=\left\{a h_{1}+b h_{3}=0 \mid(a, b) \in \mathbb{P}^{1}\right\}$ is the pencil of planes containing L_{0}. A morphism $\xi: \mathbb{P}^{1} \rightarrow \Phi$ is defined, and we have

$$
\begin{array}{cc}
S & \mathbb{F} \quad \xrightarrow{\psi} \mathbb{P}^{3 \vee} \xrightarrow{(-)^{\left[\frac{1}{2}\right]}} \mathbb{P}^{3 \vee} \\
\downarrow \phi_{2} & \downarrow p \\
\mathbb{P}^{3} \supset \mathcal{Q} \supset A & \stackrel{\alpha}{\leftrightarrows} \mathbb{P}^{1} \xrightarrow{\xi} \Phi \cong \mathbb{P}^{1}
\end{array}
$$

Remark 4.1. Choose on the pencil Φ the projective coordinates for which $\left\{a h_{1}+b h_{3}=0\right\}=(a, b)$, and let $\infty=(0,1) \in \Phi$. Then
(i) $\xi^{*}(\infty)=c_{1}+\ldots+c_{12}+V$, where c_{i} are the distinct roots of g_{2}.

Hence ξ is separable, $\xi(V)=\infty, \operatorname{deg} \xi=13$ and ∞ is not a branch point.
(ii) In the affine coordinate b / a on $\Phi-\{\infty\}$, for $t \in U, t_{V} \in U_{V}$ we have

$$
\begin{equation*}
\xi(t)=\frac{f_{2}}{g_{2}}=t^{4}+\frac{g^{4}}{g_{2}}, \quad \xi\left(t_{V}\right)=\frac{f_{V, 1}}{g_{V, 1}}, \quad \xi^{\prime}(t)=\frac{g^{6}}{g_{2}^{2}} \tag{14}
\end{equation*}
$$

(iii) The critical $\{d \xi=0\}$ set of ξ is $\mathcal{R}=\{\rho \in U \mid g(\rho)=0\}=\left\{\rho_{1} \ldots \rho_{d}\right\}$, where ρ_{i} are the distinct roots of g and $1 \leq d \leq 4$ ((10)). The ramification of ξ at ρ_{i} is $6 n_{i}$, where n_{i} is the multiplicity of the root ρ_{i}. The branch locus of ξ is $\xi(\mathcal{R}\}=\left\{\rho_{1}^{4} \ldots \rho_{d}^{4}\right\} \subset \Phi-\{\infty\}$; it follows that $\left.\xi\right|_{\mathcal{R}}$ is injective.
(iv) Up to the identification $\mathbb{P}^{1} \cong A$, the singular set of $A^{*}=\phi_{2}^{-1}(A)$ is $\phi_{2}^{-1}(\mathcal{R})$ and the contribution of $\phi_{2}^{-1}\left(\rho_{i}\right)$ to $p_{a}\left(A^{*}\right)$ is $n_{i} ; A^{*}$ is rational.

Proof: By (12) $\psi^{*}\left\{a h_{1}+b h_{3}=0\right\}=E+\mathbb{F}_{V}+F_{(a, b)}$, where $\quad F_{(a, b)}=$ $\left.\left\{a f_{2}(t)+b g_{2}(t)=0\right\}\right|_{\tilde{U}}+(n-1) \mathbb{F}_{V}=\sum_{i} r_{i} \mathbb{F}_{X_{i}}, \sum_{i} r_{i}=13$. The relation $t^{4} g_{2}+f_{2}=g^{4}$ in (10) and 3.5 (ii) imply that f_{2}, g_{2} have no common roots, so $\left\{F_{(a, b)}\right\}_{(a, b) \in \mathbb{P}^{1}}$ is a pencil without fixed component and $F_{(a, b)}=p^{*} \xi^{*}(a, b)$. The case $a=0$ proves (i), while looking at $\left.F_{(a, b)}\right|_{\tilde{U}},\left.F_{(a, b)}\right|_{\tilde{U}_{V}}$ we get (ii); (10) gives ξ^{\prime}.
(iii) As ∞ is not a branch point, $\mathcal{R} \subset U \cap\left\{g_{2} \neq 0\right\}$, so $\mathcal{R}=\left\{\xi^{\prime}=g^{6} / g_{2}^{2}=0\right\}$. The other assertions follow from $\operatorname{deg} g=4$, and the relation (10).
(iv) A local computation shows that \mathcal{A}^{*} is singular in $\pi^{-1}(Q) \Longleftrightarrow L(Q)$ is tangent to A in Q; then we use 3.5 (i). If \mathcal{A}_{2} is a copy of \mathcal{A} and $\phi^{\prime}: \mathcal{A}_{2} \rightarrow \mathcal{A}$ is the \mathbb{K}-linear Frobenius map, $\pi^{-1} \circ \phi^{\prime 2}$ is a normalization of \mathcal{A}^{*}, hence the assertion on $n_{i} . A^{*}$ is rational since $p_{a}\left(A^{*}\right)=4=\operatorname{deg} g=\sum n_{i}(2.5(\mathrm{i}))$.

To understand $\psi(\mathbb{F})$, let $H^{\vee}=(a, b) \in \Phi$, a plane in $\mathbb{P}^{3 \vee}$ containing L_{0}.
If $H^{\vee} \notin \xi(\mathcal{R})$, i.e. $(a, b) \neq\left(1, \rho_{i}^{4}\right)$, then $\psi^{*}\left(H^{\vee}\right)=E+\mathbb{F}_{V}+F_{(a, b)}$, where $F_{(a, b)}=\mathbb{F}_{e_{1}}+\ldots+\mathbb{F}_{e_{13}}, \quad\left\{e_{1}, \ldots, e_{13}\right\}=\xi^{-1}(a, b)$. The scheme intersection between H^{\vee} and $\psi(\mathbb{F})$ is $H^{\vee} \cdot \psi(\mathbb{F})=\psi_{*} \psi^{*}\left(H^{\vee}\right)=5 L_{0}+\psi\left(\mathbb{F}_{e_{1}}\right)+\ldots+\psi\left(\mathbb{F}_{e_{13}}\right)$ because of 3.7 (ii), $3.4(\mathrm{i})$. The 13 lines $\psi\left(\mathbb{F}_{e_{i}}\right)$ are all distinct and intersect L_{0} in different points, since $\left.\psi\right|_{E}$ is injective. One of the $\psi\left(\mathbb{F}_{e_{i}}\right)$ is $L_{0} \Longleftrightarrow H^{\vee}=\infty \Longleftrightarrow$ $a=0$.

If $H^{\vee}=\left(1, \rho^{4}\right) \in \xi(\mathcal{R}), H^{\vee} \cdot \psi(\mathbb{F})=5 L_{0}+m \psi\left(\mathbb{F}_{\rho}\right)+\psi\left(\mathbb{F}_{e_{1}}\right)+\ldots+\psi\left(\mathbb{F}_{e_{13-m}}\right)$.
From 3.8, we see that $\psi(\mathbb{F})$ is singular along L_{0} and the d lines $\psi\left(\mathbb{F}_{(1, \rho)}\right)$. The other singularities in H^{\vee} arise from the intersections of the lines $\psi\left(\mathbb{F}_{e_{i}}\right)$; there are $\binom{13-m}{2}$ double points and triple points. Varying $H^{\vee} \in \Phi$, the double points describe by transversality a curve Δ in $\psi(\mathbb{F})$, which is the closure of

and the triple points are its nodes. Let $\Lambda=\psi^{*}(\Delta)$ be the so-called double curve of ψ. The restriction $\psi: \Lambda \rightarrow \Delta$ is a $2: 1$ morphism.

To count the nodes of Λ, we need local parametrizations. If $(a, b) \in \Phi$ and $e \in \xi^{-1}(a, b)$, let Λ_{e} be a formal neighborhood of $\Lambda \cap \mathbb{F}_{e}$, by which we mean a set of parametrizations of Λ at its points. Let $\Lambda_{(a, b)}=\bigcup_{e \in \xi^{-1}(a, b)} \Lambda_{e}$; we study $\Lambda_{(a, b)}$ in the cases $(a, b) \in \Phi-(\xi(\mathcal{R}) \cup\{\infty\}),(a, b) \in \xi(\mathcal{R}),(a, b)=\infty$.

Case I. Suppose $(a, b) \in \Phi-(\xi(\mathcal{R}) \cup\{\infty\})$; then $\xi^{-1}(a, b)=\left\{e_{1} \ldots e_{13}\right\} \subset$ $U \cap\left\{g_{2} \neq 0, g \neq 0\right\}$. Let $e, e^{*} \in \xi^{-1}(a, b), e \neq e^{*}$; then $\psi\left(\mathbb{F}_{e}\right)$ and $\psi\left(\mathbb{F}_{e^{*}}\right)$ lie in the plane $(a, b) \in \Phi$ and must intersect outside L_{0}, so $\psi^{-1}\left(\psi\left(\mathbb{F}_{e}\right) \cap \psi\left(\mathbb{F}_{e^{*}}\right)\right)=\left\{P, P^{*}\right\}$, where $P \in \mathbb{F}_{e}-E, P^{*} \in \mathbb{F}_{e^{*}}-E$, hence $P, P^{*} \in \tilde{U}_{2}$.

Therefore we look for power series solutions of the equation

$$
\left\{\begin{align*}
\psi_{2}\left(t, u_{2}\right) & =\psi_{2}\left(t^{*}, u_{2}^{*}\right) \tag{15}\\
t & \neq t^{*}
\end{align*}\right.
$$

with $\left(t, u_{2}\right)$ centered at $P,\left(t^{*}, u_{2}^{*}\right)$ centered at P^{*}.
As $g(e), g\left(e^{*}\right), g_{2}(e), g_{2}\left(e^{*}\right)$ are all $\neq 0$, by (11) we have

$$
\psi_{2}\left(t, u_{2}\right)=\left(\frac{u_{2} t^{4}+t^{2} g(t)^{4}}{g_{2}(t)}, \xi(t), \frac{u_{2}}{g_{2}(t)}\right) .
$$

It follows that (15) is equivalent to the 2 conditions

$$
\begin{gather*}
\left\{\begin{array}{c}
\xi(t)=\xi\left(t^{*}\right) \\
t \neq t^{*}
\end{array}\right. \tag{16}\\
L\left(t, t^{*}\right)\binom{u_{2}}{u_{2}^{*}}=B\left(t, t^{*}\right) \tag{17}
\end{gather*}
$$

where

$$
L=\left(\begin{array}{cc}
g_{2}\left(t^{*}\right) & g_{2}(t) \tag{18}\\
\frac{t^{4}}{g_{2}(t)} & \frac{t^{* 4}}{g_{2}\left(t^{*}\right)}
\end{array}\right), \quad B=\binom{0}{\frac{t^{2} g^{4}(t)}{g_{2}(t)}+\frac{t^{* 2} g^{4}\left(t^{*}\right)}{g_{2}\left(t^{*}\right)}}
$$

If $\operatorname{det} L=\left(t+t^{*}\right)^{4}$ is invertible, every solution of (16) gives a unique solution of (17). We are assuming that $(a, b) \notin \xi(\mathcal{R})$ is not a branch point, so there exists a power series $t^{*}(t) \in \mathbb{K}[[t-e]]$ such that

$$
\begin{equation*}
\xi\left(t^{*}(t)\right)=\xi(t), \quad t^{*}(e)=e^{*}, \quad \frac{d t^{*}}{d t}(e) \neq 0 \tag{19}
\end{equation*}
$$

As $t+t^{*}(t) \in \mathbb{K}[[t-e]]^{*},(17)$ has solutions $u_{2}(t), u_{2}^{*}(t) \in \mathbb{K}[[t-e]]$. Let

$$
\begin{equation*}
\lambda(t)=\left(t, u_{2}(t)\right), \quad \lambda^{*}(t)=\left(t^{*}(t), u_{2}^{*}(t)\right) \tag{20}
\end{equation*}
$$

Then λ, λ^{*} are parametrizations of Λ at $P=\left(e, u_{2}(e)\right), P^{*}=\left(e^{*}, u_{2}^{*}(e)\right)$ and if $\psi(P)=\psi\left(P^{*}\right)$ is not a triple point there are no other branches through these points, hence Λ is smooth, horizontal in neighborhoods of P, P^{*}. Using (10), we can compute the explicit solution of (17)

$$
\begin{equation*}
u_{2}(t)=\frac{g^{4}(t)}{\left(t+t^{*}\right)^{2}}+t^{* 2} g_{2}(t), \quad u_{2}^{\prime}(t)=t^{* 2} g^{2}(t) \tag{21}
\end{equation*}
$$

Remark that the situation is symmetric in t, t^{*}, i.e. $t^{* *}=t$.
It remains to see what happens near the points of Λ which are inverse images of triple points of Δ. Let $P \in \mathbb{F}_{e}, \quad P^{*} \in \mathbb{F}_{e^{*}}, \quad P^{\diamond} \in \mathbb{F}_{e^{\diamond}}, \quad e, e^{*}, e^{\diamond} \in \xi^{-1}(a, b)$, e, e^{*}, e^{\diamond} distinct s.t. $\psi(P)=\psi\left(P^{*}\right)=\psi\left(P^{\diamond}\right)$ is a triple point in the plane (a, b), intersection of the distinct lines $\psi\left(\mathbb{F}_{e}\right), \psi\left(\mathbb{F}_{e^{*}}\right), \psi\left(\mathbb{F}_{e^{\diamond}}\right)$. Then $P, P^{*}, P^{\diamond} \notin E$, hence $P, P^{*}, P^{\diamond} \in \tilde{U}_{0}$, and as before we get 2 parametrizations for Λ near P : $\lambda_{P, P^{*}}(t)=\left(t, u_{2 P, P^{*}}(t)\right)$ relative to $\left(P, P^{*}\right)$ and $\lambda_{P, P^{\diamond}}(t)=\left(t, u_{2 P, P^{\diamond}}(t)\right)$ relative to $\left(P, P^{\diamond}\right)$.

By (21), $u_{2 P, P^{*}}^{\prime}(e)+u_{2 P, P^{\circ}}^{\prime}(e)=\left(e^{*}+e^{\diamond}\right)^{2} g^{2}(e) \neq 0$ because $e^{*} \neq e^{\diamond}$ and $g(e) \neq 0$, hence there are 2 smooth branches of Λ through P with different tangents. In conclusion, Λ has a node in P and, by symmetry, in P^{*}, P^{\diamond}. If $H=\psi(P)^{[1 / 2]}=\psi\left(P^{*}\right)^{[1 / 2]}=\psi\left(P^{\diamond}\right)^{[1 / 2]}$, then by $2.2 \phi_{2}^{*}(H)=\Gamma_{1}+\Gamma_{2}$ and Γ_{1}, Γ_{2} is a pair of (-1)-curves of type (1,1,1) (see 2.3), i.e. having 3 distinct intersection above $\alpha(p(e)), \alpha\left(p\left(e^{*}\right)\right), \alpha\left(p\left(e^{\diamond}\right)\right)$ (figures 1 and 2).

Fig. 1: $\Lambda_{(a, b)}$ for $(a, b) \in \Phi-(\xi(\mathcal{R}) \cup\{\infty\})$.

Fig. 2: Nodes of $\Lambda_{(a, b)}$ for $(a, b) \in \Phi-(\xi(\mathcal{R}) \cup\{\infty\})$.

Remark 4.2. $\Lambda_{\Phi-(\xi(\mathcal{R}) \cup\{\infty\})}=\bigcup_{(a, b) \in \Phi-(\xi(\mathcal{R}) \cup\{\infty\})} \Lambda_{(a, b)}$ has only nodes as singularities, is contained in \tilde{U}_{2} and the number of nodes in $\Lambda_{\Phi-(\xi(\mathcal{R}) \cup\{\infty\})}$ equals 3 times the number of triple points of $\psi(\mathbb{F})$ in $\bigcup_{H^{\vee} \in \Phi-(\xi(\mathcal{R}) \cup\{\infty\})} H^{\vee}$.

Each triple point corresponds to 1 pair of (-1)-curves of type $(1,1,1)$.
If λ denotes the class of Λ in Pic \mathbb{F}, then $\lambda \cdot f=12$.

Proof: If $e \in \xi^{-1}(\Phi-(\mathcal{R} \cup\{\infty\})), \xi^{-1}(a, b)=\left\{e, e_{1}, \ldots, e_{12}\right\}, \Lambda$ is parametrized at its intersection with \mathbb{F}_{e} by $\lambda_{e, e_{i}}(t)$ as above. So \mathbb{F}_{e} intersects $\Lambda_{\Phi-(\xi(\mathcal{R}) \cup\{\infty\})}$ transversally in 12 points and $\lambda \cdot f=12$.

Case II. Suppose $(a, b)=\xi(\rho), \rho \in \mathcal{R}$. Then $\xi^{*}((a, b))=m \rho+e_{1}+\ldots+e_{13-m}$, and $e_{j} \notin \mathcal{R}$ by 4.1 (iii), $m \geq 2$. Let $e \in\left\{e_{1}, \ldots, e_{13-m}\right\}$. Since e is not a ramification point and $\xi(\rho)=\xi(e)$, there exists $t^{*}(t) \in \mathbb{K}[[t-\rho]]$ such that $\xi\left(t^{*}(t)\right)=\xi(t), t^{*}(\rho)=e$. Let n be the multiplicity of the root ρ of g (4.1). Then the vanishing order of $t^{*^{\prime}}$ at ρ is $6 n$ and equals the vanishing order of ξ^{\prime} at ρ. The corresponding solutions of (15) are the parametrizations

$$
\begin{equation*}
\lambda_{\rho, e}=\left(t, u_{2}(t)\right), \quad \lambda_{\rho, e}^{*}=\left(t^{*}(t), u_{2}^{*}(t)\right) \tag{22}
\end{equation*}
$$

of Λ, where u_{2} is defined by 21 and

$$
\begin{equation*}
u_{2}^{*}(t)=\frac{g^{4}\left(t^{*}(t)\right)}{\left(t+t^{*}\right)^{2}}+t^{2} g_{2}\left(t^{*}(t)\right), \quad u_{2}^{*^{\prime}}(t)=t^{2} g^{2}\left(t^{*}(t)\right) t^{*^{\prime}}(t) \tag{23}
\end{equation*}
$$

It follows that $\lambda^{\prime}(\rho)=\left(1, u_{2}^{\prime}(\rho)\right) \neq(0,0)$, i.e. that branch of Λ is smooth at $\left(\rho, u_{2}(\rho)\right)$, while $\lambda^{*^{\prime}}(\rho)=(0,0)$, i.e. Λ is singular at $\left(e, u_{2}^{*}(\rho)\right)$.

Since $(a, b) \cdot \psi(\mathbb{F})=5 L_{0}+m \psi\left(\mathbb{F}_{\rho}\right)+\psi\left(\mathbb{F}_{e_{1}}\right)+\ldots+\psi\left(\mathbb{F}_{e_{13-m}}\right), \mathbb{F}_{e}$ intersects Λ in $13-m$ points; $12-m$ of them are not necessarily distinct, correspond to $\psi\left(\mathbb{F}_{e}\right) \cap \psi\left(\mathbb{F}_{e_{i}}\right), e_{i} \in\left\{e_{1}, \ldots, e_{13-m}\right\}-\{e\}$, and lie in the smooth, transversal to \mathbb{F}_{e} parametrizations $\lambda_{e, e_{i}}$ of Λ_{e}. The last is singular, different from the previous ones by 3.5 and 2.5 , corresponds to $\psi\left(\mathbb{F}_{e}\right) \cap \psi\left(\mathbb{F}_{\rho}\right)$ and lies in $\lambda_{\rho, e}^{*}$. Thus $\mathbb{F}_{e} \cdot \Lambda=$ $12-m+\mathbb{F}_{e} \cdot \operatorname{Im}\left(\lambda^{*}\right)=12$ because $\mathbb{F}_{e} \cdot \operatorname{Im}\left(\lambda^{*}\right)=m$, the vanishing order at e of $\xi(t)$. As $\lambda \cdot f=12$, we have determined all Λ_{e}, consisting of the $12-m$ smooth curves $\lambda_{e, e_{i}}$ and the singular curve $\lambda_{\rho, e}^{*}$

$$
\begin{equation*}
\Lambda_{e}=\left\{\lambda_{e, e_{i}}\right\}_{e_{i} \in\left\{e_{1}, \ldots, e_{13-m}\right\}-\{e\}} \cup\left\{\lambda_{\rho, e}^{*}\right\} \tag{24}
\end{equation*}
$$

$\lambda_{e, e_{i}}$ may intersect $\lambda_{e, e_{j}}$ in \mathbb{F}_{e} forming a node iff $\psi\left(\mathbb{F}_{e}\right), \psi\left(\mathbb{F}_{e_{i}}\right), \psi\left(\mathbb{F}_{e_{j}}\right)$ intersect in a triple point, as in case I; $\lambda_{\rho, e}^{*}$ does not intersect $\lambda_{e, e_{i}}$.

To study Λ_{ρ}, remark that $\psi\left(\mathbb{F}_{\rho}\right)$ intersects $\psi\left(\mathbb{F}_{e_{i}}\right)$ in $13-m$ distinct points: if $H^{[2]} \in \psi\left(\mathbb{F}_{\rho}\right) \cap \psi\left(\mathbb{F}_{e_{i}}\right) \cap \psi\left(\mathbb{F}_{e_{j}}\right)$, then $H \cdot A \geq 4$ by 3.5, excluded by 2.5 . These intersections lie in the $13-m$ parametrizations $\lambda_{\rho, e_{i}}$, transversal to \mathbb{F}_{ρ}. Since $\mathbb{F}_{\rho} \cdot \Lambda=12$, further parametrizations of Λ_{ρ} giving $m-1$ intersections with \mathbb{F}_{ρ} must be found, arising from the self intersections of $m \psi\left(\mathbb{F}_{\rho}\right)$.

We need m and the power series of ξ at ρ. Remark that to find the normal forms we have fixed 1 of 3 points in \mathbb{P}^{1}. We may thus assume (see 4.1)

$$
\begin{equation*}
\rho=0, \quad e=1, \quad c_{0}=0, \quad g_{2}(0)=d_{0} \neq 0, \quad \xi(\rho)=0, \quad f_{2}(1)=0 \tag{25}
\end{equation*}
$$

By (9), (10), (14) it follows that

$$
\begin{align*}
g_{2}= & d_{0}^{2}+d_{1}^{2} t^{2}+c_{1}^{2} t^{3}+d_{2}^{2} t^{4}+c_{2}^{2} t^{5}+d_{3}^{2} t^{6}+c_{3} t^{7} \\
& +\left(c_{3}+d_{4}\right)^{2} t^{8}+t^{9}+t^{12} \\
g= & c_{1} t+c_{2} t^{2}+\sqrt{c_{3}} t^{3}+t^{4}, \tag{26}\\
\xi(t)= & t^{4}+g^{4} / g_{2}=a_{4} t^{4}+a_{6} t^{6}+a_{7} t^{7}+\sum_{i \geq 8} a_{i} t^{i},
\end{align*}
$$

hence $m \in\{4,6,7\}$ if $n=1$, as

$$
\begin{equation*}
a_{4}=1+\frac{c_{1}^{4}}{d_{0}^{2}}, \quad a_{6}=\frac{c_{1}^{4} d_{1}^{2}}{d_{0}^{4}}, \quad a_{7}=\frac{c_{1}^{6}}{d_{0}^{4}} \tag{27}
\end{equation*}
$$

Case II splits as follows, n being the multiplicity of the root ρ of g.
II 1_{4}. $n=1, m=4$ hence $c_{1} \neq 0, d_{0}+c_{1}^{2} \neq 0, a_{4} \neq 0$. We look for solutions of (16) with t close to t^{*}. Set $t^{*}=t(1+\zeta)$; then (16) becomes

$$
\left\{\begin{array}{l}
\xi(t)=\xi(t(1+\zeta)) \tag{28}\\
\zeta \neq 0 .
\end{array}\right.
$$

Substituting and dividing by $t^{4} \zeta$, we get an affine curve \mathcal{C} in the plane (t, ζ)

$$
\begin{equation*}
a_{4} \zeta^{3}+a_{6} t^{2} \zeta+a_{7} t^{3}+a_{7} t^{3} \zeta+o_{5}(t, \zeta)=0, \quad o_{5}(t, \zeta) \in(t, \zeta)^{5} \tag{29}
\end{equation*}
$$

\mathcal{C} has in $(0,0)$ a triple point with tangents $\zeta=\epsilon_{j} t, j=1,2,3, \epsilon_{j}$ roots of

$$
\begin{equation*}
a_{4} X^{3}+a_{6} X+a_{7} \in \mathbb{K}[X] \tag{30}
\end{equation*}
$$

Since $a_{7} \neq 0$ and there is no X^{2}, it follows that $\epsilon_{j} \neq 0$ and that the ϵ_{j} are distinct; so $(0,0)$ is an ordinary triple point with branches $t \mapsto\left(t, \zeta_{j}(t)\right), \quad \zeta_{j}(0)=0$, $\zeta_{j}^{\prime}(0)=\epsilon_{j}$. We get 3 solutions of $(16), \quad t_{j}^{*}(t)=t\left(1+\zeta_{j}(t)\right) \in \mathbb{K}[[t]]$. The corresponding parametrizations of Λ_{ρ} are given by (17), (18), (20), (21)

$$
\begin{equation*}
\tilde{\lambda}_{\rho, j}(t)=\left(t, \tilde{u}_{2 j}(t)\right), \quad \tilde{u}_{2 j}(t)=\frac{g^{4}(t)}{t^{2} \zeta_{j}(t)^{2}}+t^{2}\left(1+\zeta_{j}(t)\right)^{2} g_{2}(t) \tag{31}
\end{equation*}
$$

Hence $\tilde{\lambda}_{\rho, j}(t)$ are transversal to \mathbb{F}_{ρ} and $\tilde{P}_{\rho, j}=\tilde{\lambda}_{\rho, j}(0)=\left(0, c_{1}^{4} / \epsilon_{j}^{2}\right), \tilde{\lambda}_{\rho, j}^{\prime}(0)=(1,0)$. As $\mathbb{F}_{\rho} \cdot \operatorname{Im}\left(\tilde{\lambda}_{\rho, j}\right)=1$, we have found the 3 missing intersections, and

$$
\begin{equation*}
\Lambda_{\rho}=\left\{\lambda_{\rho, e_{i}}\right\}_{i=1 \ldots 9} \cup\left\{\tilde{\lambda}_{\rho, j}\right\}_{j=1,2,3} \tag{32}
\end{equation*}
$$

All $\lambda_{\rho, e_{i}}, \tilde{\lambda}_{\rho, j}$ are smooth, transversal to \mathbb{F}_{ρ} and their intersections with \mathbb{F}_{ρ} are respectively $P_{\rho, i}=\lambda_{\rho, e_{i}}(0)$, which are distinct by $3.5,2.5$, and $\tilde{P}_{\rho, j}$, which are distinct since ϵ_{j} are distinct. It may be $P_{\rho, i}=\tilde{P}_{\rho, j}=P$. Consider in this case the plane $H=\psi(P)^{\left[\frac{1}{2}\right]}$. We already know that $\phi_{2}^{*}(H)$ has 1 singular point above $\alpha(p(\rho))$ and 1 above $\alpha\left(p\left(e_{i}\right)\right)$; it may have 2 above $\alpha(p(\rho))$.

Remark 4.3. Let $P \in \mathbb{F}_{Q}, Q \in U$ and $H=\psi(P)^{[1 / 2]}$ a plane containing $L(Q)$. By 3.4, $\phi_{2}^{*}(H)$ has at least 1 singular point above $\alpha(Q)$.

Let $I=I(H, A ; Q)$ be the intersection multiplicity of H, A at $\alpha(Q)$. Then
(i) $I \geq 1$ and $I \geq 2 \Longleftrightarrow P \in E \cup \bigcup_{\rho \in \mathcal{R}} \mathbb{F}_{\rho}=\{d \psi=0\} \cap \tilde{U}$;
(ii) $I=3 \Longleftrightarrow P \in D \cap \mathbb{F}_{\rho}, \quad \rho \in \mathcal{R} \Longleftrightarrow P=\left(\rho, u_{2}\right) \in \tilde{U}_{2}$ with $u_{2}=0$.

Let $P=\left(0, u_{2}\right) \in \mathbb{F}_{\rho} \cap \tilde{U}_{2}$.
(iii) $\phi_{2}^{*}(H)$ has 2 infinitely near singular points above $\alpha(Q) \Longleftrightarrow$ $\Longleftrightarrow u_{2}$ is a root of

$$
\begin{equation*}
X^{3}+d_{1}^{4} X^{2}+d_{0}^{4}\left(d_{0}^{4}+c_{1}^{8}\right) \in \mathbb{K}[X] ; \tag{33}
\end{equation*}
$$

(iv) $\phi_{2}^{*}(H)$ has 3 infinitely near singular points above $\alpha(Q) \Longleftrightarrow$ we have

$$
\left\{\begin{array}{l}
u_{2}=0 \tag{34}\\
d_{0}+c_{1}^{2}=0 \\
d_{1}+d_{2}^{2}+c_{2}^{4}=0
\end{array}\right.
$$

(v) the 3 distinct points $\tilde{P}_{\rho, j}$ are exactly the points of $\mathbb{F}_{\rho} \cap \tilde{U}$ s.t. $\phi_{2}^{*}(H)$ has 2 infinitely near singular points above $\alpha(Q)$;
(vi) assuming (25), $\quad \tilde{P}_{\rho, j}=P_{\rho, i}=P \Longleftrightarrow \epsilon_{j}=c_{1}^{2} / d_{0} \Longleftrightarrow$ if $H=\psi(P)^{\left[\frac{1}{2}\right]}$ then $\phi_{2}^{*}(H)=\Gamma_{1}+\Gamma_{2}$ with Γ_{i} having intersection 2 above $\alpha(p(\rho))$ and 1 above $\alpha\left(p\left(e_{i}\right)\right)$, i.e. Γ_{1}, Γ_{2} is a pair of (-1)-curves of type (2,1) (2.3).

Proof:

(i) follows from 3.5, 3.8.
(ii) If $I=3$, we must be in case (i) and $P \notin E$, since otherwise $H \ni V$ by 3.6 and $V \in A, V \neq \alpha(Q), \operatorname{deg} A=3$. So $P \in \mathbb{F}_{\rho} \cap \tilde{U}_{2}$, we may assume $\rho=0$ and in the coordinates $\left(t, u_{2}\right)$ of $\tilde{U}_{2} P=(0, a)$. Then $L(Q)$ is tangent to A at $\alpha(Q)$, and the pencil of planes containing $L(Q)$ is isomorphic to A sending a plane to its third intersection with A. So there is exactly 1 plane H s.t. $I=3$, i.e. $H \cap(A-\{\alpha(Q)\})=\emptyset$. And if $P \in D$, i.e. $a=0$, then $\psi(P)=\left(h_{0}, h_{1}, 0, h_{3}\right)$, so $\alpha(t)=\left(1, t, t^{2}, t^{3}\right) \notin H$ for $t \neq 0$.
(iii) Let $P=\left(0, u_{2}\right) \in \mathbb{F}_{\rho} \cap \tilde{U}_{2}$; then $H=\psi_{2}(P)^{[1 / 2]}=\left(0,0, \sqrt{u_{2}}, d_{0}\right)$. In the affine chart of $\mathbb{P}(1,1,2,3)$ containing $\pi^{-1}(\alpha(Q))$ with coordinates $z=Z / X_{0}^{3}$, $w=W / X_{0}^{2}, t=X_{1} / X_{0}, \phi_{2}^{*}(H)$ is defined by

$$
\left\{\begin{array}{l}
z^{2}+\left(w+t^{3}\right) z+b=0 \tag{35}\\
\sqrt{u_{2}} t^{2}+d_{0} w=0
\end{array}\right.
$$

Substituting $w=d_{0}^{-1} \sqrt{u_{2}} t^{2}$ in the first equation, after $z+d_{0} \mapsto z$ we get

$$
z^{2}+A t^{2} z+t^{3} z+B t^{2}+C t^{3}+D t^{4}+E t^{5}+F t^{6}=0
$$

where $A=\sqrt{u_{2}} / d_{0}, B=d_{1}^{2}+\sqrt{u_{2}}, C=d_{0}+c_{1}^{2}, D=d_{2}^{2}, E=c_{2}^{2}$. Blowing up at $(t, z)=(0,0)$, which is singular as expected, the strict transform lies in $z=t v$; after $v \mapsto v+\sqrt{B}$, we get $v^{2}+A t v+(A \sqrt{B}+C) t+t^{2} v+(\sqrt{B}+D) t^{2}+E t^{3}+F t^{4}=0$. So we have 2 infinitely near singular points at $(t, z)=(0,0) \Longleftrightarrow A \sqrt{B}+C=0$, from which (iii) follows.
(iv) Suppose $A \sqrt{B}+C=0$; blowing up at $(t, v)=(0,0)$, the strict transform lies in $v=t s$ and is $s^{2}+A s+\sqrt{B}+D+(E+s) t+F t^{2}=0$. Let α_{i} be the roots of $X^{2}+A X+\sqrt{B}+D$; after $s+\alpha_{i} \mapsto s$ we get $s^{2}+A s+\left(E+\alpha_{i}\right) t+t s+F t^{2}=0$. So we have 3 infinitely near singular points at $(t, z)=(0,0) \Longleftrightarrow A=E+\alpha_{i}=0$, which is equivalent to 34 .
(v) Just check that $c_{1}^{4} / \epsilon_{j}^{2}, j=1,2,3$, are roots of 33 .
(vi) $\tilde{P}_{\rho, j}=\left(0, c_{1}^{4} / \epsilon_{j}^{2}\right)$ and by (25), (20), (21) $P_{\rho, i}=\left(0, d_{0}^{2}\right)$. All the assertions follow from (iii) and (iv).

Proposition 4.4. In case $\mathbf{1}_{\mathbf{4}}(n=1, m=4)$, if $(a, b)=\xi(\rho), \rho \in \mathcal{R}$, then

$$
\begin{equation*}
\xi^{*}((a, b))=4 \rho+e_{1}+\ldots+e_{9}, \quad \Lambda_{(a, b)}=\Lambda_{\rho} \cup \Lambda_{e_{1}} \cup \ldots \cup \Lambda_{e_{9}} . \tag{36}
\end{equation*}
$$

Λ_{ρ} is defined in (22), (31), (32) and $\Lambda_{e_{i}}=\left\{\lambda_{e_{i}, e_{j}}\right\}_{j \neq i} \cup\left\{\lambda_{\rho, e_{i}}^{*}\right\}$ (24); Λ_{ρ} intersects \mathbb{F}_{ρ} in $P_{\rho, 1}, \ldots, P_{\rho, 9}$, distinct, and $\tilde{P}_{\rho, 1}, \tilde{P}_{\rho, 2}, \tilde{P}_{\rho, 3}$, distinct.

There are pairs of (-1)-curves of type $(2,1) \Longleftrightarrow P_{\rho, i}=\tilde{P}_{\rho, j} \Longleftrightarrow \epsilon_{j}=c_{1}^{2} / d_{0}$ (4.3(vi)). If their number is $n_{\rho,(2,1)}$, then $0 \leq n_{\rho,(2,1)} \leq 3$.

The singularities in $\Lambda_{(a, b)}$ are, except nodes, the $n_{\rho,(2,1)}$ singularities $P_{\rho, i}=$ $\tilde{P}_{\rho, j} \in \operatorname{Im}\left(\lambda_{\rho, e_{i}}\right) \cap \operatorname{Im}\left(\tilde{\lambda}_{\rho, j}\right)$ and the $9 \operatorname{cusps} P_{\rho, i}^{*} \in \operatorname{Im}\left(\lambda_{\rho, e_{i}}^{*}\right)$ (figure 3).

Fig. 3 : $\Lambda_{(a, b)}$ of type $1_{4}, 2,3,4$.

II $1_{6} . ~ n=1, m=6$ hence $c_{1} \neq 0, d_{1} \neq 0, d_{0}=c_{1}^{2}, a_{4}=0, a_{6} \neq 0, a_{7} \neq 0$.
As in II 1_{4}, we solve the first of (28). Substituting and dividing by $t^{6} \zeta$, we get the equation of an affine curve \mathcal{C}^{\prime} in the plane (t, ζ) :

$$
\begin{align*}
a_{6} \zeta\left(1+\zeta+\zeta^{2}\right)^{2}+a_{7} t\left[1+\zeta\left(1+\zeta+\zeta^{2}\right)^{2}+\zeta^{2}\right. & \left.\left(1+\zeta+\zeta^{2}\right)^{2}\right] \\
& + \tag{37}\\
& +a_{8} t^{2} \zeta^{7}+t^{3}(\ldots)=0
\end{align*}
$$

Let η_{1}, η_{2} be the distinct roots of $1+X+X^{2} ; \mathcal{C}^{\prime}$ intersects $\{t=0\}$ in the 3 distinct points $B_{0}=(0,0), B_{1}=\left(0, \eta_{1}\right), B_{2}=\left(0, \eta_{2}\right)$. The above equation becomes $a_{6} \zeta\left(\zeta+\eta_{1}\right)^{2}\left(\zeta+\eta_{2}\right)^{2}+a_{7} t+o_{3}=0$ and defines the following parametrizations at $B_{j}: t \mapsto(t, \zeta(t)), \zeta(t)=\frac{a_{7}}{a_{6}} t+o_{2}(t) \in \mathbb{K}[[t]], o_{2}(t) \in(t)^{2}$ for $j=0$ and $\zeta \mapsto\left(t_{j}(\zeta), \zeta\right), \quad t_{j}(\zeta)=\eta_{j} \frac{a_{6}}{a_{7}}\left(\zeta+\eta_{j}\right)^{2}+o_{3}\left(\zeta+\eta_{j}\right) \in \mathbb{K}\left[\left[\zeta+\eta_{j}\right]\right]$ for $j=1,2$. We get therefore 3 solutions of $(16),\left(t, t^{*}(t)\right)$ and $\left(t_{j}(\zeta), t_{j}^{*}(\zeta)\right), j=1,2$, centered at 0 the first, at η_{j} the second: $t^{*}(t)=t(1+\zeta(t)), t_{j}^{*}(\zeta)=t_{j}(\zeta)(1+\zeta)$.

The corresponding parametrizations of Λ_{ρ} as in (31) are

$$
\begin{equation*}
\tilde{\lambda}_{\rho}(t)=\left(t, \tilde{u}_{2}(t)\right), \quad \tilde{u}_{2}(t)=\frac{g^{4}(t)}{t^{2} \zeta^{2}(t)}+t^{2}(1+\zeta(t))^{2} g_{2}(t) \tag{38}
\end{equation*}
$$

where \tilde{u}_{2} is defined by (21), and for $j=1,2$

$$
\begin{equation*}
\tilde{\lambda}_{\rho, j}(\zeta)=\left(t_{j}(\zeta), \tilde{u}_{2, j}(\zeta)\right), \quad \tilde{u}_{2, j}(\zeta)=\frac{g^{4}\left(t_{j}(\zeta)\right)}{t_{j}^{2}(\zeta) \zeta^{2}}+t_{j}^{2}(\zeta)(1+\zeta)^{2} g_{2}\left(t_{j}(\zeta)\right) \tag{39}
\end{equation*}
$$

Thus $\tilde{\lambda}_{\rho}(t)=\left(t, d_{1}^{4}+o_{1}(t)\right), \tilde{\lambda}_{\rho, j}(\zeta)=\left(\eta_{j} \frac{d_{1}^{2}}{c_{1}^{2}}\left(\zeta+\eta_{j}\right)^{2}+o_{3}\left(\zeta+\eta_{j}\right), o_{5}\left(\zeta+\eta_{j}\right)\right)$.
As $\mathbb{F}_{\rho} \cdot \operatorname{Im}\left(\tilde{\lambda}_{\rho}\right)=1, \mathbb{F}_{\rho} \cdot \operatorname{Im}\left(\tilde{\lambda}_{\rho, j}\right)=2$ we found all Λ_{ρ}

$$
\begin{equation*}
\Lambda_{\rho}=\left\{\lambda_{\rho, e_{i}}\right\}_{i=1 \ldots .} \cup\left\{\tilde{\lambda}_{\rho}\right\} \cup\left\{\tilde{\lambda}_{\rho, j}\right\}_{j=1,2} \tag{40}
\end{equation*}
$$

Let $\quad \tilde{P}_{\rho}=\tilde{\lambda}_{\rho}(0)=\left(0, d_{1}^{4}\right), \quad \tilde{P}_{\rho, *}=\tilde{\lambda}_{\rho, j}\left(\eta_{j}\right)=(0,0), \quad P_{\rho, i}=\lambda_{\rho, e_{i}}(0)=\left(0, d_{0}^{2}\right)$ (by $(25), e_{i}=1$). From 4.3 it follows

Proposition 4.5. In case $\mathbf{1}_{\mathbf{6}},(n=1, m=6)$, if $(a, b)=\xi(\rho), \rho \in \mathcal{R}$, then

$$
\begin{equation*}
\xi^{*}((a, b))=6 \rho+e_{1}+\ldots+e_{7}, \quad \Lambda_{(a, b)}=\Lambda_{\rho} \cup \Lambda_{e_{1}} \cup \ldots \cup \Lambda_{e_{7}} \tag{41}
\end{equation*}
$$

Λ_{ρ} is defined in (22), (38), (39), (40) and $\Lambda_{e_{i}}$ is as in 4.4. Λ_{ρ} intersects \mathbb{F}_{ρ} in the distinct points $P_{\rho, 1}, \ldots, P_{\rho, 7}, \tilde{P}_{\rho}$, and in $\tilde{P}_{\rho, *}, \tilde{P}_{\rho, *} \neq \tilde{P}_{\rho}$.
$H=\psi\left(\tilde{P}_{\rho, *}\right)^{[1 / 2]}$ has intersection $I=3$ with A at $\alpha(p(\rho))$ and $\phi_{2}^{*}(H)$ has 3 infinitely near singular points above $\alpha(p(\rho)) \Longleftrightarrow d_{1}+d_{2}^{2}+c_{2}^{4}=0$.

In this case, by $2.1 \phi_{2}^{*}(H)$ is a pair of (-1)-curves having intersection multiplicity 3 above $\alpha(p(\rho))$, i.e. a pair of type (3) (2.3). If we denote by $n_{\rho,(3)}$ the number of such pairs, we have therefore $0 \leq n_{\rho,(3)} \leq 1$.

There are pairs of (-1)-curves of type $(2,1) \Longleftrightarrow P_{\rho, i}=\tilde{P}_{\rho} \Longleftrightarrow d_{0}=d_{1}^{2}$; their number is $0 \leq n_{\rho,(2,1)} \leq 1$. The singularities in $\Lambda_{(a, b)}$ are, except nodes, the $n_{\rho,(2,1)}$ singularities $P_{\rho, i}=\tilde{P}_{\rho} \in \operatorname{Im}\left(\lambda_{\rho, e_{i}}\right) \cap \operatorname{Im}\left(\tilde{\lambda}_{\rho}\right) ; \tilde{P}_{\rho, *} \in \operatorname{Im}\left(\tilde{\lambda}_{\rho, 1}\right) \cap \operatorname{Im}\left(\tilde{\lambda}_{\rho, 2}\right)$; the 7 cusps $P_{\rho, i}^{*} \in \operatorname{Im}\left(\lambda_{\rho, e_{i}}^{*}\right)$ (see figure 4).

Fig. 4: $\Lambda_{(a, b)}$ of type 1_{6}.

II 17. $n=1, m=7$ hence $c_{1} \neq 0, d_{1}=0, d_{0}=c_{1}^{2}, a_{4}=a_{6}=0, a_{7} \neq 0$.
Substituting and dividing by $t^{7} \zeta$, we get a curve $\mathcal{C}^{\prime \prime}: a_{7}\left(1+\zeta+\zeta^{2}+\zeta^{3}+\zeta^{4}+\right.$ $\left.\zeta^{5}+\zeta^{6}\right)+t(\ldots)=0$ in the plane (t, ζ).

The polynomial $1+X+X^{2}+X^{3}+X^{4}+X^{5}+X^{6} \in \mathbb{K}[X]$ has 6 distinct roots $\mu_{j} \neq 0, j=1 \ldots 6$, in \mathbb{K}. Thus $\mathcal{C}^{\prime \prime}$ intersects $\{t=0\}$ in the 6 points $\left(0, \mu_{j}\right)$, and at $\left(0, \mu_{j}\right)$ we have $\zeta_{j}(t)=\mu_{j}+o_{1}(t) \in \mathbb{K}[[t]]$ and hence $t_{j}^{*}(t)=\left(1+\mu_{j}\right) t+o_{2}(t)$. The corresponding parametrizations of Λ_{ρ} as in (31) are

$$
\begin{equation*}
\tilde{\lambda}_{\rho, j}(t)=\left(t, \tilde{u}_{2, j}(t)\right), \quad \tilde{u}_{2, j}(t)=\frac{g^{4}(t)}{t^{2} \zeta_{j}^{2}(t)}+t^{2}\left(1+\zeta_{j}(t)\right)^{2} g_{2}(t) \tag{42}
\end{equation*}
$$

Then $\tilde{\lambda}_{\rho, j}(t)=\left(t,\left[\frac{c_{1}^{4}}{\mu_{j}^{2}}+\left(1+\mu_{j}^{2}\right) d_{0}^{2}\right] t^{2}+o_{4}(t)\right)$ and $\mathbb{F}_{\rho} \cdot \operatorname{Im}\left(\tilde{\lambda}_{\rho, j}\right)=1$. As before

$$
\begin{equation*}
\Lambda_{\rho}=\left\{\lambda_{\rho, e_{i}}\right\}_{i=1 \ldots 6} \cup\left\{\tilde{\lambda}_{\rho, j}\right\}_{j=1 \ldots 6} . \tag{43}
\end{equation*}
$$

Let $\tilde{P}_{\rho}=\tilde{\lambda}_{\rho, j}(0)=(0,0), P_{\rho, i}=\lambda_{\rho, e_{i}}(0)=\left(0, d_{0}^{2}\right)\left(\right.$ by $\left.(25), e_{i}=1\right)$. Then
Proposition 4.6. In case $\mathbf{1}_{\mathbf{7}}(n=1, m=7)$, if $(a, b)=\xi(\rho), \rho \in \mathcal{R}$, then

$$
\begin{equation*}
\xi^{*}((a, b))=7 \rho+e_{1}+\ldots+e_{6}, \quad \Lambda_{(a, b)}=\Lambda_{\rho} \cup \Lambda_{e_{1}} \cup \ldots \cup \Lambda_{e_{6}} . \tag{44}
\end{equation*}
$$

Λ_{ρ} is defined in (22), (42), (43) and $\Lambda_{e_{i}}$ is as in 4.4. Λ_{ρ} intersects \mathbb{F}_{ρ} in $P_{\rho, 1}, \ldots$, $P_{\rho, 6}, \tilde{P}_{\rho}$. The plane $H=\psi\left(\tilde{P}_{\rho}\right)^{[1 / 2]}$ has intersection $I=3$ with A at $\alpha(p(\rho))$ and $\phi_{2}^{*}(H)$ has 3 infinitely near singular points above $\alpha(p(\rho)) \Longleftrightarrow d_{2}^{2}+c_{2}^{4}=0$. In this case, $\phi_{2}^{*}(H)=\Gamma_{1}+\Gamma_{2}$ is a pair of (-1)-curves of type (3); thus $0 \leq n_{\rho,(3)} \leq 1$. There are no pairs of (-1)-curves of type $(2,1)$, since $P_{\rho, i} \neq \tilde{P}_{\rho}$. The singularities in $\Lambda_{(a, b)}$ are, except nodes, $\tilde{P}_{\rho} \in \bigcap_{j=1 \ldots 6} \operatorname{Im}\left(\tilde{\lambda}_{\rho, j}\right)$ and the 6 cusps $P_{\rho, i}^{*} \in \operatorname{Im}\left(\lambda_{\rho, e_{i}}^{*}\right)$ (figure 5).

Fig. $5: \Lambda_{(a, b)}$ of type 1_{7}.

II 2. $n=2$ hence $c_{1}=0, c_{2} \neq 0, m=4, a_{4}=1, a_{6}=a_{7}=0, a_{8}=c_{2}^{4} / d_{0}^{2} \neq 0$, $a_{9}=a_{11}=0, a_{13}=c_{2}^{6} / d_{0}^{4} \neq 0$. Set $t^{*}=t\left(1+t^{3} \zeta\right) ;$ substituting in (16) and dividing by $t^{16} \zeta$, we get the curve $\zeta^{3}+a_{10} \zeta+a_{13}+t(\ldots)=0$. The polynomial

$$
\begin{equation*}
X^{3}+a_{10} X+a_{13} \in \mathbb{K}[X] \tag{45}
\end{equation*}
$$

has 3 distinct roots $\omega_{j}, \omega_{j} \neq 0, j=1,2,3$ in \mathbb{K}. The curve intersects $\{t=0\}$ in the 3 points $\left(0, \omega_{j}\right)$, where we have $\zeta_{j}(t)=\omega_{j}+o_{1}(t)$ and hence $t_{j}^{*}(t)=t+\omega_{j} t^{4}+o_{5}(t)$. The corresponding parametrizations of Λ_{ρ} are

$$
\begin{equation*}
\tilde{\lambda}_{\rho, j}(t)=\left(t, \tilde{u}_{2, j}(t)\right), \quad \tilde{u}_{2, j}(t)=\frac{g^{4}(t)}{t^{8} \zeta_{j}^{2}(t)}+t^{2}\left(1+t^{3} \zeta_{j}(t)\right)^{2} g_{2}(t) . \tag{46}
\end{equation*}
$$

It follows $\tilde{\lambda}_{\rho, j}(t)=\left(t, \frac{c_{2}^{4}}{\omega_{j}^{2}}+o_{2}(t)\right)$. Since $\mathbb{F}_{\rho} \cdot \operatorname{Im}\left(\tilde{\lambda}_{\rho, j}\right)=1, \Lambda_{\rho}$ is as in (32).
Let $\tilde{P}_{\rho, j}=\tilde{\lambda}_{\rho, j}(0)=\left(0, \frac{c_{2}^{4}}{\omega_{j}^{2}}\right), P_{\rho, i}=\lambda_{\rho, e_{i}}(0)=\left(0, d_{0}^{2}\right)\left(e_{i}=1\right.$ by (25)). Then
Proposition 4.7. In case $2(n=2, m=4)$, if $(a, b)=\xi(\rho), \rho \in \mathcal{R}$, then $\xi^{*}((a, b))$ and $\Lambda_{(a, b)}$ are as in (36), Λ_{ρ} is defined in (22), (46), (32) and $\Lambda_{e_{i}}$ is as in 4.4. Λ_{ρ} intersects \mathbb{F}_{ρ} in the points $P_{\rho, 1}, \ldots, P_{\rho, 9}, \tilde{P}_{\rho, j}, j=1,2,3$.

If $H=\psi\left(\tilde{P}_{\rho, j}\right)^{[1 / 2]}$, then $\phi_{2}^{*}(H)$ has 2 infinitely near singular points above $\alpha(p(\rho))$, since $c_{2}^{4} / \omega_{j}^{2}$ are the roots of the polynomial Q_{ρ} defined in (33).

There are of (-1)-curves of type $(2,1) \Longleftrightarrow P_{\rho, i}=\tilde{P}_{\rho, j} \Longleftrightarrow d_{0}=c_{2}^{2} / \omega_{j}$; hence $0 \leq n_{\rho,(2,1)} \leq 3$. There are no (-1)-curves of type (3). The singularities in $\Lambda_{(a, b)}$ are, except nodes, the $n_{\rho,(2,1)}$ points $P_{\rho, i}=\tilde{P}_{\rho, j} \in \operatorname{Im}\left(\lambda_{\rho, e_{i}}\right) \cap \operatorname{Im}\left(\tilde{\lambda}_{\rho, j}\right)$; the 9 cusps $P_{\rho, i}^{*} \in \operatorname{Im}\left(\lambda_{\rho, e_{i}}^{*}\right)$ (figure 3).

II 3. $n=3$ hence $c_{1}=c_{2}=0, c_{3} \neq 0, m=4, \xi(t)=t^{4}+a_{12} t^{12}+a_{14} t^{14}+$ $a_{16} t^{16}+a_{18} t^{18}+a_{19} t^{19}+a_{20}(t), a_{19}=c_{3}^{3} / d_{0}^{4} \neq 0$. If $t^{*}=t\left(1+t^{5} \zeta\right)$, from (16) dividing by $t^{24} \zeta$, we get the curve $\zeta^{3}+a_{14} \zeta+a_{19}+t(\ldots)=0$. Then

$$
\begin{equation*}
X^{3}+a_{14} X+a_{19} \in \mathbb{K}[X] \tag{47}
\end{equation*}
$$

has 3 distinct roots $\omega_{j}^{\prime} \in \mathbb{K}, j=1,2,3, \omega_{j}^{\prime} \neq 0$. The curve intersects $\{t=0\}$ in the 3 points $\left(0, \omega_{j}^{\prime}\right)$, where we have $\zeta_{j}(t)=\omega_{j}^{\prime}+o_{1}(t)$ and hence $t_{j}^{*}(t)=t+\omega_{j} t^{6}+o_{7}(t)$. The corresponding parametrizations of Λ_{ρ} are

$$
\begin{equation*}
\tilde{\lambda}_{\rho, j}(t)=\left(t, \tilde{u}_{2, j}(t)\right), \quad \tilde{u}_{2, j}(t)=\frac{g^{4}(t)}{t^{12} \zeta_{j}^{2}(t)}+t^{2}\left(1+t^{5} \zeta_{j}(t)\right)^{2} g_{2}(t) \tag{48}
\end{equation*}
$$

It follows $\tilde{\lambda}_{\rho, j}(t)=\left(t, \frac{c_{3}^{2}}{\omega_{j}^{\omega_{j}^{2}}}+o_{2}(t)\right), \mathbb{F}_{\rho} \cdot \operatorname{Im}\left(\tilde{\lambda}_{\rho, j}\right)=1$ and Λ_{ρ} is as in (32). Let $\tilde{P}_{\rho, j}=\tilde{\lambda}_{\rho, j}(0)=\left(0, \frac{c_{3}^{2}}{\omega_{j}^{\omega_{2}^{2}}}\right)$, and $P_{\rho, i}=\lambda_{\rho, e_{i}}(0)=\left(0, d_{0}^{2}\right)\left(e_{i}=1\right)$. Then

Proposition 4.8. In case 3, $(n=3, m=4)$, if $(a, b)=\xi(\rho), \rho \in \mathcal{R}$, then $\xi^{*}((a, b))$ and $\Lambda_{(a, b)}$ are as in (36), Λ_{ρ} is defined in (22), (48), (32) and $\Lambda_{e_{i}}$ is as in 4.4. Λ_{ρ} intersects \mathbb{F}_{ρ} in $P_{\rho, 1}, \ldots, P_{\rho, 9}, \tilde{P}_{\rho, j}, j=1,2,3$.

If $H=\psi\left(\tilde{P}_{\rho, j}\right)^{[1 / 2]}$, then $\phi_{2}^{*}(H)$ has 2 infinitely near singular points above $\alpha(p(\rho))$, as $c_{3}^{2} / \omega_{j}^{\prime 2}$ are the roots of the polynomial Q_{ρ} (see (33)).

There are (-1)-curves of type $(2,1) \Longleftrightarrow P_{\rho, i}=\tilde{P}_{\rho, j} \Longleftrightarrow d_{0}=c_{3} / \omega_{j}^{\prime}$; hence $0 \leq n_{\rho,(2,1)} \leq 3$. There are no (-1)-curves of type (3). The singularities in $\Lambda_{(a, b)}$ are, except nodes, the $n_{\rho,(2,1)}$ points $P_{\rho, i}=\tilde{P}_{\rho, j} \in \operatorname{Im}\left(\lambda_{\rho, e_{i}}\right) \cap \operatorname{Im}\left(\tilde{\lambda}_{\rho, j}\right)$; the 9 cusps $P_{\rho, i}^{*} \in \operatorname{Im}\left(\lambda_{\rho, e_{i}}^{*}\right)$ (figure 3).

II 4. $n=4$ hence $c_{1}=c_{2}=c_{3}=0, m=4, \xi(t)=t^{4}+a_{16} t^{16}+a_{18} t^{18}+$ $a_{20} t^{20}+a_{22} t^{22}+a_{24} t^{24}+a_{25} t^{25}+o_{26}(t), a_{25}=1 / d_{0}^{4} \neq 0$. If $t^{*}=t\left(1+t^{7} \zeta\right)$, from (16) dividing by $t^{32} \zeta$ we get the curve $\zeta^{3}+a_{18} \zeta+a_{25}+t(\ldots)=0$. Then

$$
\begin{equation*}
X^{3}+a_{18} X+a_{25} \in \mathbb{K}[X] \tag{49}
\end{equation*}
$$

has 3 distinct roots $\omega_{j}^{\prime \prime}, \omega_{j}^{\prime \prime} \neq 0, j=1,2,3$ in \mathbb{K}. The curve intersects $\{t=0\}$ in the 3 points $\left(0, \omega_{j}^{\prime \prime}\right)$, where we have $\zeta_{j}(t)=\omega_{j}^{\prime \prime}+o_{1}(t)$ and hence $t_{j}^{*}(t)=t+\omega_{j}^{\prime \prime} t^{8}+o_{9}(t)$. The corresponding parametrizations of Λ_{ρ} are

$$
\begin{equation*}
\tilde{\lambda}_{\rho, j}(t)=\left(t, \tilde{u}_{2, j}(t)\right), \quad \tilde{u}_{2, j}(t)=\frac{g^{4}(t)}{t^{16} \zeta_{j}^{2}(t)}+t^{2}\left(1+t^{7} \zeta_{j}(t)\right)^{2} g_{2}(t) \tag{50}
\end{equation*}
$$

It follows $\tilde{\lambda}_{\rho, j}(t)=\left(t, \frac{1}{\omega_{j}^{\prime \prime 2}}+o_{2}(t)\right)$. Since $\mathbb{F}_{\rho} \cdot \operatorname{Im}\left(\tilde{\lambda}_{\rho, j}\right)=1, \Lambda_{\rho}$ is as in (32).
Let $\tilde{P}_{\rho, j}=\tilde{\lambda}_{\rho, j}(0)=\left(0, \frac{1}{\omega_{j}^{\prime \prime 2}}\right)$, and $P_{\rho, i}=\lambda_{\rho, e_{i}}(0)=\left(0, d_{0}^{2}\right)\left(e_{i}=1\right)$; then
Proposition 4.9. In case 4, $(n=4, m=4)$, if $(a, b)=\xi(\rho), \rho \in \mathcal{R}$, then $\xi^{*}((a, b))$ and $\Lambda_{(a, b)}$ are as in (36), Λ_{ρ} is defined in (22), (50), (32) and $\Lambda_{e_{i}}$ is as in 4.4. Λ_{ρ} intersects \mathbb{F}_{ρ} in $P_{\rho, 1}, \ldots, P_{\rho, 9}, \tilde{P}_{\rho, j}, j=1,2,3$.

If $H=\psi\left(\tilde{P}_{\rho, j}\right)^{[1 / 2]}$, then $\phi_{2}^{*}(H)$ has 2 infinitely near singular points above $\alpha(p(\rho))$, since $1 / \omega_{j}^{\prime \prime} 2$ are the roots of $Q_{\rho}((33))$.

There are (-1)-curves of type $(2,1) \Longleftrightarrow P_{\rho, i}=\tilde{P}_{\rho, j} \Longleftrightarrow d_{0}=1 / \omega_{j}^{\prime \prime}$; hence $0 \leq n_{\rho,(2,1)} \leq 3$. There are no (-1 -curves of type (3). The singularities in $\Lambda_{(a, b)}$ are, except nodes, the $n_{\rho,(2,1)}$ points $P_{\rho, i}=\tilde{P}_{\rho, j} \in \operatorname{Im}\left(\lambda_{\rho, e_{i}}\right) \cap \operatorname{Im}\left(\tilde{\lambda}_{\rho, j}\right)$; the 9 cusps $P_{\rho, i}^{*} \in \operatorname{Im}\left(\lambda_{\rho, e_{i}}^{*}\right)$ (figure 3).

Case III. Suppose $(a, b)=\infty=(0,1)$; by $4.1, \xi^{*}(\infty)=e_{1}+\ldots+e_{12}+V$, $g_{2}\left(e_{i}\right)=0, g_{2}^{\prime}\left(e_{i}\right) \neq 0$. We know $\psi^{*}(\infty)=E+2 \mathbb{F}_{V}+\mathbb{F}_{e_{1}}+\ldots+\mathbb{F}_{e_{12}}, \psi_{*}(E)=4 L_{0}$, $\psi_{*}\left(\mathbb{F}_{V}\right)=L_{0}$ and hence $\infty \cdot \psi(\mathbb{F})=6 L_{0}+\psi\left(\mathbb{F}_{e_{1}}\right)+\ldots+\psi\left(\mathbb{F}_{e_{12}}\right),\left.\psi\right|_{E}$ and $\left.\psi\right|_{F_{V}}$ injective. It follows that in the plane ∞ the lines $\psi\left(\mathbb{F}_{e_{i}}\right), i=1, \ldots, 12$, intersect the line L_{0} in 12 distinct points \bar{A}_{i}; let $\psi^{-1}\left(\bar{A}_{i}\right)=\left\{A_{i}, A_{i}^{*}\right\}, A_{i}=E \cap \mathbb{F}_{e_{i}}$, $A_{i}^{*} \in \mathbb{F}_{V}, A_{i}^{*} \neq \mathbb{F}_{V} \cap E, A_{i}^{*}$ distinct $(E$ is a section of $\mathbb{F})$.

For $1 \leq i<j \leq 12$ the lines $\psi\left(\mathbb{F}_{e_{i}}\right)$ and $\psi\left(\mathbb{F}_{e_{j}}\right)$ in ∞ are different from L_{0}, hence $\psi\left(\mathbb{F}_{e_{i}}\right) \cap \psi\left(\mathbb{F}_{e_{j}}\right)=\left\{\bar{B}_{i, j}\right\}, \bar{B}_{i, j} \notin L_{0}$. Let $\psi^{-1}\left(\bar{B}_{i, j}\right)=\left\{B_{i, j}, B_{i, j}^{*}\right\}$, $B_{i, j} \in \mathbb{F}_{e_{i}}-E, \quad B_{i, j}^{*} \in \mathbb{F}_{e_{j}}-E$.

For i, j, k distinct, $\psi\left(\mathbb{F}_{e_{i}}\right) \cap \psi\left(\mathbb{F}_{e_{j}}\right) \cap \psi\left(\mathbb{F}_{e_{k}}\right)=\emptyset$, otherwise the corresponding plane would meet the cubic A in $V, \alpha\left(p\left(e_{i}\right)\right), \alpha\left(p\left(e_{j}\right)\right), \alpha\left(p\left(e_{k}\right)\right)$.

In conclusion $\Lambda_{\infty} \cap \mathbb{F}_{e_{j}}=\left\{A_{j}\right\} \cup\left\{B_{i, j}\right\}_{i<j} \cup\left\{B_{j, k}^{*}\right\}_{j<k}, \Lambda_{\infty} \cap \mathbb{F}_{V}=\left\{A_{i}^{*}\right\}_{i=1 \ldots 12}$, $\Lambda_{\infty} \cap E=\left\{A_{i}\right\}_{i=1 \ldots 12}$. In particular, $\#\left(\Lambda_{\infty} \cap \mathbb{F}_{e_{j}}\right)=\#\left(\Lambda_{\infty} \cap \mathbb{F}_{V}\right)=12$.

Since $\lambda \cdot f=12((4.2))$, it follows that Λ_{∞} is smooth, transversal to $\mathbb{F}_{e_{j}}, \mathbb{F}_{V}$. Moreover, $\lambda \cdot e=12$. To prove this, note that $\Lambda \cap E=\Lambda_{\infty} \cap E=\left\{A_{i}\right\}_{i=1 \ldots 12}$, since in the preceding cases I, II we had $\Lambda_{(a, b)} \subset \tilde{U}_{2}$, hence $\Lambda_{(a, b)} \cap E=\emptyset$. It suffices therefore to show that the intersections A_{i} are transversal. The parametrization of Λ near A_{i} comes from $\psi_{0}\left(A_{i}\right)=\psi_{V 1}\left(A_{i}^{*}\right)$. By (11) we have $\psi_{0}\left(t, u_{0}\right)=\left(t^{4}+u_{0} r_{0}\right.$, $\left.u_{0} f_{2}, 1, u_{0} g_{2}\right)$ and $\psi_{V, 1}\left(t_{V}, v_{1}\right)=\left(v_{1} r_{V, 0}, f_{V, 1}\left(1+t_{V}^{4} v_{1}\right), r_{V, 0}, g_{V, 1}\left(1+t_{V}^{4} v_{1}\right)\right)$. We obtain a 2×4 matrix $\left[P^{1}, P^{2}, P^{3}, P^{4}\right]$ whose rank must be 1 . Looking at the 2×2 minors $\left[P^{1}, P^{3}\right.$] and $\left[P^{2}, P^{3}\right.$], we get

$$
L^{\prime}\left(t, t_{V}\right)\binom{u_{0}}{v_{1}}=\binom{r_{V, 0} t^{4}}{f_{V, 1}}, \quad L^{\prime}\left(t, t_{V}\right)=\left[\begin{array}{cc}
r_{V, 0} r_{0} & r_{V, 0} \tag{51}\\
r_{V, 0} f_{2} & t_{V}^{4} f_{V, 1}
\end{array}\right]
$$

Looking at $\left[P^{2}, P^{4}\right]$, from 14 it follows $\xi(t)=\xi\left(t_{V}\right)$. But ∞ is not a branch point for ξ, so the last equation has solution $t=t\left(t_{V}\right) \in \mathbb{K}\left[\left[t_{V}\right]\right], t(0)=c_{i}$, $t^{\prime}(0) \neq 0$. Solving (51), we get $u_{0}=f_{V 1} \frac{1+t^{4} t_{V}^{4}}{r_{V, 0} f_{2}+t_{V}^{4} r_{0} f_{V, 1}}$. From (8), (10) we see $r_{V, 0}=1+o_{4}\left(t_{V}\right), f_{V 1}=t_{V}+o_{3}\left(t_{V}\right)$ and $f_{2}\left(e_{i}\right) \neq 0$, since $g_{2}\left(e_{i}\right)=0$. Hence $u_{0}=t_{V}+o_{2}\left(t_{V}\right)$, the required transversality in A_{i}. We proved:

Proposition 4.10. Λ_{∞} is smooth and $\lambda \cdot e=12$. In particular, there are no nodes in Λ_{∞} (figure 6).

Fig. 6: $\Lambda_{\infty}(i<j)$.

5 - The proof of Theorem 1.1

In this section we use the local analysis of Λ carried out in cases I, II, III in section 4 to prove 1.1, leaving the calculations to the next section.

Proposition 5.1. The arithmetic genus of Λ is $p_{a}(\Lambda)=781$.

Moreover, the following possibilities occur with respect to the decomposition into irreducible components $\Lambda=\sum \Lambda_{i}$ of Λ. The exponent denotes the arithmetic genus of the component and the latin lower case letters denote the corresponding classes in Pic \mathbb{F}.
(d1) $\Lambda=\Lambda^{781}$ is irreducible and $l=12 e+132 f$;
(d2) $\Lambda=\Lambda_{1}^{531}+\Lambda_{2}^{11}$ and $l_{1}=10 e+110 f, l_{2}=2 e+22 f$;
(d3) $\Lambda=\Lambda_{1}^{329}+\Lambda_{2}^{69}$ and $l_{1}=8 e+88 f, l_{2}=4 e+44 f$;
(d4) $\Lambda=\Lambda_{1}^{329}+\Lambda_{2}^{11}+\Lambda_{3}^{11}$ and $l_{1}=8 e+88 f, l_{1}=l_{2}=2 e+22 f$;
(d5) $\Lambda=\Lambda_{1}^{175}+\Lambda_{2}^{175}$ and $l_{1}=l_{2}=6 e+66 f$;
(d6) $\Lambda=\Lambda_{1}^{175}+\Lambda_{2}^{69}+\Lambda_{3}^{11}$ and $l_{1}=6 e+66 f, l_{2}=4 e+44 f, l_{3}=2 e+22 f$;
(d7) $\Lambda=\Lambda_{1}^{175}+\Lambda_{2}^{11}+\Lambda_{3}^{11}+\Lambda_{4}^{11}$ and $l_{1}=6 e+66 f, l_{2}=l_{3}=l_{4}=2 e+22 f$;
(d8) $\Lambda=\Lambda_{1}^{69}+\Lambda_{2}^{69}+\Lambda_{3}^{69}$ and $l_{1}=l_{2}=l_{3}=4 e+44 f$;
(d9) $\Lambda=\Lambda_{1}^{69}+\Lambda_{2}^{69}+\Lambda_{3}^{11}+\Lambda_{4}^{11}$ and $l_{1}=l_{2}=4 e+44 f, l_{3}=l_{4}=2 e+22 f$.
Proof: If we call e, f, l, k the classes of $E, \mathbb{F}_{X}, \Lambda, K_{\mathbb{F}}$ in Pic \mathbb{F}, from 3.6, 4.2, 4.10 it follows $l \cdot e=l \cdot f=12$, hence $l=12 e+132 f$. Moreover $-2=e^{2}+e \cdot k=f^{2}+f k$ and $k=-12 f-2 e$. It follows $p_{a}(l)=1+\frac{1}{2}\left(l^{2}+l \cdot k\right)=781$.

The map $\psi: \Lambda \rightarrow \Delta$ is generically $2: 1$. Call $\tilde{\Lambda}_{j}$ the irreducible components of Λ for which $\tilde{\Lambda}_{j} \xrightarrow{2: 1} \psi\left(\tilde{\Lambda}_{j}\right)=\tilde{\Delta}_{j}$ and $\Lambda_{k}^{\prime}, \Lambda_{k}^{\prime \prime}$ the components for which $\Lambda_{k}^{\prime} \xrightarrow{1: 1}$ $\psi\left(\Lambda_{k}^{\prime}\right)=\Delta_{k}$ and $\Lambda_{k}^{\prime \prime} \xrightarrow{1: 1} \psi\left(\Lambda_{k}^{\prime \prime}\right)=\Delta_{k}$.

Given $(a, b) \in \Phi-(\xi(\mathcal{R}) \cup\{\infty\})$, we define in the following way the symmetric 13×13 matrix $\tilde{I}_{j}=\left(\tilde{i}_{r s}\right)$ with entries in $\{0,1\}$, having 0 's on the main diagonal. Let $\xi^{*}(a, b)=e_{1}+\ldots+e_{13}$; for $1 \leq r, s \leq 13, r \neq s$, there is a unique $P_{r s} \in \mathbb{F}_{c_{r}}$ s.t. $\psi\left(P_{r s}\right) \in \psi\left(\mathbb{F}_{c_{r}}\right) \cap \psi\left(\mathbb{F}_{c_{s}}\right)$. Then $\tilde{i}_{r s}=1 \Leftrightarrow P_{r s} \in \tilde{\Lambda}_{j}$.

Moreover we define the skew-symmetric 13×13 matrix $I_{k}=\left(i_{r s}\right)$ with entries in $\{0,1,-1\}$ by: $i_{r s}=1 \Leftrightarrow P_{r s} \in \Lambda_{k}^{\prime}$. Then (1)-(6) hold:
(1) $\Lambda_{k}^{\prime} \cdot \mathbb{F}_{X}=\Lambda_{k}^{\prime \prime} \cdot \mathbb{F}_{X}$, because $\Lambda_{k}^{\prime} \cdot \mathbb{F}_{X}$ equals the number of 1 's in each row of $I_{k}, \Lambda_{k}^{\prime \prime} \cdot \mathbb{F}_{X}$ equals the number of -1 's in each row and $\sum_{r s} i_{r s}=0$.
(2) $\tilde{\Lambda_{j}} \cdot \mathbb{F}_{X}$ is even, because this number equals the number of entries $=1$ in each row of \tilde{I}_{j}, the number of rows is odd and $\sum_{r s} \tilde{i}_{r s}$ is even.
If $(a, b) \in \xi(\mathcal{R})$, i.e. $\xi^{*}(a, b)=m \rho+e_{1}+\ldots+e_{13-m}$ we may define the matrices \tilde{I}_{j} and I_{k} as well, imposing the further condition that the first m rows, and hence the first m columns are equal. Call $\tilde{I}_{j}^{\prime}, I_{k}^{\prime} \in M_{m}(\mathbb{K})$, respectively $\tilde{I}_{j}^{\prime \prime}, I_{k}^{\prime \prime} \in M_{13-m}(\mathbb{K})$, the submatrices of \tilde{I}_{j} and I_{k} formed by the first m rows and
columns, the last $13-m$ rows and columns. Let

$$
\tilde{I}_{j}=\left[\begin{array}{cc}
\tilde{I}_{j}^{\prime} & { }^{t} \tilde{B}_{j} \\
\tilde{B}_{j} & \tilde{I}_{j}^{\prime \prime}
\end{array}\right], \quad I_{k}=\left[\begin{array}{cc}
I_{k}^{\prime} & -{ }^{t} B_{k} \\
B_{k} & I_{k}^{\prime \prime}
\end{array}\right]
$$

(3) $I_{k}^{\prime}=0$, because this matrix is both symmetric and skew-symmetric.

Let $\left\{\tilde{\Lambda}_{j}\right\}_{1 \leq j \leq t}$ be the components $\tilde{\Lambda}_{j}$ meeting at least one singularity $P_{\rho, e_{i}}^{*}$, which means $\mathcal{B}_{j} \neq 0-$ see figures $3,4,5$. Then
(4) If \tilde{l}_{j} is the class of $\tilde{\Lambda}_{j}$, then $\tilde{l}_{j} \cdot f \geq m$ for $1 \leq j \leq t$, because the singularities $P_{\rho, e_{i}}^{*}$ have intersection m with \mathbb{F}_{X}.
(5) If l_{k} is the class of Λ_{k}^{\prime}, then $\tilde{l}_{j} \cdot f=\tilde{l}_{j} \cdot e$ and $l_{k} \cdot f=l_{k} \cdot e$. This follows from (1) and the local analysis in case III. By (1), l_{k} is also the class of $\Lambda_{k}^{\prime \prime}$.
(6) $l_{k} \cdot f \geq m$, because by (3) all $\Lambda_{k}^{\prime}, \Lambda_{k}^{\prime \prime}$ must contain at least one $P_{\rho, e_{i}}^{*}$.

- If case II 1_{7} occurs, there exists $(a, b) \in \xi(\mathcal{R})$ for which $m=7$. Since $l \cdot f=12$, (1) and (6) imply that there are no $\Lambda_{k}^{\prime}, \Lambda_{k}^{\prime \prime}$. Moreover $t=1$ by (4) and $\tilde{l}_{1} \cdot e \in\{8,10,12\}$ by (2). By (5) $l_{1} \in\{8 e+88 f, 10 e+110 f, 12 e+132 f\}$, and we may have (d1), (d2), (d3), (d4).
- If case II 1_{6} occurs, there exists $(a, b) \in \xi(\mathcal{R})$ for which $m=6$. If there are components $\Lambda_{k}^{\prime}, \Lambda_{k}^{\prime \prime}$, by (6) there are 2 of them of class $6 e+66 f$, so in each row of I_{1} we must have six 1 's and six -1 's, excluded by (3). If there are only components $\tilde{\Lambda}_{j}$, by (4) $1 \leq t \leq 2$. If $t=1$ then we may have (d1), (d2), (d3), (d4), (d6), (d7). If $t=2$ then necessarily we would have (d5), but then the 7×6 matrix \tilde{B}_{1} would have 1 row (suppose the first) formed by 0 's and all the 6 other rows formed by 1 's, so $\tilde{I}_{1}^{\prime \prime}$ would have the first row and column (apart from the main diagonal) formed by 1 's, and the last rows of \tilde{I}_{1} would have at least seven 1 's, excluded.
— If for all $(a, b) \in \xi(\mathcal{R})$ only II 1_{4}, II 2 , II 3 , II 4 occur, always $m=4$ and as before we have the following cases. If there are components $\Lambda_{k}^{\prime}, \Lambda_{k}^{\prime \prime}$ then by (6) there are 2 of them of class $4 e+44 f$, and we may have (d8) or (d9). If there are only components $\tilde{\Lambda}_{j}$, then $1 \leq t \leq 3$ and we may have (d1), (d2) for $t=1$; (d5), (d6) for $t=2$; (d8) for $t=3$.

If Λ_{\star} is an irreducible component of Λ, let $\nu_{\star}: N_{\star} \rightarrow \Lambda_{\star}$ be its normalization, $g_{\star}=p_{a}\left(N_{\star}\right), l_{\star}$ the class of Λ_{\star} in $\operatorname{Pic} \mathbb{F}, d_{\star}=l_{\star} \cdot f$. The Riemann-Hurwitz

Theorem applied to $p \circ \nu_{\star}: N_{\star} \xrightarrow{d_{\star}: 1} \mathbb{P}^{1}$ gives $g_{\star}=-d_{\star}+1+\frac{1}{2} \operatorname{deg} R_{\star}^{\prime}$, where $R_{\star}^{\prime}=\sum_{Q \in N_{\star}} r_{Q}^{\prime} \cdot Q$ is the ramification divisor in N_{\star}.

Call respectively $\delta_{\rho, e_{i}}^{*}, \tilde{\delta}_{\rho, *}, \tilde{\delta}_{\rho}$ contribution to the arithmetic genus of Λ_{\star} of the singularities $P_{\rho, i}^{*} \in \lambda_{\rho, e_{i}}^{*}((24)), \tilde{P}_{\rho, *} \in \tilde{\lambda}_{\rho, j}((40)), \tilde{P}_{\rho} \in \tilde{\lambda}_{\rho, j}((43))$, which are contained in Λ_{\star}. Remark that $\tilde{\delta}_{\rho, *}$ depends on the number $\tilde{b}_{\rho, *}, 1 \leq \tilde{b}_{\rho, *} \leq 2$, of parametrizations $\tilde{\lambda}_{\rho, j}$ centered at $\tilde{P}_{\rho, *}$ which belong to Λ_{\star}.

Corollary 5.2. Λ is irreducible if following conditions are satisfied.

$$
\begin{align*}
& \delta_{\rho, e_{i}}^{*} \geq 9 \quad \text { in cases } 1_{4}, 1_{6}, 1_{7}, \tag{52}\\
& \tilde{\delta}_{\rho, *}=3 \quad \text { in case } 1_{6}, \text { if } \tilde{b}_{\rho, *}=1, \tag{53}\\
& \tilde{\delta}_{\rho, *} \geq 18 \quad \text { in case } 1_{6}, \text { if } \tilde{b}_{\rho, *}=2, \tag{54}\\
& \delta_{\rho, e_{i}}^{*} \geq 18 \quad \text { in case } 2, \tag{55}\\
& \delta_{\rho, e_{i}}^{*} \geq 27 \quad \text { in case } 3, \tag{56}\\
& \delta_{\rho, e_{i}}^{*} \geq 36 \quad \text { in case } 4, \tag{57}
\end{align*}
$$

Proof: We must exclude cases (d2)-(d9) in 5.1.

- (d2), (d3), (d4). Consider Λ_{2}^{11} in (d2) or (d4). If $(a, b) \in \xi(\mathcal{R})$, as $l_{2} \cdot f=2, \Lambda_{2}^{11}$ does not contain any singularity $P_{\rho, e_{i}}^{*}\left(\tilde{I}_{2}^{\prime \prime}=0\right)$. If case II 1_{6} does not occur, it follows from the local analysis of Λ that $p \circ \nu_{2}$ has no ramification and is $2: 1$, which contradicts Hurwitz's formula. Thus case $\mathrm{II} 1_{6}$ must occur twice or four times, since $r_{\nu^{-1}\left(P_{\rho, *)}\right)}^{\prime}=1$, as we see from $t_{j}(\zeta)$ in (39). It can't occur four times, because of (53) and $p_{a}\left(\Lambda_{2}^{11}\right)=11$. If it occurs twice, then $g_{2}=p_{a}\left(N_{2}\right)=0$ and Λ_{2}^{11} must have $11-2 \cdot 3=5$ nodes by (53), excluded because the number of nodes is divisible by 3 . The same for Λ_{2}^{69} in (d3): if II 1_{6} does not occur, we have 4 situations II 1_{7}, no ramification, excluded by Hurwitz. So II 1_{6} must occur 4 times, $\operatorname{deg} R^{\prime}=8, \Lambda_{2}^{69}$ must contain both $\tilde{\lambda}_{\rho, 1}, \tilde{\lambda}_{\rho, 2}$ at $\tilde{P}_{\rho, *}$ i.e. $\tilde{n}_{\rho, *}=2$. But the 4 singularities $\tilde{P}_{\rho, *}$ give to $p_{a}\left(\Lambda_{2}^{69}\right)$ by (54) a contribution $\geq 4 \cdot 18=72$, impossible.
- (d5). Necessarily $m=4, t=2$ and only II 1_{4}, II 2 , II 3 , II 4 may occur. Call $n_{1,1}$ the number of nodes of $\Lambda_{1}^{175}, n_{2,2}$ the number of nodes of Λ_{2}^{175}; From (52), (55), (56), (57) we have $g_{1}+g_{2}+n_{1,1}+n_{2,2}+324 \leq 350$. Let $n_{1,2}=(6 e+66 f)(6 e+66 f)=432$ be the number of nodes of Λ generated by the intersections of Λ_{1}^{175} and Λ_{2}^{175}. We have 4 kinds of triple points of $\Delta=\Delta_{1}+\Delta_{2}$, $\Delta_{1}=\psi\left(\Lambda_{1}^{175}\right), \Delta_{2}=\psi\left(\Lambda_{2}^{175}\right):(1,1,2)$ with 2 branches of Δ_{1} and 1 of $\Delta_{2},(1,2,2)$ with 1 branch of Δ_{1} and 2 of $\Delta_{2},(1,1,1)$ with 3 branches of $\Delta_{1},(2,2,2)$ with 3 branches of Δ_{1}; let a, b, c, d be respectively the number of such points. Then we must have $n_{1,1}+n_{1,2}=a+3 c+b+3 d \leq 26$ and $n_{1,2}=2 a+2 b=432$, impossible.
- (d6). If we have 4 situations II 1_{6}, as $t=1$ all the 28 points $P_{\rho, i}^{*}, \rho \in \mathcal{R}$, $i=1, \ldots, 7$ must belong to Λ_{1}^{175}; from (52) we see $\sum_{\rho, i} \delta_{\rho, e_{i}}^{*} \geq 63 \cdot 4=252>175$, impossible. If we have at most 3 situations II 1_{6}, as II_{7} can't occur, from (52)-(57) we see $\sum_{\rho, i} \delta_{\rho, e_{i}}^{*} \geq 63 \cdot 3+81=270>175+69+11$, impossible.
- (d7), (d8), (d9). As II 1_{7} can't occur, (52)-(57) imply $\sum_{\rho, i} \delta_{\rho, e_{i}}^{*} \geq 252$, but in these cases $\sum_{j} p_{a}\left(\Lambda_{j}\right) \leq 208$, impossible.

In the next section we shall check (52)-(57), proving the irreducibility of Λ, which we assume from now. Let $\nu: N \rightarrow \Lambda$ be its normalization, $g=p_{a}(N)$. Consider $p \circ \nu: N \xrightarrow{12: 1} \mathbb{P}^{1}$ and let $R^{\prime}=\sum_{Q \in N} r_{Q}^{\prime} Q$ the ramification divisor. Hurwitz's formula gives $g=-11+\frac{1}{2} \operatorname{deg} R^{\prime}$. Let $R=\sum_{\rho \in \mathcal{R}} r_{\rho} \rho$ be the ramification divisor of ξ, so that $\mathcal{R}=\operatorname{Supp} R\left(4.1\right.$ (iii)). Let $\mathcal{R}^{\prime}=\operatorname{Supp} R^{\prime}$. It follows from the local analysis that $\mathcal{R}^{\prime} \subset \bigcup_{\rho \in \mathcal{R}} \nu^{-1}\left(\Lambda_{\xi(\rho)}\right)$. For $\rho \in \mathcal{R}$, let $r_{\rho}^{\prime}=\sum_{Q \in \nu^{-1}\left(\Lambda_{\xi(\rho)}\right)} r_{Q}^{\prime}$, so that $\operatorname{deg} R^{\prime}=\sum_{\rho \in \mathcal{R}} r_{\rho}^{\prime}$.

Remark 5.3. For $\rho \in \mathcal{R}$ the following hold

$$
r_{\rho}^{\prime}= \begin{cases}9 r_{\rho} & \text { in cases } 1_{4}, 2,3,4 \\ 7 r_{\rho}+r_{Q_{1}}^{\prime}+r_{Q_{2}}^{\prime} & \text { in case } 1_{6} \\ 6 r_{\rho} & \text { in case } 1_{7}\end{cases}
$$

where $\left\{Q_{1}, Q_{2}\right\}=\nu^{-1}\left(\tilde{P}_{\rho, *}\right)$. Moreover $r_{\rho}=\left\{\begin{array}{l}6 \quad \text { in cases } 1_{4}, 1_{6}, 1_{7} \\ 12 \text { in case 2 } \\ 18 \text { in case 3 } \\ 24 \text { in case 4. }\end{array}\right.$
Proof: If $\lambda(t)=(a(t), b(t))$ parametrizes one branch of Λ at P, then $p \circ \nu$ is defined at the corresponding point of $\nu^{-1}(P)$ by $a(t)$. If $\Lambda_{\xi(\rho)}$ is of type $1_{4}, 2$, 3,4 then it follows from the local analysis and (22), (31), (46), (48), (50) that $\nu^{-1}\left(P_{\rho, i}^{*}\right)$ consists of one point $Q_{\rho, i}^{*}$ and the differential of $a(t)$ vanishes only at $Q_{\rho, i}^{*}$, hence $\left.R^{\prime}\right|_{\Lambda_{\xi(\rho)}}=r_{\rho, 1}^{\prime} Q_{\rho, 9}^{*}+\ldots+r_{\rho, 9}^{\prime} Q_{\rho, 9}^{*}$. By (22) at $Q_{\rho, i}^{*}$, if we denote by $\left.\xi\right|_{c}$ the power series defined by ξ at c we have $a(t)=t^{*}(t)=\left(\xi \mid e_{e_{i}}\right)^{-1} \circ\left(\left.\xi\right|_{\rho}\right)$ and $\left.\xi\right|_{e_{i}}$ is an isomorphism, so that $r_{\rho, i}^{\prime}=r_{\rho}$ and hence $r_{\rho}^{\prime}=9 r_{\rho}$. The cases 1_{6} and 1_{7} are analogous. The second assertion follows from 4.1 (iii).

We prove 1.1. The exact sequence $0 \rightarrow \mathcal{O}_{\Lambda} \rightarrow \nu_{*} \mathcal{O}_{N} \rightarrow \mathcal{D} \rightarrow 0$ of ν gives $p_{a}(\Lambda)=h^{1}\left(\mathcal{O}_{\Lambda}\right)=h^{0}(\mathcal{D})+g$, hence $781=h^{0}(\mathcal{D})-11+\frac{1}{2} \operatorname{deg} R^{\prime}$, so that

$$
\begin{equation*}
792=h^{0}(\mathcal{D})+\frac{1}{2} \sum_{\rho \in \mathcal{R}} r_{\rho}^{\prime} \tag{58}
\end{equation*}
$$

In 5.3 we computed r_{ρ}^{\prime}. The support of the sheaf \mathcal{D} is the singular set $\operatorname{Sing} \Lambda$ of Λ, hence $h^{0}(\mathcal{D})=\sum_{P \in \operatorname{Sing} \Lambda} \delta_{P}$, where $\delta_{P}=\operatorname{dim}_{\mathbb{K}} \mathcal{D}_{P}$.

As in 4.3, 4.5 let $n_{(1,1,1)}, n_{(2,1)}, n_{(3)}$ be the number of pairs of (-1)-curves of type $(1,1,1),(2,1),(3)$. We proved the following facts about Sing Λ :
(1) Λ_{∞} contains no singular points, by 4.10;
(2) $\bigcup_{(a, b) \in \Phi-(\xi(\mathcal{R}) \cup\{\infty\})} \Lambda_{(a, b)}$ has only nodes as singularities by 4.2. Each pair of (-1)-curves of type $(1,1,1)$ corresponds to 3 nodes and 1 triple point of Δ;
(3) If $(a, b) \in \xi(\mathcal{R}), \Lambda_{(a, b)}$ may contain nodes (4.4-4.9). The number of these nodes and those in $\Lambda_{\Phi-(\xi(\mathcal{R}) \cup\{\infty\})}(4.2)$ is $3 n_{(1,1,1)}$.

The other singularities in $\Lambda_{(a, b)}$ are:
(4) $P_{\rho, i}^{*}$; their number is 9 in cases $1_{4}, 2,3,4$, is 7 in case 1_{6}, is 6 in case 1_{7};
(5) the singularity $\tilde{P}_{\rho, *}$ in case 1_{6}. There are $n_{\rho,(3)}, 0 \leq n_{\rho,(3)} \leq 1$, pairs of (-1)-curves of type (3) associated to this singularity and

$$
\begin{equation*}
n_{\rho,(3)}=1 \Longleftrightarrow d_{1}+d_{2}^{2}+c_{2}^{4}=0 ; \tag{59}
\end{equation*}
$$

(6) the singularity \tilde{P}_{ρ} in case 1_{7}. There are $n_{\rho,(3)}, 0 \leq n_{\rho,(3)} \leq 1$, pairs of (-1)-curves of type (3) associated to this singularity and

$$
\begin{equation*}
n_{\rho,(3)}=1 \Longleftrightarrow d_{2}^{2}+c_{2}^{4}=0 ; \tag{60}
\end{equation*}
$$

(7) the $n_{\rho,(2,1)}, 0 \leq n_{\rho,(2,1)} \leq 3$, singularities $P_{\rho, i}=\tilde{P}_{\rho, j}$ in cases $1_{4}, 2,3,4$:

$$
P_{\rho, i}=\tilde{P}_{\rho, j} \Longleftrightarrow \begin{cases}d_{0}=c_{1}^{2} / \epsilon_{j} & \text { in case } 1_{4}-\text { see } 4.3(\mathrm{vi}) \tag{61}\\ d_{0}=c_{2}^{2} / \omega_{j} & \text { in case } 2 \\ d_{0}=c_{3}^{2} / \omega_{j} & \text { in case } 3 \\ d_{0}=1 / \omega_{j} & \text { in case } 4 ;\end{cases}
$$

(8) the $n_{\rho,(2,1)}, 0 \leq n_{\rho,(2,1)} \leq 1$, singularity $P_{\rho, i}=\tilde{P}_{\rho}$ in case 1_{6}

$$
\begin{equation*}
P_{\rho, i}=\tilde{P}_{\rho} \Longleftrightarrow d_{0}=d_{1}^{2} \tag{62}
\end{equation*}
$$

The proof of 1.1 amounts to show

$$
\begin{equation*}
n_{(1,1,1)}+n_{(2,1)}+n_{(3)}=120 . \tag{63}
\end{equation*}
$$

For $\rho \in \mathcal{R}$, let $\delta_{\rho}=\sum_{P \in \operatorname{Sing} \Lambda \cap \Lambda_{\xi(\rho)}} \delta_{P}$, so that $h_{0}(\mathcal{D})=3 n_{(1,1,1)}+\sum_{\rho \in \mathcal{R}} \delta_{\rho}$.

As $n_{(2,1)}=\sum_{\rho \in \mathcal{R}} n_{\rho,(2,1)}$ and $n_{(3)}=\sum_{\rho \in \mathcal{R}} n_{\rho,(3)}$, by (58) we are left to show

$$
\sum_{\rho \in \mathcal{R}}\left(\delta_{\rho}+\frac{1}{2} r_{\rho}^{\prime}-3 n_{\rho,(2,1)}-3 n_{\rho,(3)}\right)=792-360=432
$$

Corollary 5.4. By 4.1 (iii), to prove Theorem 1.1 it suffices check (52)-(57) and show that for every $\rho \in \mathcal{R}$ we have

$$
\delta_{\rho}+\frac{1}{2} r_{\rho}^{\prime}-3 n_{\rho,(2,1)}-3 n_{\rho,(3)}= \begin{cases}108 & \text { in cases } 1_{4}, 1_{6}, 1_{7} \tag{64}\\ 216 & \text { in case } 2 \\ 324 & \text { in case } 3 \\ 432 & \text { in case } 4\end{cases}
$$

where r_{ρ}^{\prime} is computed in 5.3.

6 - The computations

In this section we check (52)-(57), proving the irreducibility of Λ, and (64), finishing the proof of 1.1. As in 5.2 , we set $\delta_{\rho, e_{i}}^{*}=\delta_{P_{\rho, i}^{*}}, \tilde{\delta}_{\rho, *}=\delta_{\tilde{P}_{\rho, *}}, \tilde{\delta}_{\rho}=\delta_{\tilde{P}_{\rho}}$. The meaning of 5.4 is that although the number of different global configurations is high, we are left to consider only 6 cases, because in some sense each singularity of the ramification divisor A^{*} of ϕ_{2} (see 4.1, (iv)) gives an independent contribution to the number of (-1)-curves on the surface S.

Case $\mathbf{1}_{4}$. We have $r_{\rho}^{\prime}=54$ by $5.3, n_{(3)}=0$. Then (64) is $\delta_{\rho}-3 n_{\rho,(2,1)}=81$.
Remark 6.1. To satisfy the conditions of 5.4 in case 1_{4} it suffices to prove

1) $\delta_{0, e_{i}}^{*}= \begin{cases}9 & \text { if } d_{0} \neq c_{1}^{2} / \epsilon_{j} \\ 10 & \text { if } d_{0}=c_{1}^{2} / \epsilon_{j},\end{cases}$
2) if $d_{0}=c_{1}^{2} / \epsilon_{j}$ then $\delta_{P_{0, i}}=2$,
where by (25) we may assume $\rho=0, e_{i}=1 ; d_{0}=c_{1}^{2} / \epsilon_{j}$ is the condition that $P_{0, i}=\tilde{P}_{0, j}((61)) ; \epsilon_{j}$ are the roots of (30).

Proof: If $P_{0, i} \neq \tilde{P}_{0, j}$ then $n_{0,(2,1)}=0, \delta_{0}=\sum_{i=1}^{9} \delta_{0, e_{i}}^{*}=81$ and (64) holds. Each time that $P_{0, i}=\tilde{P}_{0, j}, \delta_{0}$ grows by $\delta_{P_{0, i}}+10-9=3$ and $n_{0,(2,1)}$ grows by 1 hence (64) holds in any case. Moreover (52) is satisfied.

Proof of (65) 1): The parametrization $\lambda_{0, e_{i}}^{*}(t)$ centered at $P_{0, e_{i}}^{*}$ is given in (22), where $t^{*}(t) \in \mathbb{K}[[t]]$ is the solution of $\xi\left(t^{*}(t)\right)=\xi(t), t^{*}(0)=1$ and as in
(26), $\xi(t)=\sum_{4 \leq i \leq 11} a_{i} t^{i}+o_{12}, o_{12} \in\left(t^{12}\right)$. Solving recursively, we get

$$
\begin{equation*}
t^{*}(t)=1+\left(g_{2}(1) / g(1)^{2}\right) \sum_{4 \leq i \leq 11} a_{i}^{*} t^{i}+o_{12}(t) \tag{66}
\end{equation*}
$$

where $a_{i}^{*}=a_{i}$ for $i \neq 8$ and $a_{8}^{*}=a_{8}+a_{4}^{2}\left(1+c_{1}^{2}+c_{3}+d_{1}^{2}+d_{3}^{2}\right)$. Then by (23)

$$
u_{2}^{*}(t)=g_{2}(1)\left[1+t^{4}+\left(1+a_{4}\right) t^{6}+\left(1+g_{2}(1) a_{4}^{2}+a_{6}\right) t^{8}+a_{7} t^{9}\right]+o_{10}(t)
$$

Denote by \sim equality up to an affine coordinate change. We have
(0) $\lambda_{0, e_{i}}^{*}=\left(t^{*}(t), u_{2}^{*}(t)\right) \sim\left(p_{0}, q_{0}\right)$ where $p_{0}=a_{4} t^{4}+a_{6} t^{6}+a_{7} t^{7}+a_{8}^{*} t^{8}+a_{9} t^{9}+o_{10}$, $q_{0}=t^{4}+\left[1+a_{4}\right] t^{6}+\left[1+g_{2}(1) a_{4}^{2}+a_{6}\right] t^{8}+a_{7} t^{9}+o_{10}$.

The initial contribution to $\delta_{0, e_{i}}^{*}$ is $\delta_{0}=4 \cdot 3 / 2=6$.
(1) After the blow up $\left(p_{0} / q_{0}, q_{0}\right) \sim\left(p_{1}, q_{1}\right)$ we get $q_{1}=q_{0}$ and $p_{1}=C t^{2}+$ $a_{7} t^{3}+\left[C+a_{4}+a_{8}^{*}+C a_{4}+C g_{2}(1)+a_{4} g_{2}(1)+a_{6} g_{2}(1)+a_{4} a_{6}+a_{4} a_{6} g_{2}(1)+\right.$ $\left.a_{4} g_{2}(1) C\right] t^{4}+\left[a_{7}+a_{9}\right] t^{5}+o_{6}$, where $C=a_{4}+a_{4}^{2}+a^{6}$.

- Suppose $C=0 ; a_{7} \neq 0$ implies $\delta_{1}=3$ and $\left(p_{1}, q_{1}\right) \sim\left(t^{3}+o_{4}, t^{4}+o_{5}\right)$;
(2) blowing up $p_{2}=p_{1}, q_{2}=q_{1} / p_{1}$ we get $q_{2}=t+o_{2}$ hence the resolution stops and $\delta_{0, e_{i}}^{*}=6+3=9$.
- Suppose $C \neq 0$; then $\delta_{1}=2 \cdot 1 / 2=1$ and we have the following sequence (2) $\left(p_{1}, q_{1} / p_{1}\right) \sim\left(p_{2}, q_{2}\right)$ where

$$
\begin{aligned}
p_{2}= & C^{-1} p_{1}=t^{2}+C^{-1} a_{7} t^{3}+C^{-1}[\ldots] t^{4}+C^{-1}\left[a_{7}+a_{9}\right] t^{5}+o_{6}, \\
q_{2}= & t^{2}+C^{-1} a_{7} t^{3}+C^{-1}\left[a_{4}+g_{2}(1) C+a_{8}^{*}+a_{4} g_{2}(1) C+a_{6} g_{2}(1)+a_{4} g_{2}(1)\right. \\
& \left.+a_{4} a_{6}+a_{7}^{2} C^{-1}+a_{4} a_{6} g_{2}(1)\right] t^{4}+C^{-1}\left[a_{9}+a_{4} a_{7}+a_{7}^{3} C^{-2}\right] t^{5}+o_{6}
\end{aligned}
$$

then $\delta_{2}=1$.
(3) $\left(p_{2}, q_{2} / p_{2}\right) \sim\left(p_{3}, q_{3}\right)$ where $p_{3}=p_{2}$ and $q_{3}=t^{2}\left[1+a_{4}+a_{7}^{2} C^{-2}\right]+o_{3}$.

- Suppose $1+a_{4}+a_{7}^{2} C^{-2} \neq 0$; then $\delta_{3}=1$;
(4) $\left(p_{3} / q_{3}, q_{3}\right) \sim\left(p_{4}, q_{4}\right)$ where $p_{4}=t+o_{2}$. The resolution ends and $\delta_{0, e_{i}}^{*}=9$.
- Suppose $1+a_{4}+a_{7}^{2} C^{-2}=0$. We develop p_{0}, q_{0} up to o_{12} :

$$
\begin{aligned}
p_{0}= & a_{4} t^{4}+a_{6} t^{6}+a_{7} t^{7}+a_{8}^{*} t^{8}+a_{9} t^{9}+a_{10} t^{10}+a_{11} t^{11}+o_{12} \\
q_{0}= & t^{4}+\left[1+a_{4}\right] t^{6}+\left[1+g_{2}(1) a_{4}^{2}+a_{6}\right] t^{8}+a_{7} t^{9}+\left[1+a_{8}^{*}+a_{4}^{2} c_{1}+a_{4}^{2} d_{3}^{2}\right. \\
& \left.+a_{4}^{2} d_{1}^{2}+a_{4}^{2} c_{1}^{2}\right] t^{10} a_{9} t^{11}+o_{12} .
\end{aligned}
$$

After the same sequence as before we get (4) $\left(p_{3}, q_{3} / p_{3}\right) \sim\left(p_{4}, q_{4}\right)$ where

$$
\begin{aligned}
p_{4}= & t^{2}+C^{-1} a_{7} t^{3}+C^{-1}\left[C+g_{2}(1) C+a_{4} C+a_{8}^{*}+a_{4}+a_{4} g_{2}(1) C+a_{6} g_{2}(1)\right. \\
& \left.+a_{4} g_{2}(1)+a_{4} a_{6}+a_{4} a_{6} g_{2}(1)\right] t^{4}+C^{-1}\left[a_{7}+a_{9}\right] t^{5}+C^{-1}\left[C^{2}+a_{6} C+a_{10}\right. \\
& \left.+a_{8}^{*}+a_{6} g_{2}(1) C+a_{4} a_{8}^{*}+a_{6}^{2}+a_{4} a_{6}+a_{6}^{2} g_{2}(1)+a_{4} a_{6} g_{2}(1)\right] t^{6}+C^{-1}\left[a_{7} C\right. \\
& \left.+a_{11}+a_{9}+a_{6} a_{7}+a_{4} a_{7}+a_{6} a_{7} g_{2}(1)+a_{4} a_{7} g_{2}(1)+a_{7} g_{2}(1)\right] t^{7}+o_{8},
\end{aligned}
$$

$$
\begin{aligned}
q_{4}= & C^{-2}\left[C^{1}+C^{3}+a_{4} C^{2}+g_{2}(1) C^{3}+g_{2}(1)^{2} C^{2}+a_{6} g_{2}(1) C^{2}+a_{4} g_{2}(1) C^{2}\right. \\
& +a_{6}+g_{2}(1)^{2} C+a_{6}^{2} C+g_{2}(1)^{2} C^{3}+a_{6} g_{2}(1)^{2} C^{2}+a_{4} g_{2}(1)^{2} C^{2}+a_{8}^{* 2} \\
& +a_{6} g_{2}(1)+a_{4} g_{2}(1)^{2} a_{6}^{3}+a_{4} a_{6}^{2}+a_{4}+a_{6}^{2} g_{2}(1)^{2} C+a_{6}^{2} g_{2}(1)^{2}+a_{6}^{3} g_{2}(1)^{2} \\
& \left.+a_{4} a_{6}^{2} g_{2}(1)^{2}\right] t^{2}+C^{-3}\left[a_{7} g_{2}(1) C^{3}+a_{7} C+a_{4} a_{7} C^{2}+a_{7} g_{2}(1)^{2} C^{3}\right. \\
& +a_{7} g_{2}(1)^{2} C^{2}+a_{6} a_{7} g_{2}(1) C^{2}+a_{4} a_{7} g_{2}(1) C^{2}+a_{6} a_{7}+a_{4} a_{7}+a_{7} g_{2}(1)^{2} C \\
& +a_{6}^{2} a_{7} C+a_{6} a_{7} g_{2}(1)^{2} C^{2}+a_{4} a_{7} g_{2}(1)^{2} C^{2}+a_{7} a_{8}^{* 2}+a_{6} a_{7} g_{2}(1)^{2}+a_{4} a_{7} g_{2}(1)^{2} \\
& \left.+a_{6}^{3} a_{7}+a_{4} a_{6}^{2} a_{7}+a_{6}^{2} a_{7} g_{2}(1)^{2} C+a_{6}^{2} a_{7} g_{2}(1)^{2}+a_{6}^{3} a_{7} g_{2}(1)^{2}+a_{4} a_{6}^{2} a_{7} g_{2}(1)^{2}\right] t^{3} \\
& +o_{4} .
\end{aligned}
$$

It follows $\delta_{4}=1$.
(5) $\left(p_{4}, q_{4} / p_{4}\right) \sim\left(p_{5}, q_{5}\right)$ with $q_{5}=a_{7} t+o_{2}$. The resolution ends, $\delta_{0, e_{i}}^{*}=10$.

By (27), $\delta_{0, e_{i}}^{*}=10 \Longleftrightarrow C=a_{4}+a_{4}^{2}+a_{6} \neq 0$ and $a_{7}^{2}=\left(1+a_{4}\right) C^{2} \Longleftrightarrow$ $d_{0}+d_{0}^{2}+d_{1}^{2}+c_{1}^{4}=0 \Longleftrightarrow c_{1}^{2} / d_{0}$ is a root of (30).

Proof of (65) 2): By (31), $\tilde{\lambda}_{0, j}(t)=\left(t, \tilde{u}_{2, j}(t)\right) . \quad \zeta_{j}=\epsilon_{j} t+\phi_{j} t^{2}+o_{3}$, where $a_{4} \epsilon_{j}^{3}+a_{6} \epsilon_{j}+a_{7}=0$; to compute ϕ_{j}, substituting ζ_{j} in (29), in degree 4 we get $a_{4} \epsilon_{j}^{2} \phi_{j}+a_{6} \phi_{j}+a_{7} \epsilon_{j}=0$. It follows $\tilde{u}_{2, j}(t)=c_{1}^{4} / \epsilon_{j}^{2}+\left[d_{0}^{2}+c_{1}^{4} \phi_{j}^{2} / \epsilon_{j}^{4}\right] t^{2}+o_{3}$. $\operatorname{By}(22),(21),(66) \lambda_{0, e_{i}}(t)=\left(t, u_{2, i}(t)\right), u_{2, i}(t)=d_{0}^{2}+d_{1}^{2} t^{2}+o_{3}$. As $d_{0}=c_{1}^{2} / \epsilon_{j}$ i.e. $\tilde{u}_{2, j}(0)=u_{2, i}(0)$, we have $\delta_{P_{0, i}}=2 \Leftrightarrow d_{0}^{2}+c_{1}^{4} \phi_{j}^{2} / \epsilon_{j}^{4} \neq d_{1}^{2}$. But $d_{0}+c_{1}^{2} \phi_{j} / \epsilon_{j}^{2}=d_{1}$ $\Rightarrow d_{0}+c_{1}^{2}+d_{1}=0 \Rightarrow a_{4}+a_{4}^{2}+a_{6}=C=0$, excluded.

Case $\mathbf{1}_{\mathbf{6}} . \quad$ By $(5.3),(64)$ becomes $\delta_{\rho}+\frac{1}{2}\left(r_{Q_{1}}^{\prime}+r_{Q_{2}}^{\prime}\right)-3 n_{\rho,(2,1)}-3 n_{\rho,(3)}=87$.
Remark 6.2. To satisfy the conditions of 5.4 in case 1_{6} it suffices to prove

1) $\delta_{0, e_{i}}^{*}= \begin{cases}9 & \text { if } d_{0} \neq d_{1}^{2} \\ 10 & \text { if } d_{0}=d_{1}^{2},\end{cases}$
2) if $d_{0}=d_{1}^{2}$ then $\delta_{P_{0, i}}=2$,
3) $r_{Q_{1}}^{\prime}=r_{Q_{2}}^{\prime}=2$,
4) if $\tilde{b}_{0, *}=1$ then $\tilde{\delta}_{0, *}=3$,
5) $\tilde{\delta}_{0, *}= \begin{cases}22 & \text { if } d_{1}+d_{2}^{2}+c_{2}^{4} \neq 0 \\ 25 & \text { if } d_{1}+d_{2}^{2}+c_{2}^{4}=0,\end{cases}$
where $\rho=0, e_{i}=1((25)) ; d_{0}=d_{1}^{2}$ is the condition that $P_{0, i}=\tilde{P}_{0, *}((62))$.
Proof: (52), (53), (54) follow from 1), 4), 5). It remains to check $\delta_{0}-3 n_{0,(2,1)}-3 n_{0,(3)}=85$. If $n_{0,(2,1)}=n_{0,(3)}=0$ then $9 \cdot 7+22=85$. If $d_{0}=d_{1}^{2}, \delta_{0}$ increases by 3 and $n_{0,(2,1)}$ increases by 1 . If $d_{1}+d_{2}^{2}+c_{2}^{4}=0$, δ_{0} increases by 3 and $n_{0,(3)}$ increases by 1 .

Case 17. By 4.6, $5.3 n_{\rho,(2,1)}=0$ and (64) becomes $\delta_{\rho}-3 n_{\rho,(3)}=90$.
Remark 6.3. To satisfy the conditions of 5.4 in case 1_{7} it suffices to prove

1) $\delta_{0, e_{i}}^{*}=9$,
2) $\tilde{\delta}_{0}= \begin{cases}36 & \text { if } d_{2}+c_{2}^{2} \neq 0 \\ 39 & \text { if } d_{2}+c_{2}^{2}=0,\end{cases}$
where $\rho=0, e_{i}=1((25))$.
Proof: (52) follows from 1). If $d_{2}+c_{2}^{2} \neq 0$ then $n_{0,(3)}=0$, if $d_{2}+c_{2}^{2}=0$ then $n_{0,(3)}=1$ and $\delta_{0}-3 n_{0,(3)}=90$ follows in both cases.

Case 2. $r_{\rho}^{\prime}=108$ by $5.3, n_{(3)}=0$; (64) becomes $\delta_{\rho}-3 n_{\rho,(2,1)}=162$.
Remark 6.4. To satisfy the conditions of 5.4 in case 2 it suffices to prove

$$
\text { 1) } \delta_{0, e_{i}}^{*}=\left\{\begin{array}{ll}
18 & \text { if } d_{0} \neq c_{2}^{2} / \omega_{j} \tag{69}\\
19 & \text { if } d_{0}=c_{2}^{2} / \omega_{j},
\end{array} \quad \text { 2) if } d_{0}=c_{2}^{2} / \omega_{j} \text { then } \delta_{P_{0, i}}=2,\right.
$$

where $\rho=0, e_{i}=1((25)) ; d_{0}=c_{2}^{2} / \omega_{j}$ is the condition that $P_{0, i}=\tilde{P}_{0, j} \quad((61))$; ω_{j} are the roots of (45).

Proof: If $P_{0, i} \neq \tilde{P}_{0, j}, \quad n_{0,(2,1)}=0, \quad \delta_{0}=\sum_{i=1}^{9} \delta_{0, e_{i}}^{*}=162$ and (64) holds. If $P_{0, i}=\tilde{P}_{0, j}, \delta_{0}$ grows by $\delta_{P_{0, i}}+19-18=3$ and $n_{0,(2,1)}$ grows by $1 ;(55)$ is satisfied.

Case 3. $r_{\rho}^{\prime}=162$ by $5.3, n_{(3)}=0 ;(64)$ becomes $\delta_{\rho}-3 n_{\rho,(2,1)}=243$.
Remark 6.5. To satisfy the conditions of 5.4 in case 3 it suffices to prove

1) $\delta_{0, e_{i}}^{*}= \begin{cases}27 & \text { if } d_{0} \neq c_{3}^{2} / \omega_{j} \\ 28 & \text { if } d_{0}=c_{3}^{2} / \omega_{j},\end{cases}$
2) if $d_{0}=c_{3}^{2} / \omega_{j}$ then $\delta_{P_{0, i}}=2$,
where $\rho=0, e_{i}=1((25)) ; \quad d_{0}=c_{3}^{2} / \omega_{j}$ is the condition that $P_{0, i}=\tilde{P}_{0, j} \quad((61))$; ω_{j} are the roots of (47).

Case 4. $r_{\rho}^{\prime}=216$ by $5.3, n_{(3)}=0$; (64) becomes $\delta_{\rho}-3 n_{\rho,(2,1)}=324$.
Remark 6.6. To satisfy the conditions of 5.4 in case 4 it suffices to prove

1) $\delta_{0, e_{i}}^{*}= \begin{cases}36 & \text { if } d_{0} \neq 1 / \omega_{j} \\ 37 & \text { if } d_{0}=1 / \omega_{j},\end{cases}$
2) if $d_{0}=1 / \omega_{j}$ then $\delta_{P_{0, i}}=2$,
where $\rho=0, e_{i}=1((25)) ; \quad d_{0}=1 / \omega_{j}$ is the condition that $P_{0, i}=\tilde{P}_{0, j} \quad((61))$; ω_{j} are the roots of (49).
6.5 and 6.6 are proved as 6.4. The checks of (67), (68), (69), (70), (71) are similar to that of (65) and were done using CoCoA symbolic package on a Sun machine. The proof of Theorem 1.1 is complete.

To finish, table 1 shows the values of $n_{\rho,(2,1)}, n_{\rho,(3)}$ and n_{ρ}, which is the multiplicity of $\rho \in \mathcal{R}$ as root of g and the δ of the singularity $\phi_{2}^{-1}(\rho)$ of A^{*} (4.1 (iii), (iv)). The possible values of $n_{(1,1,1)}, n_{(2,1)}, n_{(3)}$ are defined by

$$
\left\{\begin{array}{l}
n_{(2,1)}=\sum_{\rho \in \mathcal{R}} n_{\rho,(2,1)} \tag{72}\\
n_{(3)}=\sum_{\rho \in \mathcal{R}} n_{\rho,(3)} \\
n_{(1,1,1)}=120-n_{(2,1)}-n_{(3)} \\
\sum_{\rho \in \mathcal{R}} n_{\rho}=4
\end{array}\right.
$$

	$\mathbf{1}_{\mathbf{4}}$	$\mathbf{1}_{\mathbf{6}}$	$\mathbf{1}_{\mathbf{7}}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$n_{\rho,(2,1)}$	$0,1,2,3$	0,1	0	$0,1,2,3$	$0,1,2,3$	$0,1,2,3$
$n_{\rho,(3)}$	0	0,1	0,1	0	0	0
$n_{\rho}=\delta_{\phi_{2}^{-1}(\rho)}$	1	1	1	2	3	4

Table 1: Possible values of $n_{\rho,(2,1)}, n_{\rho,(3)}$ for $\rho \in \mathcal{R}=\phi_{2}\left(\operatorname{Sing}\left(A^{*}\right)\right)$.

ACKNOWLEDGEMENTS - We are grateful to F. Catanese for the idea of this approach to the problem based on 2.2 and to R. Pardini for useful discussions.

REFERENCES

[1] Serre, J.P. - Critère de rationalité pour les surfaces algébriques (d'après K. Kodaira), Séminaire Bourbaki, 146, 1957.
[2] Zariski, O. - The problem of minimal models in the theory of algebraic surfaces, Amer. J. Math., 80 (1958) 146-184.
[3] Zariski, O. - On Castelnuovo's criterion of rationality $p_{a}=P_{2}=0$ of an algebraic surface, Illinois J. Math., 2 (1958) 303-315.
[4] Bombieri, E. and Husemoller, D. - Classification and embedding of surfaces, Proc. Symp. Pure Math., 29 (1975) (Arcata, 1974).
[5] Beauville, A. - Surfaces algébriques complexes, Asterisque, 54 (1978).
[6] Iskowskih, V.A. - Minimal models of rational surfaces over arbitrary fields, Izv. Akad. Nauk. SSSR, 43(1) (1979), 19-43.
[7] Demazure, M. - Surfaces de Del Pezzo II, III, IV, V, Séminaire sur les singularités des surfaces, Lecture Notes in Math., 777, Springer, Berlin, 1980.
[8] LANG, W.E. - A short proof of Castelnuovo's criterion of rationality, Trans. Amer. Math. Soc., 264 (1981), 579-582.
[9] Suwa, N. - De Rham cohomology of algebraic surfaces with $q=-p_{a}$ in char. p, Lecture Notes in Math., 1016, Springer, Berlin, 1983, 73-85.
[10] Cragnolini, P. and Oliverio, P.A. - On the proof of Castelnuovo's rationality criterion in positive characteristic, Journal of Pure and Applied Algebra, 68 (1990), 297-323.
[11] Cragnolini, P. and Oliverio, P.A. - Lines on del Pezzo Surfaces with $K_{S}^{2}=1$ in characteristic $\neq 2$, to appear on Communications in Algebra.
P. Cragnolini,

Dip. di Matematica e Informatica, Università di Udine, I-33100 Udine - ITALY
E-mail: cragno@dimi.uniud.it
and
P.A. Oliverio,

Dip. di Matematica, Università della Calabria, I-87036 Rende - ITALY E-mail: oliverio@unical.it

[^0]: Received: July 6, 1998; Revised: November 23, 1998.
 AMS Subject Classification: 14J26.
 Keywords: Del Pezzo surface; (-1)-curve.

