A GENERALIZATION OF A RESULT OF ANDRÉ-JEANNIN CONCERNING SUMMATION OF RECIPROCALS

R.S. MELHAM

1 - Introduction

For p a strictly positive real number define, for all integers n, the sequences

$$
\begin{cases}U_{n}=p U_{n-1}+U_{n-2}, & U_{0}=0, \tag{1.1}\\ U_{1}=1 \\ V_{n}=p V_{n-1}+V_{n-2}, & V_{0}=2, \\ V_{1}=p\end{cases}
$$

The Binet forms are $U_{n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}$ and $V_{n}=\alpha^{n}+\beta^{n}$ where $\alpha=\frac{p+\sqrt{p^{2}+4}}{2}$ and $\beta=\frac{p-\sqrt{p^{2}+4}}{2}$. We see that $\alpha \beta=-1, \alpha>1$ and $-1<\beta<0$.

André-Jeannin [1] proved the following theorem.
Theorem 1. If k is an odd positive integer, then

$$
\begin{align*}
& \sum_{n=1}^{\infty} \frac{1}{U_{k n} U_{k(n+1)}}=\frac{2(\alpha-\beta)}{U_{k}}\left[L\left(\beta^{2 k}\right)-2 L\left(\beta^{4 k}\right)+2 L\left(\beta^{8 k}\right)\right]+\frac{\beta^{k}}{U_{k}^{2}} \tag{1.2}\\
& \sum_{n=1}^{\infty} \frac{1}{V_{k n} V_{k(n+1)}}=\frac{2}{(\alpha-\beta) U_{k}}\left[L\left(\beta^{2 k}\right)-2 L\left(\beta^{8 k}\right)\right]+\frac{\beta^{k}}{(\alpha-\beta) U_{k} V_{k}} \tag{1.3}
\end{align*}
$$

Here $L(x)$ is the Lambert series defined by $L(x)=\sum_{n=1}^{\infty} \frac{x^{n}}{1-x^{n}},|x|<1$.
Our aim in this paper is to generalize Theorem 1.
Remark. Originally, in Theorem $1, k$ was taken to be an odd integer. The problem with this is that, since $p>0$ and $-1<\beta<0$, a negative k would mean $\beta^{2 k}>1$, so that $L\left(\beta^{2 k}\right)$ is undefined. We have stated the theorem with what we believe are the correct constraints on k. \square

[^0]
2 - Generalization of Theorem 1

We require two lemmas, the first of which appears as Lemma 3^{\prime} in [1].

Lemma 1. If k is an odd positive integer then

$$
\begin{align*}
& \sum_{n=1}^{\infty} \frac{1}{\alpha^{k n} U_{k n}}=(\alpha-\beta)\left[L\left(\beta^{2 k}\right)-2 L\left(\beta^{4 k}\right)+2 L\left(\beta^{8 k}\right)\right] \tag{2.1}\\
& \sum_{n=1}^{\infty} \frac{1}{\alpha^{k n} V_{k n}}=L\left(\beta^{2 k}\right)-2 L\left(\beta^{8 k}\right) \tag{2.2}
\end{align*}
$$

Lemma 2. If k and m are odd integers then

$$
\begin{align*}
& \alpha^{k m} U_{k(n+m)}+U_{k n}=\alpha^{k(n+m)} U_{k m} \tag{2.3}\\
& \alpha^{k m} V_{k(n+m)}+V_{k n}=(\alpha-\beta) \alpha^{k(n+m)} U_{k m} \tag{2.4}
\end{align*}
$$

Proof: We prove only (2.4) since the proof of (2.3) is similar.

$$
\begin{aligned}
\alpha^{k m} V_{k(n+m)}+V_{k n} & =\alpha^{k m}\left(\alpha^{k n+k m}+\beta^{k n+k m}\right)+\alpha^{k n}+\beta^{k n} \\
& =\alpha^{k n+2 k m}-\beta^{k n}+\alpha^{k n}+\beta^{k n} \\
& =\alpha^{k n+2 k m}+\alpha^{k n} \\
& =\alpha^{k n+k m}\left(\alpha^{k m}-\beta^{k m}\right) \\
& =(\alpha-\beta) \alpha^{k(n+m)} U_{k m} .
\end{aligned}
$$

We can now state our generalization of Theorem 1.

Theorem 2. If k and m are odd positive integers then

$$
\begin{align*}
\sum_{n=1}^{\infty} \frac{1}{U_{k n} U_{k(n+m)}}= & \frac{2(\alpha-\beta)}{U_{k m}}\left[L\left(\beta^{2 k}\right)-2 L\left(\beta^{4 k}\right)+2 L\left(\beta^{8 k}\right)\right] \tag{2.5}\\
& -\frac{1}{U_{k m}} \sum_{n=1}^{m} \frac{1}{\alpha^{k n} U_{k n}}
\end{align*}
$$

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{V_{k n} V_{k(n+m)}}=\frac{1}{(\alpha-\beta) U_{k m}}\left[2 L\left(\beta^{2 k}\right)-4 L\left(\beta^{8 k}\right)-\sum_{n=1}^{m} \frac{1}{\alpha^{k n} V_{k n}}\right] \tag{2.6}
\end{equation*}
$$

Proof: We first prove (2.5).

$$
\begin{aligned}
\frac{1}{\alpha^{k n} U_{k n}}+\frac{1}{\alpha^{k(n+m)} U_{k(n+m)}} & =\frac{\alpha^{k m} U_{k(n+m)}+U_{k n}}{\alpha^{k(n+m)} U_{k n} U_{k(n+m)}} \\
& =\frac{\alpha^{k(n+m)} U_{k m}}{\alpha^{k(n+m)} U_{k n} U_{k(n+m)}} \quad(\text { by }(2.3)) \\
& =\frac{U_{k m}}{U_{k n} U_{k(n+m)}} .
\end{aligned}
$$

From this we see that

$$
\begin{equation*}
2 \sum_{n=1}^{\infty} \frac{1}{\alpha^{k n} U_{k n}}=U_{k m} \sum_{n=1}^{\infty} \frac{1}{U_{k n} U_{k(n+m)}}+\sum_{n=1}^{m} \frac{1}{\alpha^{k n} U_{k n}}, \tag{2.7}
\end{equation*}
$$

and (2.5) follows from (2.1).
Proceeding in the same manner, we first use (2.4) to show that

$$
\frac{1}{\alpha^{k n} V_{k n}}+\frac{1}{\alpha^{k(n+m)} V_{k(n+m)}}=\frac{(\alpha-\beta) U_{k m}}{V_{k n} V_{k(n+m)}} .
$$

As before, we sum both sides to obtain

$$
\begin{equation*}
2 \sum_{n=1}^{\infty} \frac{1}{\alpha^{k n} V_{k n}}=(\alpha-\beta) U_{k m} \sum_{n=1}^{\infty} \frac{1}{V_{k n} V_{k(n+m)}}+\sum_{n=1}^{m} \frac{1}{\alpha^{k n} V_{k n}}, \tag{2.8}
\end{equation*}
$$

and (2.6) follows from (2.2).
When $m=1$ (2.5) and (2.6) reduce to (1.2) and (1.3) respectively.

REFERENCES

[1] André-Jeannin - Lambert series and the summation of reciprocals in certain Fibonacci-Lucas-type sequences, The Fibonacci Quarterly, 28(3) (1990), 223-226.

R.S. Melham,

School of Mathematical Sciences, University of Technology, Sydney PO Box 123, Broadway - NSW 2007 AUSTRALIA

[^0]: Received: May 11, 1998.
 AMS Subject Classification: 11B37, 11B39.

