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ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF
SECOND ORDER NONLINEAR DIFFERENTIAL EQUATIONS

Svitlana P. Rogovchenko and Yuri V. Rogovchenko

Abstract: We study asymptotic properties of solutions for certain classes of sec-

ond order nonlinear differential equations. The main purpose is to investigate when all

continuable solutions or just a part of them with initial data satisfying an additional con-

dition behave at infinity like nontrivial linear functions. Making use of Bihari’s inequal-

ity and its derivatives due to Dannan, we obtain results which extend and complement

those known in the literature. Examples illustrating the relevance of the theorems are

discussed.

1 – Introduction

In this paper, we study asymptotic properties of solutions of the second order

nonlinear differential equation

(1) u′′ + f(t, u, u′) = 0 .

More precisely, our aim is to establish conditions under which all continuable

solutions of equation (1) approach those of equation u′′ = 0. In other words, we

are interested in the case when continuable solutions of (1) behave like nontrivial

linear functions at+ b as t→∞. The origin of this studies goes back at least to

the results of Bellman [1], Fubini [8], and Sansone [13] related to some specific,

mainly linear, cases of equation (1). Asymptotic behavior of solutions of the

equation

(2) u′′ + f(t, u) = 0
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was discussed for the nonlinear case by Cohen [3] and Tong [15] (see Corollaries

2 and 3 below), and the linear case was studied by Trench [16]. All the results

cited have been obtained by using the Gronwall–Bellman inequality [1] or its

generalization due to Bihari [2]. For yet another ideas involving the phase plane

analysis used for the study of asymptotic behavior of solutions for a particular

case of equation (1), the autonomous differential equation

u′′ + f(u, u′) = 0 ,

we refer the reader to the paper by Rogovchenko and Villari [12].

Dannan [6] introduced a class of functions H (see definition below) and ob-

tained some derivatives of the well-known Bihari’s inequality [2].

Definition ([6]). A function w : [0,∞) → [0,∞) is said to belong to the

class H if

(H1) w(u) is nondecreasing and continuous for u ≥ 0 and positive for u > 0.

(H2) There exists a function φ, continuous on [0,∞) with w(αu) ≤ φ(α)w(u)

for α > 0, u ≥ 0.

Making use of Bihari’s type inequality (see [6, Theorem 1]), Dannan proved

the following result on asymptotic behavior of solutions of equation (1).

Theorem A ([6]). Assume the following hypotheses:

(i) The function f(t, u, v) is continuous on D = {(t, u, v) : t ≥ 1, u, v ∈ R}.

(ii) |f(t, u, v)| ≤ φ(t) g(|u|/t)+ψ(t) |v| for (t, u, u′) ∈ D, where φ(t) and ψ(t)

are nonnegative continuous functions on [0,∞).

(iii) g(u) is a nonnegative, continuous, nondecreasing function on [0,∞), and

satisfies

g(αu) ≤ φ1(α) g(u)

for α ≥ 1, u ≥ 0, where φ1(α) > 0 is continuous for α ≥ 1.

(iv)
∫∞
1 ψ(t) dt = k1 <∞,

∫∞
1 φ(t) dt = k2 <∞.

We also assume that there exists K ≥ 1 such that

E(t)

∫ ∞

1
φ(s)

φ1(KE(s))

E2(s)
ds ≤ K

∫ ∞

1

ds

g(s)
,

where E(s) ≡ exp(
∫ s
1 ψ(r) dr). Then for any solution u(t) of (1) with initial
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conditions u(1) = c1, u
′(1) = c2 such that |c1|+ |c2| ≤ K,

lim
t→∞

∫ t

1
f(s, u(s), u′(s)) ds = α(c1, c2) <∞

always exists, and if we set a = c2−α(c1, c2), then u(t) = b+ at+ o(t) as t→∞,

for any constant b.

We note that Theorem A establishes sufficient conditions for the desired

asymptotic behavior not for all, but only for a part of solutions with initial data

satisfying a certain condition.

Recently, Constantin [4] obtained the following result on asymptotic behavior

of solutions of equation (1).

Theorem B ([4]). Suppose that the function f(t, u, v) satisfies the following

conditions:

(i) f(t, u, v) is continuous in D = {(t, u, v) : t ∈ [1,+∞), u, v ∈ R};

(ii) there exist continuous functions h1, h2, h3, g : R+ → R+ such that

|f(t, u, v)| ≤ h1(t) g

(

|u|

t

)

+ h2(t) |v|+ h3(t) ,

or

|f(t, u, v)| ≤ h1(t)
|u|

t
+ h2(t) g(|v|) + h3(t) ,

where for s > 0 the function g(s) is nondecreasing,

∫ +∞

1
hi(s) ds = Hi < +∞ , i = 1, 2, 3 ,

and if we denote

G(x) =

∫ x

1

ds

g(s)
,

then G(+∞) = +∞.

Then for every solution u(t) of (1) we have that u(t) = at+ b+o(t) as t→∞,

where a, b are real constants.

We point out that both Theorem A and Theorem B assume linear growth

of the function f(t, u, u′) either with respect to u or with respect to u′, and

this assumption has been essential for the technique used in the proofs of the

main results both in [4] and [6]. Furthermore, this condition guarantees that all

solutions of equation (1) exist for all t ≥ 1. However, it will be demonstrated
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below that this hypothesis can be relaxed while speaking only about continuable

solutions as it is usual for most part of oscillatory criteria known in the literature

(see, for example, [10], [14], and [17], as well as the references cited therein).

We obtain results which extend and complement those known in the literature

and apply to new classes of equations. Examples are inserted in the text to

illustrate the relevance of the theorems, and we point out that the recent results

due to Constantin [4] and Dannan [6] fail to apply to equations (10), (17), (20)

and (25).

Finally, we note that some of results presented in this paper (namely, Theo-

rems 5 and 6) have been reported at the International Conference “Topological

Methods in Differential Equations and Dynamical Systems” (Krakòw, 17–20 July

1996) and have been announced in [9]. For the detailed discussion of results re-

lated to particular cases of Theorem 4, we refer the reader to [11].

2 – Main results

We recall that a function u : [t0, t1) → (−∞,∞), t1 > t0 is called a solution

of equation (1) if u(t) satisfies equation (1) for all t ∈ [t0, t1). A solution u(t)

of equation (1) is called continuable if u(t) exists for all t ≥ t0. We say that a

solution u(t) of equation (1) possesses the property (L) if u(t) = at+ b+ o(t) as

t→∞, where a, b are real constants.

In what follows it is assumed that the function f(t, u, v) is continuous in

D = {(t, u, v) : t ∈ [1,∞), u, v ∈ R}.

Theorem 1. Suppose that there exist continuous functions h1, h2, h3, g1, g2 :

R+→ R+ such that

|f(t, u, v)| ≤ h1(t) g1

(

|u|

t

)

+ h2(t) g2(|v|) + h3(t) ,

where for s > 0 the functions g1(s), g2(s) are nondecreasing,

∫ ∞

1
hi(s) ds = Hi < +∞ , i = 1, 2, 3 ,

and if we denote

G(x) =

∫ x

1

ds

g1(s) + g2(s)
,

then G(+∞) = +∞.

Then any continuable solution of equation (1) possesses the property (L).
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Proof: By the standard existence results (see, for example, [5, Existence

Theorem 3]), it follows from the continuity of the function f that equation (1)

has solution u(t) corresponding to the initial data u(1) = c1, u
′(1) = c2. Two

times integrating (1) from 1 to t, we obtain for t ≥ 1

u′(t) = c2 −

∫ t

1
f(s, u(s), u′(s)) ds ,(3)

u(t) = c2(t− 1) + c1 −

∫ t

1
(t− s) f(s, u(s), u′(s)) ds .(4)

It follows from (3) and (4) that for t ≥ 1

|u′(t)| ≤ |c2|+

∫ t

1

∣

∣

∣f(s, u(s), u′(s))
∣

∣

∣ ds ,

|u(t)| ≤
(

|c1|+ |c2|
)

t+ t

∫ t

1

∣

∣

∣f(s, u(s), u′(s))
∣

∣

∣ ds .

Making use of the assumptions of the theorem, we have for t ≥ 1

|u′(t)| ≤ |c2|+

∫ t

1
h1(s) g1

(

|u(s)|

s

)

ds

+

∫ t

1
h2(s) g2

(

|u′(s)|
)

ds+

∫ t

1
h3(s) ds ,

(5)

|u(t)|

t
≤ |c1|+ |c2|+

∫ t

1
h1(s) g1

(

|u(s)|

s

)

ds

+

∫ t

1
h2(s) g2

(

|u′(s)|
)

ds+

∫ t

1
h3(s) ds .

(6)

Denote by z(t) the right-hand side of inequality (6),

z(t) = |c1|+ |c2|+

∫ t

1
h1(s) g1

(

|u(s)|

s

)

ds

+

∫ t

1
h2(s) g2

(

|u′(s)|
)

ds+

∫ t

1
h3(s) ds ,

then (5) and (6) yield

(7) |u′(t)| ≤ z(t) ,
|u(t)|

t
≤ z(t) .

Since the functions g1(s), g2(s) are nondecreasing for s > 0, we obtain by (7)

g1

(

|u(t)|

t

)

≤ g1(z(t)) , g2
(

|u′(t)|
)

≤ g2(z(t)) .
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Thus, for t ≥ 1

(8)
z(t) ≤ 1 + |c1|+ |c2|+H3 +

∫ t

1
h1(s) g1(z(s)) ds

+

∫ t

1
h2(s) g2(z(s)) ds .

Furthermore, due to evident inequality

h1(s) g1(z(s)) + h2(s) g2(z(s)) ≤
(

h1(s) + h2(s)
) (

g1(z(s)) + g2(z(s))
)

,

we have by (8)

(9)

z(t) ≤ 1 + |c1|+ |c2|+H3

+

∫ t

1

(

h1(s) + h2(s)
) (

g1(z(s)) + g2(z(s))
)

ds .

Applying Bihari’s inequality [2] to (9), we obtain for t ≥ 1

z(t) ≤ G−1
(

G
(

1 + |c1|+ |c2|+H3

)

+

∫ t

1

(

h1(s) + h2(s)
)

ds

)

,

where

G(w) =

∫ w

1

ds

g1(s) + g2(s)
,

and G−1(w) is the inverse function for G(w) defined for w ∈ (G(+0),+∞).

Note that G(+0) < 0, and G−1(w) is increasing. Now, let

K = G
(

1 + |c1|+ |c2|+H3

)

+H1 +H2 < +∞ .

Since G−1(w) is increasing, we have

z(t) ≤ G−1(K) < +∞ ,

so (7) yields
|u(t)|

t
≤ G−1(K) and |u′(t)| ≤ G−1(K) .

Using assumptions of the theorem, we have

∫ t

1

∣

∣

∣f(s, u(s), u′(s))
∣

∣

∣ ds ≤

≤ |c1|+ |c2|+

∫ t

1
h1(s) g1

(

|u(s)|

s

)

ds+

∫ t

1
h2(s) g2

(

|u′(s)|
)

ds+

∫ t

1
h3(s) ds =

= z(t) ≤ G−1(K) .
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Therefore, the integral
∫ +∞

1

∣

∣

∣f(s, u(s), u′(s))
∣

∣

∣ ds

converges, and there exists an a ∈ R such that

lim
t→+∞

u′(t) = a .

In the same way as it has been done in [3, 13], we can ensure that there exists a

solution u(t) of equation (1) such that

lim
t→+∞

u′(t) 6= 0 .

Further, by the l’Hospital’s rule, we conclude that

lim
t→+∞

|u(t)|

t
= lim

t→+∞
u′(t) = a ,

and the proof is now complete.

Corollary 1 ([4]). Suppose that the function f(t, u, u′) satisfies the following

conditions:

(i) f(t, u, v) is continuous in D = {(t, u, v) : t ∈ [1,+∞), u, v ∈ R};

(ii) there are exist continuous functions h1, h2, h3, g : R+ → R+ such that

|f(t, u, v)| ≤ h1(t) g

(

|u|

t

)

+ h2(t) |v|+ h3(t) ,

or

|f(t, u, v)| ≤ h1(t)
|u|

t
+ h2(t) g(|v|) + h3(t) ,

where for s > 0 the function g(s) is nondecreasing,

∫ +∞

1
hi(s) ds = Hi < +∞ , i = 1, 2, 3 ,

and if we denote

G(x) =

∫ x

1

ds

s+ g(s)
,

then G(+∞) = +∞. Then any solution of equation (1) possesses the

property (L).

Proof: We note first that by (ii) and by standard extension theorems (see, for

example, [5, Extension Theorem 3]), all solutions of equation (1) are continuable.
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In order to show that the conclusion of the corollary follows from Theorem 1, we

need to prove that if for any nondecreasing function g(s) : R+ → R+ the integral

∫ ∞

1

ds

g(s)

diverges, so does the integral

∫ ∞

1

ds

s+ g(s)
,

or, equivalently, to prove that the divergence of the series

∞
∑

k=1

1

g(k)

implies the divergence of the series

∞
∑

k=1

1

k + g(k)
.

By the Cauchy theorem, it suffices to show that

∞
∑

k=1

2k

g(2k)
=∞ =⇒

∞
∑

k=1

2k

2k + g(2k)
=∞ ,

or
∞
∑

k=1

1

g(2k)

2k

=∞ =⇒
∞
∑

k=1

1

1 +
g(2k)

2k

=∞ ,

but the latter implication is clear. Now the conclusion of the corollary follows

from Theorem 1.

Remark 1. We point out that actually it has been proved that Theorem B

is a consequence of our Theorem 1.

Corollary 2 ([3]). Suppose that f(t, u) satisfies the following conditions:

(i) f(t, u) is continuous in D : t ≥ 1, u ∈ R;

(ii) the derivative fu exists on D and satisfies fu(t, u) > 0 on D;

(iii) |f(t, u(t))| ≤ fu(t, 0) |u(t)| on D;

(iv)
∫+∞
1 t fu(t, 0) dt < +∞.

Then equation (2) has solutions which are asymptotic to a+ bt as t→ +∞.
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Proof: Let

h1(t) = t fu(t, 0), h2(t) ≡ 0, h3(t) ≡ 0, g1(s) = s, g2(s) ≡ 0 .

Then the conclusion of corollary follows from Theorem 1.

Corollary 3 ([15]). Let f(t, u) be continuous in D: t≥ 1, u ∈R. Assume

that there are nonnegative continuous functions v(t) and φ(t) defined for t ≥ 0,

and a continuous function g(u) defined for u ≥ 0 such that

(i)
∫+∞
1 v(t)φ(t) dt < +∞;

(ii) g(u) is positive and nondecreasing for u > 0;

(iii)
∫+∞
1

dt
g(t) = +∞;

(iv) |f(t, u(t))| ≤ v(t)φ(t) g( |u|t ) in D.

Then equation (2) has solutions which are asymptotic to a + bt, where a, b are

constants.

Proof: Let

h1(t) = v(t)φ(t), h2(t) ≡ 0, h3(t) ≡ 0, g1(s) = s, g2(s) ≡ 0 .

The conclusion of corollary follows from Theorem 1.

Remark 2. We note that Corollary 2 without assumption (iii) becomes false

as it has been pointed out by Fan Wei Meng [7]. This assumption, crucial for the

application of Bihari’s inequality [2], has been added later by Constantin [4].

Example 1. Consider the nonlinear differential equation

(10) u′′ + t−
3

2 u′ ln(u′) + t−
5

2 u ln(u) = 0 .

By Theorem 1, all continuable solutions of equation (10) are asymptotic to at+ b

as t→ +∞.

An important feature of Theorem 1 is that all continuable solutions of equation

(1) are asymptotic to at + b as t → +∞, and this type of behavior requires

corresponding restrictions on the growth of the function f(t, u, u′) with respect

to u and u′. The following result (cf. Theorem A) relaxes them for a certain

class of functions, but one has desired asymptotic behavior only for a part of

continuable solutions with initial data satisfying an additional condition.
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Theorem 2. Suppose that the following assumptions hold:

(i) there exist nonnegative continuous functions h1, h2, g1, g2 : R+ → R+

such that

|f(t, u, v)| ≤ h1(t) g1

(

|u|

t

)

+ h2(t) g2(|v|) ;

(ii) for s > 0 the functions g1(s), g2(s) are nondecreasing, and

g1(αu) ≤ ψ1(α) g1(u) , g2(αu) ≤ ψ2(α) g2(u)

for α ≥ 1, u ≥ 0, where the functions ψ1(α), ψ2(α) are continuous for

α ≥ 1;

(iii)
∫+∞
1 hi(s) ds = Hi < +∞, i = 1, 2.

Assume that there exists a constant K ≥ 1 such that

(11) K−1
(

ψ1(K) + ψ2(K)
)

(H1 +H2) ≤

∫ +∞

1

ds

g1(s) + g2(s)
.

Then any continuable solution u(t) of equation (1) with initial data u(1) = c1,

u′(1) = c2 such that |c1|+ |c2| ≤ K possesses the property (L).

Proof: Arguing in the same way as in Theorem 1, we obtain by (i)

|u′(t)| ≤ |c2|+

∫ t

1
h1(s) g1

(

|u(s)|

s

)

ds+

∫ t

1
h2(s) g2

(

|u′(s)|
)

ds ,(12)

|u(t)|

t
≤ K +

∫ t

1
h1(s) g1

(

|u(s)|

s

)

ds+

∫ t

1
h2(s) g2

(

|u′(s)|
)

ds ,(13)

where t ≥ 1. Denoting by z(t) the right-hand side of inequality (13), we have by

(12) and (13)

(14) |u′(t)| ≤ z(t) ,
|u(t)|

t
≤ z(t) .

Since the functions g1(s), g2(s) are nondecreasing for s > 0, (14) yields for t ≥ 1

(15) z(t) ≤ K +

∫ t

1

(

h1(s) + h2(s)
) (

g1(z(s)) + g2(z(s))
)

ds .

By assumption (ii), the functions g1(u), g2(u) belong to the class H. Further-

more, it follows from [6, Lemma 1] that if g1(u) and g2(u) belong to the class H
with the corresponding multiplier functions ψ1(α) and ψ2(α) respectively, then
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the sum g1(u)+g2(u) also belongs to H, and the corresponding multiplier function

is ψ1(α) + ψ2(α). Applying [6, Theorem 1] to (15), we have for t ≥ 1

(16) z(t) ≤ KW−1

(

K−1
(

ψ1(K) + ψ2(K)
)

∫ t

1

(

h1(s) + h2(s)
)

ds

)

,

where

W (u) =

∫ u

1

ds

g1(s) + g2(s)
,

and W−1(u) is the inverse function for W (u). Inequality (16) holds for all t ≥ 1

because

K−1
(

ψ1(K) + ψ2(K)
)

∫ t

1

(

h1(s) + h2(s)
)

ds ∈ Dom(W−1)

for all t ≥ 1 due to assumption (11). Let

K−1
(

ψ1(K) + ψ2(K)
)

(H1 +H2) = L < +∞ .

Since W−1(u) is increasing, we get

z(t) ≤ KW−1(L) < +∞ ,

so it follows from (14) that

|u(t)|

t
≤ KW−1(L) and |u′(t)| ≤ KW−1(L) .

The rest of the proof is similar to that of Theorem 1 and thus is omitted.

Example 2. Consider the nonlinear differential equation

(17) u′′ + (2 t)−4 u2 cosu+ (4 t)−2 (u′)2 sin3 u = 0 .

For equation (17), we have

g1(u) = g2(u) = u2, h1(t) = h2(t) = (4t)−2, ψ1(α) = ψ2(α) = α2 .

After a straightforward computation, we conclude by Theorem 2 that all con-

tinuable solutions of equation (17) with initial data satisfying |c1|+ |c2| ≤ 2 are

asymptotic to at+ b as t→ +∞.
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Theorem 3. Suppose that assumptions (i) and (iii) of Theorem 2 hold,

while (ii) is replaced by

(ii′) for s > 0 the functions g1(s), g2(s) are nonnegative, continuous and non-

decreasing, g1(0) = g2(0) = 0, and satisfy a Lipschitz condition

∣

∣

∣g1(u+ v)− g1(u)
∣

∣

∣ ≤ λ1 v ,
∣

∣

∣g2(u+ v)− g2(u)
∣

∣

∣ ≤ λ2 v ,

where λ1, λ2 are positive constants.

Then any continuable solution u(t) of equation (1) with initial data u(1) = c1,

u′(1) = c2 such that |c1|+ |c2| ≤ K possesses the property (L).

Proof: Applying [6, Corollary 2] to (15), we have for t ≥ 1

z(t) ≤ K +

∫ t

1

(

h1(s) + h2(s)
) (

g1(K) + g2(K)
)

·

· exp

(
∫ t

1
(λ1 + λ2)

(

h1(τ) + h2(τ)
)

dτ

)

ds

≤ K + (H1 +H2)
(

g1(K) + g2(K)
)

exp
(

(λ1 + λ2) (H1 +H2)
)

< +∞ .

The proof can be completed with the same argument as in Theorem 1.

In what follows, we present results analogous to Theorems 1–3 for another

class of equations (cf. [11]).

Theorem 4. Suppose that there exist continuous functions h, g1, g2 : R+→R+

such that

|f(t, u, v)| ≤ h(t) g1

(

|u|

t

)

g2(|v|) ,

where for s > 0 the functions g1(s), g2(s) are nondecreasing,

∫ ∞

1
h(s) ds <∞ ,

and if we denote

G(x) =

∫ x

1

ds

g1(s) g2(s)
,

then G(+∞) = +∞.

Then any continuable solution of equation (1) possesses the property (L).
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Proof: Arguing as in the proof of Theorem 1, we obtain for t ≥ 1

|u′(t)| ≤ |c2|+

∫ t

1
h(s) g1

(

|u(s)|

s

)

g2
(

|u′(s)|
)

ds ,

|u(t)|

t
≤ |c1|+ |c2|+

∫ t

1
h(s) g1

(

|u(s)|

s

)

g2
(

|u′(s)|
)

ds .(18)

Denoting by z(t) the right-hand side of inequality (18) and using the assumptions

of the theorem, we have for t ≥ 1

(19) z(t) ≤ 1 + |c1|+ |c2|+

∫ t

1
h(s) g1(z(s)) g2(z(s)) ds .

Applying Bihari’s inequality [2] to (19), we obtain for t ≥ 1

z(t) ≤ G−1
(

G
(

1 + |c1|+ |c2|
)

+

∫ t

1
h(s) ds

)

≤ G−1(K) ,

where

G(w) =

∫ w

1

ds

g1(s) g2(s)
,

and G−1(w) is the inverse function for G(w). The function G−1(w) is defined for

w ∈ (G(+0),+∞), where G(+0) < 0, it is increasing, and

K = G
(

1 + |c1|+ |c2|
)

+

∫ ∞

1
h(s) ds < ∞ .

The rest of the proof is similar to that of Theorem 1 and thus is omitted.

Example 3. Consider the nonlinear differential equation

(20) u′′ + h(t)

(

u2

u2 + t2

)3/4 ( (u′)2

(u′)2 + 1

)1/4

= 0 , t > 1 ,

where

h(t) =
2

t3

(

2 t4 − 2 t2 + 1

(t2 − 1)2

)3/4 (2 t4 + 2 t2 + 1

(t2 + 1)2

)1/4

.

The functions

g1(t) =

(

t2

t2 + 1

)3/4

, g2(t) =

(

t2

t2 + 1

)1/4

are continuous and nondecreasing for t > 1,

∫ +∞

t0
h(s) ds < +∞ ,
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and

G(+∞) =

∫ +∞

t0

ds
(

s2

s2 + 1

)3/4 ( s2

s2 + 1

)1/4
=

∫ +∞

t0

s2 + 1

s2
ds = +∞ ,

for any t0 > 0. Thus, by Theorem 4, for any continuable solution u(t) of equation

(20) there exist real numbers a, b such that u(t) = at+ b+ o(t) as t→∞.

Observe that u(t) = t − 1/t is the solution of equation (20) satisfying the

initial data u(2) = 3/2, u′(2) = 5/4, which is asymptotic to t as t→∞.

Theorem 5. Suppose that the following conditions hold:

(i) there exist nonnegative continuous functions h, g1, g2 : R+ → R+ such

that

|f(t, u, v)| ≤ h(t) g1

(

|u|

t

)

g2(|v|) ;

(ii) for s > 0 the functions g1(s), g2(s) are nondecreasing, and

g1(αu) ≤ ψ1(α) g1(u) , g2(αu) ≤ ψ2(α) g2(u)

for α ≥ 1, u ≥ 0, where the functions ψ1(α), ψ2(α) are continuous for

α ≥ 1;

(iii)
∫+∞
1 h(s) ds = H < +∞.

Assume also that there exists a constant K ≥ 1 such that

(21) K−1H ψ1(K)ψ2(K) ≤

∫ +∞

1

ds

g1(s) g2(s)
.

Then any continuable solution u(t) of equation (1) with initial data u(1) = c1,

u′(1) = c2 such that |c1|+ |c2| ≤ K possesses the property (L).

Proof: With the same argument as in Theorem 2, we have for t ≥ 1

|u′(t)| ≤ |c2|+

∫ t

1
h(s) g1

(

|u(s)|

s

)

g2
(

|u′(s)|
)

ds ,

|u(t)|

t
≤ |c1|+ |c2|+

∫ t

1
h(s) g1

(

|u(s)|

s

)

g2
(

|u′(s)|
)

ds .(22)

Denoting by z(t) the right-hand side of inequality (22), we obtain for t ≥ 1

(23) z(t) ≤ K +

∫ t

1
h(s) g1(z(s)) g2(z(s)) ds .
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Assumption (ii) implies that the functions g1(u), g2(u) belong to the class H.

Furthermore, it follows from [6, Lemma 1] that if g1(u) and g2(u) belong to the

class H with the corresponding multiplier functions ψ1(α) and ψ2(α) respectively,

then the product g1(u) g2(u) also belongs to H and the corresponding multiplier

function is ψ1(α)ψ2(α). Thus, applying [6, Theorem 1] to (23), we have for t ≥ 1

(24) z(t) ≤ KW−1

(

K−1 ψ1(K)ψ2(K)

∫ t

1
h(s) ds

)

,

where

W (u) =

∫ u

1

ds

g1(s) g2(s)
,

and W−1(u) is the inverse function for W (u). Evidently, inequality (24) holds

for all t ≥ 1 since by (21)

K−1 ψ1(K)ψ2(K)

∫ t

1
h(s) ds ∈ Dom(W−1)

for all t ≥ 1. The rest of the proof is analogous to that of Theorem 2 and is

omitted.

Example 4. Consider the nonlinear differential equation

(25) u′′ + (3 t)−4(uu′)2 sin3 u = 0 .

For equation (25), we have

g1(u) = g2(u) = u2 , h(t) = (9 t)−2 , ψ1(α) = ψ2(α) = α2 .

After a straightforward computation, we conclude by Theorem 5 that all con-

tinuable solutions of equation (25) with initial data

|c1|+ |c2| ≤ 3

are asymptotic to at+ b as t→ +∞.

Note that we may also apply to equation (25) Theorem 2. Indeed, making

use of the elementary inequality, we obtain the following estimate

|f(t, u, u′)| ≤ 2−1 3−4 t−2
(

(t−1 u)4 + (u′)4
)

.

Keeping the same notation as in Theorem 2, we have

g1(u) = g2(u) = u4 , h1(t) = h2(t) = 2−1(9 t)−2 , ψ1(α) = ψ2(α) = α4 .
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After a simple computation, we conclude by Theorem 2 that all continuable

solutions of equation (25) with initial data

|c1|+ |c2| ≤
3

41/3

are asymptotic to at + b as t → +∞, but we point out that the domain of

the initial data for the solutions with desired asymptotic behavior is reduced in

comparison with that obtained by Theorem 5.

Theorem 6. Suppose that assumptions (i) and (iii) of Theorem 5 hold,

while (ii) is replaced by

(ii′) for s > 0 the functions g1(s), g2(s) are continuous and nondecreasing,

g1(0) = g2(0) = 0, and satisfy a Lipschitz condition
∣

∣

∣g1(u+ v)− g1(u)
∣

∣

∣ ≤ λ1 v ,
∣

∣

∣g2(u+ v)− g2(u)
∣

∣

∣ ≤ λ2 v ,

where λ1, λ2 are positive constants.

Then any continuable solution u(t) of equation (1) with initial data u(1) = c1,

u′(1) = c2 such that |c1|+ |c2| ≤ K possesses the property (L).

Proof: Applying [6, Corollary 2] to (23), we have for t ≥ 1

z(t) ≤ K + g1(K) g2(K)

∫ t

1
h(s) exp

(

λ1 λ2

∫ t

1
h(τ) dτ

)

ds

≤ K +H g1(K) g2(K) exp(λ1 λ2H) < +∞ .

The proof can be completed with the same argument as in Theorem 1.
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