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ON SUMS OF POWERS OF TERMS
IN A LINEAR RECURRENCE

R.S. Melham

1 – Introduction

Define the sequences {Un}∞n=0 and {Vn}∞n=0 by

(1.1)

{

Un = pUn−1 − Un−2 , U0 = 0, U1 = 1 ,

Vn = p Vn−1 − Vn−2 , V0 = 2, V1 = p ,

where p ≥ 2 is an integer. For p = 2 {Un} becomes the sequence of non-negative
integers, and for this reason we may look upon {Un} as a generalization of the
non-negative integers. The sequence {Vn} bears the same relation to {Un} as
does the Lucas sequence to the Fibonacci sequence. For p > 2 the Binet forms

are

Un =
αn − βn

α− β
and Vn = αn + βn ,

where

α =
p+

√

p2 − 4
2

and β =
p−

√

p2 − 4
2

are the roots of x2 − px+ 1 = 0. We put ∆ = (α− β)2 = p2 − 4.
Clary and Hemenway [2] proved

Theorem 1.

(1.2) (p+ 1)
n
∑

k=1

U3
k = (Un+1 − Un + 2)

(

n
∑

k=1

Uk

)2
.

For p = 2 this reduces to the well known identity

(1.3) 13 + 23 + · · ·+ n3 = (1 + 2 + · · ·+ n)2 .
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Similar results on sums of powers of integers have a long history. If k is a

positive integer write

Tk(n) = (1 + 2 + · · ·+ n)k and Sk(n) = 1
k + 2k + · · ·+ nk .

Then a result which extends (1.3) is

Theorem 2.

(1.4) Tk(n) =
1

2k−1

∑

(

k

2i−1

)

S2k+1−2i(n) ,

the sum being taken over those i for which 2 ≤ 2 i ≤ k + 1.

The first few instances of (1.4) are

T2(n) = S3(n) ,(1.5)

T3(n) =
1

4
S3(n) +

3

4
S5(n) ,(1.6)

T4(n) =
1

2
S5(n) +

1

2
S7(n) .(1.7)

Theorem 1 has been rediscovered many times. It occurs in a 1952 paper

of Piza [5], and according to MacDougall [4] it was known as far back as 1877

(Lampe) and 1878 (Stern). In 1997 G.L. Cohen, a colleague of the present writer,

also rediscovered Theorem 1, and thus provided the motivation for this paper.

Chapter xiv of Lucas [3] contains an excellent historical survey on sums of powers

of integers. In a recent paper, which also contains a wealth of historical material,

Beardon [1] generalized (1.3) by describing all polynomial relations that exist

between any two of the Si.

Our object in this paper is to produce further identities like (1.2) which involve

higher powers. Our main results are stated as Theorems 3, 4 and 5 in Section 3.

2 – Some preliminary results

We require the following:

∆U3
n = U3n − 3Un ,(2.1)

∆2U5
n = U5n − 5U3n + 10Un ,(2.2)

∆3U7
n = U7n − 7U5n + 21U3n − 35Un ,(2.3)

U5n = ∆
2U5

n + 5∆U
3
n + 5Un ,(2.4)
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U7n = ∆
3U7

n + 7∆
2U5

n + 14∆U
3
n + 7Un ,(2.5)

Vm Un = Um+n − Um−n ,(2.6)

∆UmUn = Vm+n − Vm−n ,(2.7)

U2n = Un Vn ,(2.8)

V2m − 2 = ∆U2
m ,(2.9)

U2
n + U2

n+1 = pUn Un+1 + 1 ,(2.10)

U4
n + U4

n+1 = (p
2−2)U2

n U
2
n+1 + 2pUn Un+1 + 1 ,(2.11)

U6
n + U6

n+1 = (p
3−3p)U3

n U
3
n+1 + (3p

2−3)U2
n U

2
n+1 + 3pUn Un+1 + 1 .(2.12)

Identities (2.1)–(2.3) are obtained from the Binet form for Un by taking the

appropriate power. Identities (2.4) and (2.5) are obtained from (2.1)–(2.3). Iden-

tities (2.6) and (2.7) are special cases of (8) and (10) respectively in [2], while

(2.8)–(2.10) follow immediately from the Binet forms. Identities (2.11) and (2.12)

follow from (2.10) after taking appropriate powers.

If, for the sequences Un and Vn, we highlight the dependence on the parameter

p by writing Un(p) and Vn(p), then we have the following composition formulas

which appear as (17) and (18) in [2]

Vrn(p) = Vn(Vr(p)) ,(2.13)

Urn(p) = Ur(p)Un(Vr(p)) .(2.14)

In the work which follows we need the following lemmas.

Lemma 1. If m is a positive integer, then

n
∑

k=1

U2mk =
Umn Um(n+1)

Um
.

Proof: By using the Binet form for U2mk and the formula for the sum of a

geometric progression, we obtain

n
∑

k=1

U2mk =
U2mn+2m − U2mn − U2m

V2m − 2

=
V2mn+m Um − Um Vm

∆U2
m

(by (2.6), (2.8) and (2.9)) ,

and the result follows from (2.7).
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Lemma 2.

U3n U3(n+1) = ∆
2(Un Un+1)

3 + 3p∆(Un Un+1)
2 + (3∆ + 9)Un Un+1 .

Proof: From (2.1) we have

U3n U3(n+1) = Un Un+1 (∆U
2
n + 3) (∆U

2
n+1 + 3)

= Un Un+1

(

∆2U2
nU

2
n+1 + 3∆(U

2
n + U2

n+1) + 9
)

,

and the result follows from (2.10).

Lemma 3.

U5n U5(n+1) = ∆
4(Un Un+1)

5 + 5p∆3(Un Un+1)
4 + 5 (2p2 − 1)∆2(Un Un+1)

3

+ 5p (2p2 − 3)∆(Un Un+1)
2 + 5 (∆2 + 5∆+ 5)Un Un+1 .

Proof: From (2.4) we have

U5n U5(n+1) = Un Un+1 (∆
2U4

n + 5∆U
2
n + 5) (∆

2U4
n+1 + 5∆U

2
n+1 + 5) .

We complete the proof by multiplying the terms in the brackets and using (2.10)

and (2.11).

In precisely the same manner, using (2.5) and (2.10)–(2.12), we can prove

Lemma 4.

U7n U7(n+1) = ∆
6(Un Un+1)

7 + 7p∆5(Un Un+1)
6 + 7 (3p2 − 1)∆4(Un Un+1)

5

+ 35p (p2 − 1)∆3(Un Un+1)
4 + 7 (5p4 − 10p2 + 2)∆2(Un Un+1)

3

+ 7p∆(3∆2 + 14∆ + 14) (Un Un+1)
2

+ 7 (∆3 + 7∆2 + 14∆ + 7)Un Un+1 .

3 – The main results

From (2.1) we have ∆U 3
2k = U6k − 3U2k, and using Lemma 1 we obtain

∆
n
∑

k=1

U3
2k =

U3n U3(n+1)

U3
− 3Un Un+1 .
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By Lemma 2 this becomes

U3

n
∑

k=1

U3
2k = ∆(Un Un+1)

3 + 3p (Un Un+1)
2 ,

and Lemma 1 with m = 1 yields

(3.1) U3

n
∑

k=1

U3
2k = ∆

( n
∑

k=1

U2k

)3

+ 3p

( n
∑

k=1

U2k

)2

.

To convert (3.1) to a form involving consecutive subscripts we use (2.14) with

r = 2. That is, in (3.1) we make the substitution U2k(p) = pUk(p
2 − 2). Finally,

if we put U3 = p2−1 and ∆ = p2−4, and replace p by √p+ 2 in order to restore
the original parameter p, we obtain

Theorem 3.

(3.2) (p+ 1)
n
∑

k=1

U3
k = (p− 2)

( n
∑

k=1

Uk

)3

+ 3

( n
∑

k=1

Uk

)2

.

Now (3.2) reduces to (1.3) when p = 2. We also note that (3.2) is equivalent

to (1.2). Indeed we can obtain (1.2) if we first factorise the right side of (3.1) and

then convert to a form involving consecutive subscripts.

Next we obtain an analogue of (3.2) involving fifth powers. From (2.2) we

have ∆2U5
2k = U10k − 5U6k + 10U2k, and using Lemma 1 we obtain

U3 U5∆
2

n
∑

k=1

U5
2k = U3 U5n U5(n+1) − 5U5 U3n U3(n+1) + 10U3 U5 Un Un+1 .

After we make the necessary substitutions using Lemma 2 and Lemma 3 this

identity becomes

U3 U5

n
∑

k=1

U5
2k = U3∆

2(Un Un+1)
5 + 5pU3∆(Un Un+1)

4

+ 5p4 (Un Un+1)
3 − 5p3 (Un Un+1)

2 .

Next we use Lemma 1 to replace each occurrence of Un Un+1 by
∑n

k=1 U2k. Finally

if we note that U5 = p4−3p2+1, and convert to consecutive subscripts as before,

we obtain
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Theorem 4.

(3.3)

(p+ 1) (p2 + p− 1)
n
∑

k=1

U5
k = (p+ 1) (p− 2)2

( n
∑

k=1

Uk

)5

+ 5 (p+ 1) (p− 2)
( n
∑

k=1

Uk

)4

+ 5 (p+ 2)

( n
∑

k=1

Uk

)3

− 5
( n
∑

k=1

Uk

)2

.

When p = 2 (3.3) becomes

S5(n) =
4

3
T3(n)−

1

3
T2(n) ,

which can be obtained from (1.5) and (1.6).

Next we obtain an identity involving seventh powers. Since the algebra is

lengthy (but straightforward) we omit the details. Using (2.3) together with

Lemma 1 we have

U3 U5 U7∆
3

n
∑

k=1

U7
2k = U3 U5 U7n U7(n+1) − 7U3 U7 U5n U5(n+1)

+ 21U5 U7 U3n U3(n+1) − 35U3 U5 U7 Un Un+1 .

Then we use Lemmas 2–4, together with Lemma 1, to express the right side as a

polynomial in
∑n

k=1 U2k. Finally, noting that U7 = p6− 5p4+6p2− 1, we change
to consecutive subscripts to obtain

Theorem 5.

(p+ 1) (p2 + p− 1) (p3 + p2 − 2p− 1)
n
∑

k=1

U7
k =

(3.4)

= (p+1) (p−2)3 (p2+p−1)
( n
∑

k=1

Uk

)7

+ 7 (p+1) (p−2)2 (p2+p−1)
( n
∑

k=1

Uk

)6

+ 7 (p+ 1) (2p− 1) (p2 − 4)
( n
∑

k=1

Uk

)5

+ 35 p (p+ 1)

( n
∑

k=1

Uk

)4

− 7 (p+ 2) (2p+ 1)
( n
∑

k=1

Uk

)3

+ 7 (2p+ 1)

( n
∑

k=1

Uk

)2

.



ON SUMS OF POWERS OF TERMS IN A LINEAR RECURRENCE 507

When p = 2 (3.4) becomes

S7(n) = 2T4(n)−
4

3
T3(n) +

1

3
T2(n) ,

which can be obtained from (1.5)–(1.7).

4 – Concluding remarks

Interestingly, in each of (3.2)–(3.4) the sum of the polynomial coefficients on

the right side is equal to the polynomial coefficient on the left side. We have

not been able to detect any other pattern in these coefficients. Our method of

deriving these identities suggests that there are higher power analogues. Is there

a more direct way to derive them? Is there a general formula which encompasses

all such identities?

We conclude by making an unusual observation. If we denote the k-th deriva-

tive (with respect to p) of Vn by V
(k)
n , where V

(0)
n = Vn, then (2.10)–(2.12) can

be written respectively as

U2
n + U2

n+1 = V
(0)
1 Un Un+1 + V

(1)
1 ,

U4
n + U4

n+1 = V
(0)
2 U2

n U
2
n+1 + V

(1)
2 Un Un+1 +

V
(2)
2

2!
,

U6
n + U6

n+1 = V
(0)
3 U3

n U
3
n+1 + V

(1)
3 U2

n U
2
n+1 +

V
(2)
3

2!
Un Un+1 +

V
(3)
3

3!
.

After checking that this pattern continues for several more cases, we make the

following conjecture.

Conjecture: If k is a positive integer then

U2k
n + U2k

n+1 =
k
∑

r=0

V
(r)
k

r!
Uk−r

n Uk−r
n+1 .
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