# ON THE HYPERBOLIC DIRICHLET 

 TO NEUMANN FUNCTIONALF. Cardoso * and C. Cuevas


#### Abstract

We prove the injectivity of the linearization of the hyperbolic Dirichlet to Neumann functional associated to metrics near the euclidean one in a "small" bounded domain of $\mathbb{R}^{3}$, under some suitable transversality and geometric conditions.


## 1 - Introduction and statement of the results

Let $\mathcal{M}$ denote the set of all riemannian metrics $g$ on $\mathbb{R}^{n}$ which coincide with the euclidean metric $\boldsymbol{e}$, outside a bounded domain $\Omega$ with smooth boundary $\partial \Omega$. We consider the anisotropic wave equation

$$
\begin{align*}
\square_{g} u & =\frac{\partial^{2} u}{\partial t^{2}}-\Delta_{g} u=0 \quad \text { in } \Omega \times(0, T) \\
u & =f \quad \text { on } \quad \Gamma=\partial \Omega \times(0, T), \quad f \in C_{0}^{\infty}(\Gamma)  \tag{1.1}\\
u & =\frac{\partial u}{\partial t}=0 \quad \text { in } \Omega \times\{0\}
\end{align*}
$$

There is a unique solution to (1.1); hence we may define the hyperbolic Dirichlet to Neumann map as the linear operator

$$
\begin{align*}
& \Lambda_{g}: C_{0}^{\infty}(\Gamma) \rightarrow C^{\infty}(\Gamma)  \tag{1.2}\\
& \Lambda_{g} f=\left.d u \cdot \nu_{g}\right|_{\Gamma}=\left.\frac{\partial u}{\partial \nu_{g}}\right|_{\Gamma} \tag{1.3}
\end{align*}
$$

[^0]where $u$ is the unique solution to (1.1) and $\nu_{g}$ is the $g$-outward unit normal to $\partial \Omega$. The hyperbolic Dirichlet to Neumann Functional:
\[

$$
\begin{align*}
\Lambda: \mathcal{M} & \rightarrow O_{p}(\Gamma),  \tag{1.4}\\
g & \mapsto \Lambda_{g}
\end{align*}
$$
\]

where $O_{p}(\Gamma)$ denotes the space of all linear operators from $C_{0}^{\infty}(\Gamma)$ into $C^{\infty}(\Gamma)$, is known to be invariantly defined on the orbit obtained by the action over $\mathcal{M}$, of the group $\mathcal{D}$ of all diffeomorphism $\psi$ of $\bar{\Omega}$, each of which restricts to the identity on $\partial \Omega$. In fact, any such $\psi$ can be used to construct a new metric, the pull-back metric, $\psi^{*} g$, such that $\Lambda_{\psi^{*} g}=\Lambda_{g}$. A natural conjecture is that this is the only obstruction to the uniqueness of $\Lambda$.

For fixed $g$, we consider the following map:

$$
\begin{equation*}
\psi \in \mathcal{D} \xrightarrow{A_{g}} \psi^{*} g \in \mathcal{M} \tag{1.5}
\end{equation*}
$$

It is easy to see that the tangent space $T_{I} \mathcal{D}$ of $\mathcal{D}$ at the identity mapping $I$ is the vector space $\Gamma_{0}(T \bar{\Omega})$ of all smooth vector fields on $\bar{\Omega}$ which vanish on $\partial \Omega$. On the other hand, the tangent space $T_{g} \mathcal{M}$ of $\mathcal{M}$ at $g$ is the vector space $\Gamma_{0}\left(S^{2} \bar{\Omega}\right)$ of all smooth sections of symmetric 2 -tensors on $\mathbb{R}^{n}$ which are supported on $\bar{\Omega}$. We introduce respectively on $\Gamma_{0}(T \bar{\Omega})$ and on $\Gamma_{0}\left(S^{2} \bar{\Omega}\right)$, the inner products

$$
\begin{align*}
& \langle X, Y\rangle=\int_{\bar{\Omega}} g(X, Y) v_{g}, \quad X, Y \in \Gamma_{0}(T \bar{\Omega})  \tag{1.6}\\
& \langle\langle m, l\rangle\rangle=\frac{1}{n} \int_{\bar{\Omega}} \operatorname{tr}(\hat{m} \circ \hat{l}) v_{g}, \quad m, l \in \Gamma_{0}\left(S^{2} \bar{\Omega}\right), \tag{1.7}
\end{align*}
$$

where $v_{g}$ (resp. tr) denote the volume element (resp. the trace) associated to $g$ and $\hat{m}$ is the unique linear map (in fact a section of $\operatorname{End}(T \bar{\Omega})$ ) defined by

$$
\begin{equation*}
g(\hat{m} u, v)=m(u, v), \quad \text { for all } u, v \in \Gamma(T \bar{\Omega}) \tag{1.8}
\end{equation*}
$$

Of course, $\hat{g}$ is the identity on $\Gamma(T \bar{\Omega})$ and the factor $1 / n$ in (1.7) is taken so as to have $\langle\langle g, g\rangle\rangle=\operatorname{vol}_{g}(\bar{\Omega})$.

Consider as in [1], the formal linearizations of $A_{g}$ at $I$ and of $\Lambda$ at $g$, respectively:

$$
\begin{equation*}
A_{g}^{\prime}[I]:=A_{g}^{\prime}: \Gamma_{0}(T \bar{\Omega}) \rightarrow \Gamma_{0}\left(S^{2} \bar{\Omega}\right) \tag{1.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\Lambda_{g}^{\prime}: \Gamma_{0}\left(S^{2} \bar{\Omega}\right) \rightarrow O_{p}(\Gamma) \tag{1.10}
\end{equation*}
$$

Let $\left(A_{g}^{\prime}\right)^{*}$ denote the formal adjoint of $A_{g}^{\prime}$ with respect to the inner product (1.6) and (1.7) and $\operatorname{diam}_{g}(\Omega)$ the diameter of $\Omega$ in the metric $g$. In [1] the authors stated the following

Conjecture 1. Let $m \in \Gamma_{0}\left(S^{2} \bar{\Omega}\right)$ and assume that
a) $\Lambda_{g}^{\prime}(m)=0$,
b) $\left(A_{g}^{\prime}\right)^{*}(m)=0$ and
c) $\operatorname{diam}_{g}(\Omega)<T$ is sufficiently small that the exponential map for $g$ is a global diffeomorphism in $\bar{\Omega}$.

Then $m$ is identically zero.
Remark 1. The Condition b) in Conjecture 1.1 is obviously necessary. In fact, the range of $A_{g}^{\prime}$ is contained in the kernel of $\Lambda_{g}^{\prime}$. Therefore, we should expect that $\Lambda_{g}^{\prime}$ be injective on a "transversal" subspace of the range of $A_{g}^{\prime}$; hence we shall refer to Condition b) as the Transversality Condition. The Condition c) is necessary to avoid the appearance of caustics.

Remark 2. Cardoso and Mendoza, [1], proved that Conjecture 1.1 holds if $n \geq 2$ and $g$ is the euclidean metric $\boldsymbol{e}$; they also proved the conjecture when $n=2$ and $g$ is near the euclidean metric in the $C^{3}$ topology.

The main result of this paper is:
Theorem 1. Conjecture 1.1 holds if $n=3, g$ is near the euclidean metric in the $C^{3}$ topology and in addition, one of the following two conditions is true:

I - The g Levi-Civita connection commute with rotation, i.e., $\nabla^{g} \circ J=J \circ \nabla^{g}$ (see Section 4 for the definition of $J$ ).

II - The generalized gradients of solutions of the eikonal equation are $g$-Killing fields (see [2] for the definition).

The article is organized as follows: In Section 2 and 3 we develop the necessary preliminaries dealing with invariant formulas for $A_{g}^{\prime},\left(A_{g}^{\prime}\right)^{*}$ and $\Lambda_{g}^{\prime}$ and the generalized $X$-ray and Radon transform. In Section 4 we present the proof of Theorem 1.1 with condition I and in Section 5 we prove Theorem 1.1 with condition II.

## 2 - Invariant formulas

Cardoso and Mendoza, [1], proved the following two propositions:
Proposition 1. If $X \in \Gamma_{0}(T \bar{\Omega})$ and $m \in \Gamma_{0}\left(S^{2} \bar{\Omega}\right)$, then it follows that

$$
\begin{align*}
& A_{g}^{\prime}(X)(\cdot, \cdot)=g(\nabla X, \cdot)+g(\cdot, \nabla X),  \tag{2.1}\\
& \left(A_{g}^{\prime}\right)^{*}(m)(\cdot)=-\frac{2}{n} \sum_{i=1}^{n} \nabla_{e_{i}} m\left(\cdot, \boldsymbol{e}_{i}\right) \tag{2.2}
\end{align*}
$$

In (2.1) $\nabla$ denotes the $g$ Levi-Civita connection on $\Gamma_{0}(T \bar{\Omega})$ and in (2.2) $\nabla$ is the $g$ Levi-Civita connection on $\Gamma_{0}\left(S^{2} \bar{\Omega}\right)$ and $\left(e_{i}\right)_{i=1, \ldots, n} \in \Gamma(T \bar{\Omega})$, is a $g$ orthonormal frame. We also observe that the right-hand side of (2.2) is independent of the chosen ortonormal frame.

We denote by $\tilde{m} \in \tilde{\Gamma}_{0}\left(S^{2} \bar{\Omega}\right)$ the symmetric 2 -tensor on $\Gamma\left(T^{*} \bar{\Omega}\right)$ corresponding to $m$ via $g$, i.e. $\tilde{m}\left(U^{\#}, V^{\#}\right)=m(U, V)$ for all $U, V \in \Gamma(T(\bar{\Omega}))$, where $U^{\#}(\cdot)=$ $g(U, \cdot)$. We have the following:

Proposition 2. The linearization of $\Lambda$ at $g \in \mathcal{M}$, satisfies

$$
\begin{equation*}
\left\langle\Lambda_{g}^{\prime}(m) f, h\right\rangle_{L^{2}(\Gamma)}=\int_{0}^{T} \int_{\bar{\Omega}}\left\{\tilde{m}(d u, d v)+\frac{1}{2} \operatorname{tr}(\hat{m})\left[\tilde{g}(d u, d v)-u_{t} v_{t}\right]\right\} v_{g} d t \tag{2.3}
\end{equation*}
$$

for all $f, h \in C_{0}^{\infty}(\Gamma)$, where $u$ is a solution of (1.1), $v$ is a solution of

$$
\begin{equation*}
\square_{g} v=0 \quad \text { in } \Omega \times(0, T), \quad v=v_{t}=0 \quad \text { in } \Omega \times\{T\},\left.\quad v\right|_{\Gamma}=h \tag{2.4}
\end{equation*}
$$

and $\langle\cdot, \cdot\rangle_{L^{2}(\Gamma)}$ is the $L^{2}$-inner product in $\Gamma$ with respect to the measure induced by the metric $g \otimes d t^{2}$.

## 3 - The geodesic $X$-ray transform and the Radon transform

Let $g \in \mathcal{M}$. We remind that $g$ coincides with the euclidean metric, $\boldsymbol{e}$, outside $\bar{\Omega}$. We shall deal with sections of the following vector bundles

where $G$ denotes the manifold of geodesics (with respect to $g$ ), $\mathcal{P}$ the bundle of parallel vector fields and $Q$ the bundle of quadratic forms on $\mathcal{P}$. The generalized $X$-ray transform $\mathcal{R}_{g}$ is the map

$$
\begin{equation*}
\mathcal{R}_{g}: \Gamma_{0}\left(S^{2} \bar{\Omega}\right) \rightarrow \Gamma(Q), \tag{3.1}
\end{equation*}
$$

defined by

$$
\begin{equation*}
\mathcal{R}_{g}(m)_{\gamma}\left(P_{1}, P_{2}\right)=\int_{\gamma} m(\gamma(t))\left(P_{1}(\gamma(t)), P_{2}(\gamma(t))\right), \tag{3.2}
\end{equation*}
$$

where $\gamma \in G$ and $P_{1}, P_{2} \in \Gamma(\mathcal{P})$. There is a global non-vanishing section $T: G \rightarrow \mathcal{P}$, given by

$$
\begin{equation*}
T_{\gamma}(\gamma(t))=\dot{\gamma}(t), \tag{3.3}
\end{equation*}
$$

since as it is well known if $\gamma$ is a geodesic, then $\dot{\gamma}(t)=P_{\gamma, 0, t}(\dot{\gamma}(0))$, where $P_{\gamma, 0, t}$ is the parallel transport along $\gamma$, from 0 to $t$. In [1] it was proved the following:

Proposition 3. Let $m \in \Gamma_{0}\left(S^{2} \bar{\Omega}\right)$ satisfy $\Lambda_{g}^{\prime}(m)=0$ and $\operatorname{diam}_{g}(\Omega)<T$ be so small that the exponential map for $g$ is a global diffeomorphism in $\bar{\Omega}$. Then

$$
\begin{equation*}
\mathcal{R}_{g}(m)_{\gamma}\left(T_{\gamma}, T_{\gamma}\right)=0, \tag{3.4}
\end{equation*}
$$

for all $g$-geodesic $\gamma$.
Let $\mathcal{G}^{\prime}$ denote the space of generalized hiperplanes $\Sigma=\Sigma_{\phi}^{s}=\Sigma(\phi, \eta, s)$, where $s \in \mathbb{R}, \eta \in S^{n-1}$ is a normal vector to $\Sigma$ and $\phi(\cdot, \eta)$ is a solution of the eikonal equation

$$
\left\{\begin{array}{r}
g\left(\nabla^{g} \phi(\cdot, \eta), \nabla^{g} \phi(\cdot, \eta)\right)=1  \tag{3.5}\\
\left.\phi(\cdot, \eta)\right|_{\Sigma}=s \\
\left.\nabla^{g} \phi(\cdot, \eta)\right|_{\Sigma}=\eta
\end{array}\right.
$$

We assume that
(i) the metric $g$ satisfies Condition II of Theorem 1.1.
(ii) $\phi(x, t w)=t \phi(x, w)$, for all $(w, t) \in S^{n-1} \times \mathbb{R}$.

Remark 3. The generalized hiperplanes are closed submanifolds of dimension $n-1$. On the other hand taking into account (i) it is easy to see that they are totally geodesic submanifolds.

Let $Q^{\prime}$ denote the quadratic bundle over $\mathcal{G}^{\prime}$. The generalized Radon transform $R_{g}$ is the map

$$
\begin{equation*}
R_{g}: \Gamma_{0}\left(S^{2} \bar{\Omega}\right) \rightarrow \Gamma\left(Q^{\prime}\right) \tag{3.6}
\end{equation*}
$$

defined by

$$
\begin{equation*}
R_{g}(m)_{\Sigma}(X, Y)=\int_{\Sigma} m(X, Y) \mu_{\Sigma} \tag{3.7}
\end{equation*}
$$

where $\mu_{\Sigma}$ denotes the volume element induced on $\Sigma$ by the metric $g$.
Corollary 1. There is an orthonormal frame $T_{1}, \ldots, T_{n-1}, N$ of $T \mathbb{R}^{n}$ such that

$$
\begin{equation*}
R_{g}(m)_{\Sigma}\left(T_{i}, T_{j}\right)=0 \tag{3.8}
\end{equation*}
$$

for all $i, j \in\{1, \ldots, n-1\}$.
Proof: Let $\Sigma=\Sigma_{\phi}^{\lambda}$ in $\mathcal{G}^{\prime}$ and $\phi_{i} \in C^{\infty}\left(\mathbb{R}^{n}\right), i=1, \ldots, n-1$, such that

$$
\begin{align*}
g\left(\nabla^{g} \phi, \nabla^{g} \phi_{i}\right) & =0  \tag{3.9}\\
g\left(\nabla^{g} \phi_{i}, \nabla^{g} \phi_{j}\right) & =\delta_{i j} \tag{3.10}
\end{align*}
$$

Denoting $T_{i}:=\nabla^{g} \phi_{i}$ and $N:=\nabla^{g} \phi, i=1, \ldots, n-1$, it follows from (3.9) and (3.10) that $\left.T_{i}\right|_{\Sigma} \in \Gamma(T \Sigma)$ and $T_{1}, \ldots, T_{n-1}, N$ is an orthonormal frame of $T \mathbb{R}^{n}$.

We can assume that $\Sigma \cap \Sigma_{\phi_{i}}^{0} \cap \Sigma_{\phi_{j}}^{0}$ is not-empty for all $i, j \in\{1, \ldots, n-1\}$ and denote

$$
\begin{aligned}
\mathcal{N}_{i} & :=\Sigma \cap \Sigma_{\phi_{i}}^{0} \\
\mathcal{N}_{i j} & :=\Sigma \cap \Sigma_{\phi_{i}}^{0} \cap \Sigma_{\phi_{j}}^{0}
\end{aligned}
$$

Let $\Phi_{i}^{\sigma}$ be the geodesic flow associated to the field $\nabla^{g} \phi_{i}$, then $\sigma \mapsto \Phi_{i}^{\sigma}(\cdot)$ are the geodesics which start at $\mathcal{N}_{i}$ and, using (3.4), we obtain

$$
\begin{aligned}
R_{g}(m)_{\Sigma}\left(T_{i}, T_{j}\right) & =\int_{-\infty}^{\infty} \int_{\mathcal{N}_{i}} m\left(\Phi_{i}^{\sigma}(y)\right)\left(\dot{\Phi}_{i}^{\sigma}(y), \dot{\Phi}_{i}^{\sigma}(y)\right) d S_{y} d \sigma \\
& =\int_{\mathcal{N}_{i}} \mathcal{R}_{g}(m)_{\Phi_{i}^{(\bullet)}(y)}\left(\dot{\Phi}_{i}^{(\bullet)}(y), \dot{\Phi}_{i}^{(\bullet)}(y)\right) d S_{y} \\
& =0
\end{aligned}
$$

A similar calculation holds for $\Phi_{i j}^{\sigma}$, the geodesic flow associated to the field $\nabla^{g} \xi_{i j}$, where $\xi_{i j}=\left(\phi_{i}+\phi_{j}\right) / \sqrt{2}$, taking into account that $m$ is symmetric and (3.4). We obtain

$$
R_{g}(m)_{\Sigma}\left(T_{i}, T_{j}\right)=\frac{1}{2} R_{g}(m)_{\Sigma}\left(T_{i}+T_{j}, T_{i}+T_{j}\right)=0
$$

which concludes the proof.

## 4 - Proof of Theorem 1.1 with condition I

In this section $\bar{\Omega}$ will be a smooth bounded domain in $\mathbb{R}^{3}$. It is convenient that $\bar{\Omega}$ be placed in the open first octant in $\mathbb{R}^{3}$. Consider the vector bundles $\mathcal{P}$ and $Q$ over $G$ as in the beginning of Section 3. A section $m=\left(m_{i j}\right)_{i, j=1,2,3} \in \Gamma_{0}\left(S^{2} \bar{\Omega}\right)$ belongs to $L^{2}\left(S^{2} \bar{\Omega}\right)$ if

$$
\|m\|_{0}^{2}=\int_{\bar{\Omega}}\left(m_{11}^{2}+m_{22}^{2}+m_{33}^{2}+2\left(m_{13}^{2}+m_{12}^{2}+m_{23}^{2}\right)\right) d x_{1} d x_{2} d x_{3}<\infty
$$

where

$$
m_{i j}=m\left(\frac{\partial}{\partial x_{i}}, \frac{\partial}{\partial x_{j}}\right)
$$

and $x_{1}, x_{2}$ and $x_{3}$ are the standard euclidean coordinates in $\mathbb{R}^{3}$. The corresponding Sobolev space based on $L^{2}\left(S^{2} \bar{\Omega}\right)$ will be denoted by $H^{s}\left(S^{2} \bar{\Omega}\right)$.

There is a natural frame for $\mathcal{P}$, manely

$$
\begin{equation*}
T=\dot{\gamma}, \quad N=J \dot{\gamma}, \quad M \tag{4.1}
\end{equation*}
$$

where $\dot{\gamma}$ is the unit tangent vector to the $g$-geodesic $\gamma, J$ denotes the $\frac{\pi}{2}$ clockwise rotation (with respect to $g$ ) in the plane generated by $T$ and the axis $o z$ and $M$ is the parallel transport along $\gamma$ of the vector product of the euclidean counterparts of $T$ and $N$. We say that a section $H$ of $Q$ is in $L^{2}(Q)$ if

$$
\|H\|_{0}^{2}=\int_{G}\left(H_{T T}^{2}+H_{N N}^{2}+H_{M M}^{2}+2\left(H_{T N}^{2}+H_{T M}^{2}+H_{N M}^{2}\right)\right) d \mu<\infty
$$

where $H_{A B}:=H(A, B)$, and $d \mu$ represents the naturally defined Liouville measure on $G$. The corresponding Sobolev space will be denoted by $H^{s}(Q)$. We shall need the following (see [5]):

Lemma 1. If $g$ is near the euclidean metric in the $C^{3}$ topology, then

$$
\mathcal{R}_{g}: H_{\mathrm{comp}}^{s}\left(S^{2} \bar{\Omega}\right) \rightarrow H_{\mathrm{loc}}^{s+1 / 2}(Q)
$$

is a bounded linear operator with a bounded inverse.

We shall also introduce local coordinates in $G$, parametrizing a geodesic by $\left(x_{1}, x_{2}, \theta, \varphi\right)$ or $\left(x_{2}, x_{3}, \theta, \varphi\right)$ or $\left(x_{1}, x_{3}, \theta, \varphi\right)$, where $\left(x_{1}, x_{2}\right)$ (resp. $\left(x_{2}, x_{3}\right)$, resp. $\left(x_{1}, x_{3}\right)$ ) is the point of intersection of the geodesic with the $x_{1} x_{2}$ (resp. $x_{2} x_{3}$, resp. $x_{1} x_{3}$ ) plane and $(\theta, \varphi)$ is the spacial position of the speed vector. Let
(4.2) $\quad T=T\left(x_{1}, x_{2}, \theta, \varphi, t\right), \quad N=N\left(x_{1}, x_{2}, \theta, \varphi, t\right), \quad M=M\left(x_{1}, x_{2}, \theta, \varphi, t\right)$,
be the orthonormal frame with respect to $g$, defined by (4.1). We assume that

$$
\begin{equation*}
t \rightarrow M\left(x_{1}, x_{2}, \theta, \varphi, t\right) \quad \text { and } \quad t \rightarrow N\left(x_{1}, x_{2}, \theta, \varphi, t\right) \tag{4.3}
\end{equation*}
$$

are extended as odd functions for $t \leq 0$. We also denote

$$
\begin{align*}
& \Theta_{1}:=\gamma_{*}\left(\frac{\partial}{\partial \theta}\right)=\beta_{0} N \\
& \Theta_{2}:=\gamma_{*}\left(\frac{\partial}{\partial \varphi}\right)=\delta_{0} M  \tag{4.4}\\
& X_{i}:=\gamma_{*}\left(\frac{\partial}{\partial x}\right)=\alpha_{i} T+\beta_{i} N+\delta_{i} M, \quad i=1,2
\end{align*}
$$

where $\beta_{j}$ and $\delta_{j}, j=0,1,2$ are functions that depend of the variables $x_{1}, x_{2}, \theta, \varphi, t$ and $\alpha_{1}, \alpha_{2}$ only depend on the variables $x_{1}, x_{2}, \theta$ and $\varphi$. To see this, we note that

$$
T g\left(\Theta_{i}, T\right)=g\left(\nabla_{T} \Theta_{i}, T\right)=g\left(\nabla_{\Theta_{i}} T, T\right)=\frac{1}{2} \Theta_{i} g(T, T)=0
$$

and

$$
T g\left(X_{i}, T\right)=g\left(\nabla_{T} X_{i}, T\right)=g\left(\nabla_{X_{i}} T, T\right)=\frac{1}{2} X_{i} g(T, T)=0 .
$$

Now, at $t=0$,

$$
\left.\Theta_{1}\right|_{t=0}=\frac{\partial \dot{\gamma}}{\partial \theta}=-N,
$$

and

$$
\left.\Theta_{2}\right|_{t=0}=\frac{\partial \dot{\gamma}}{\partial \varphi}=\cos \theta M .
$$

If $g$ is the euclidean metric, geodesics are straight lines and in this case $T=$ $\cos \theta \boldsymbol{e}^{i \varphi}+\sin \theta e_{3}, N=\sin \boldsymbol{e}^{i \varphi}-\cos \theta e_{3}$ and $M=i \boldsymbol{e}^{i \varphi}$, where $\left(e_{i}\right)_{i=1,2,3}$ is the canonical basis in $\mathbb{R}^{3}$.

It is easy to see that when $g$ is nearly euclidean i.e. $\|g-\boldsymbol{e}\|_{C^{k}(\bar{\Omega})} \leq \delta$, then $T, N, M, \Theta_{i}$ and $X_{i}$ are close to their euclidean counterparts, so that we may assume that

$$
\begin{equation*}
\sup _{\substack{0 \leq x, y, t \leq L \\ 0 \leq \theta, \varphi \leq \pi / 4}}\left\{\sum_{i=0}^{2}\left(\left|\frac{\partial \beta_{i}}{\partial t}\right|+\left|\frac{\partial \delta_{i}}{\partial t}\right|\right)+\left|N\left(\beta_{0}\right)\right|+\left|M\left(\delta_{0}\right)\right|\right\} \leq \varepsilon, \tag{4.5}
\end{equation*}
$$

where $L$ is the length of the sides of the isosceles triangles with sides on the coordinates axis whose faces generate a prisme which completely encloses $\bar{\Omega}$. We shall need the

Lemma 2. The following identities hold:

$$
\begin{gather*}
\nabla_{\Theta_{1}} M=\nabla_{N} M=0,  \tag{4.6}\\
\nabla_{\Theta_{1}} N=-T\left(\beta_{0}\right) T ; \quad \nabla_{N} N=-\frac{T\left(\beta_{0}\right)}{\beta_{0}} T,  \tag{4.7}\\
\nabla_{\Theta_{2}} N=T\left(\delta_{0}\right) M ; \quad \nabla_{M} N=\frac{T\left(\delta_{0}\right)}{\delta_{0}} M,  \tag{4.8}\\
\nabla_{\Theta_{2}} M=-T\left(\delta_{0}\right)(T+N) ; \quad \nabla_{M} M=-\frac{T\left(\delta_{0}\right)}{\delta_{0}}(T+N),  \tag{4.9}\\
\nabla_{M} T=\frac{T\left(\delta_{0}\right)}{\delta_{0}} M ; \quad \nabla_{N} T=\frac{T\left(\beta_{0}\right)}{\beta_{0}} N,  \tag{4.10}\\
\nabla_{X_{i}} N=-T\left(\beta_{i}\right) T+T\left(\delta_{i}\right) M ; \quad i=1,2,  \tag{4.11}\\
\nabla_{X_{i}} M=-T\left(\delta_{i}\right)(T+N) ; \quad i=1,2,  \tag{4.12}\\
\frac{T\left(\delta_{i}\right)}{\delta_{i}}=\frac{T\left(\delta_{j}\right)}{\delta_{j}} ; \quad \frac{T\left(\beta_{i}\right)}{\beta_{i}}=\frac{T\left(\beta_{j}\right)}{\beta_{j}} ; \quad i, j=0,1,2,  \tag{4.13}\\
M\left(\beta_{i}\right)=0 ; \quad T\left(\delta_{i}\right)=N\left(\delta_{i}\right) ; \quad i=0,1,2,  \tag{4.14}\\
N\left(\alpha_{i}\right)=M\left(\alpha_{i}\right)=0 ; \quad i=1,2,  \tag{4.15}\\
\frac{N\left(\beta_{i}\right)}{\beta_{i}}=\frac{N\left(\beta_{j}\right)}{\beta_{j}} ; \quad \frac{M\left(\delta_{i}\right)}{\delta_{i}}=\frac{M\left(\delta_{j}\right)}{\delta_{j}} ; \quad i, j=0,1,2 \tag{4.16}
\end{gather*}
$$

Proof: Because (taking into account Condition I)

$$
\nabla_{\Theta_{1}} N=\nabla_{\Theta_{1}} J T=J \nabla_{\Theta_{1}} T=J \nabla_{T} \Theta_{1}=J T\left(\beta_{0}\right) N=-T\left(\beta_{0}\right) T
$$

we obtain (4.7).
To establish (4.12), write

$$
\nabla_{X_{i}} M=a T+b N
$$

where we have

$$
\begin{aligned}
a & =-g\left(M, \nabla_{T} X_{i}\right) \\
& =-T\left(\beta_{i}\right) g(M, N)-T\left(\delta_{i}\right) g(M, M) \\
& =-T\left(\delta_{i}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
b & =-g\left(M, \nabla_{X_{i}} N\right) \\
& =T\left(\beta_{i}\right) g(M, T)-T\left(\delta_{i}\right) g(M, M) \\
& =-T\left(\delta_{i}\right)
\end{aligned}
$$

To establish $(4.14),(4.15)$ and $(4.26)$, we note that $\left[\Theta_{1}, \Theta_{2}\right]=0$; in this way,

$$
\begin{aligned}
\nabla_{N} M-\nabla_{M} N & =[N, M] \\
& =\frac{M\left(\beta_{0}\right)}{\beta_{0}} N-\frac{N\left(\delta_{0}\right)}{\delta_{0}} M
\end{aligned}
$$

Using (4.6) we obtain

$$
\nabla_{M} N=\frac{N\left(\delta_{0}\right)}{\delta_{0}} M-\frac{M\left(\beta_{0}\right)}{\beta_{0}} N
$$

and if we compare with (4.8), we conclude that $M\left(\beta_{0}\right)=0$ and $T\left(\delta_{0}\right)=N\left(\delta_{0}\right)$.
On the other hand, using the fact that $\left[X_{i}, \Theta_{1}\right]=0$, we obtain

$$
\nabla_{X_{i}} N-\nabla_{N} X_{i}=\left[X_{i}, N\right]=-\frac{X_{i}\left(\beta_{0}\right)}{\beta_{0}} N
$$

thus

$$
\begin{aligned}
\nabla_{X_{i}} N & =-\frac{X_{i}\left(\beta_{0}\right)}{\beta_{0}} N+\nabla_{N} X_{i} \\
& =\left(-\frac{X_{i}\left(\beta_{0}\right)}{\beta_{0}}+\alpha_{i} \frac{T\left(\beta_{0}\right)}{\beta_{0}}+N\left(\beta_{i}\right)\right) N+\left(N\left(\alpha_{i}\right)-\beta_{i} \frac{T\left(\beta_{0}\right)}{\beta_{0}}\right) T+N\left(\delta_{i}\right) M \\
& =\left(N\left(\beta_{i}\right)-\beta_{i} \frac{N\left(\beta_{0}\right)}{\beta_{0}}\right) N+\left(N\left(\alpha_{i}\right)-T\left(\beta_{i}\right)\right) T+N\left(\delta_{i}\right) M
\end{aligned}
$$

Now comparing with (4.11), we obtain

$$
N\left(\alpha_{i}\right)=0, \quad T\left(\delta_{i}\right)=N\left(\delta_{i}\right), \quad \frac{N\left(\beta_{i}\right)}{\beta_{i}}=\frac{N\left(\beta_{0}\right)}{\beta_{0}}, \quad i=1,2
$$

It follows from similar computations (taking into account that $\left[X_{i}, \Theta_{2}\right]=0$ ) that

$$
M\left(\beta_{i}\right)=M\left(\alpha_{i}\right)=0, \quad \frac{M\left(\delta_{i}\right)}{\delta_{i}}=\frac{M\left(\delta_{0}\right)}{\delta_{0}}, \quad i=1,2
$$

this concludes the proof.

We introduce the following notation:

$$
A_{i}:=\frac{\beta_{i}}{\delta_{0}} T\left(\delta_{0}\right), \quad B_{i}:=\frac{\delta_{i}}{\delta_{0}} M\left(\delta_{0}\right), \quad C_{i}:=\frac{\delta_{i}}{\beta_{0}} T\left(\delta_{0}\right), \quad D_{i}:=\frac{\beta_{i}}{\beta_{0}} N\left(\beta_{0}\right)
$$

We shall need the

Proposition 4. If m satisfies the hypotheses of Theorem 1.1 with Condition I and $H=\mathcal{R}_{g}(m)$, then the following system of equations holds:

$$
\begin{align*}
& \Theta_{i}\left(H_{T T}\right)=X_{i}\left(H_{T T}\right)=0, \quad i=1,2  \tag{4.17}\\
& \Theta_{1}\left(H_{N N}\right)=-\int_{\gamma} T\left(\beta_{0}\right) m(N, T)+A_{0}(m(N, T+N)-m(M, M)) \\
& \Theta_{2}\left(H_{N N}\right)=-\int_{\gamma} M\left(\delta_{0}\right) m(N, N) \\
& X_{i}\left(H_{N N}\right)=-\int_{\gamma} T\left(\beta_{i}\right) m(N, T)+A_{i}(m(N, T+N)-m(M, M)) \\
&+B_{i} m(N, N)
\end{align*}
$$

$$
\begin{align*}
\Theta_{1}\left(H_{N M}\right) & =2 \int_{\gamma} A_{0} m(T+N, M)  \tag{4.27}\\
\Theta_{2}\left(H_{N M}\right) & =\int_{\gamma} T\left(\delta_{0}\right) m(M, M)-2 C_{0} m(T, N)  \tag{4.28}\\
X_{i}\left(H_{N M}\right) & =\int_{\gamma} T\left(\delta_{i}\right) m(M, M)-2 C_{i} m(T, N)-D_{i} m(N, M) \tag{4.29}
\end{align*}
$$

$$
\begin{align*}
\Theta_{1}\left(H_{T M}\right)= & -\int_{\gamma} N\left(\beta_{0}\right) m(T, M),  \tag{4.30}\\
\Theta_{2}\left(H_{T M}\right)= & \int_{\gamma} T\left(\delta_{0}\right) m(M, M)-C_{0}(m(T, T)-m(N, N)),  \tag{4.31}\\
X_{i}\left(H_{T M}\right)= & \int_{\gamma} T\left(\delta_{i}\right) m(M, M)-C_{i}(m(T, T)-m(N, N))  \tag{4.32}\\
& -D_{i} m(T, N) .
\end{align*}
$$

Proof: The meaning of (3.4) in Proposition 3.1 is that $H_{T T}=0$, and hence (4.17) holds. The Transversality Condition satisfied by $m$ means that

$$
\begin{align*}
& \nabla_{T} m(T, T)+\nabla_{N} m(T, N)+\nabla_{M} m(T, M)=0  \tag{4.33}\\
& \nabla_{T} m(N, T)+\nabla_{N} m(N, N)+\nabla_{M} m(N, M)=0  \tag{4.34}\\
& \nabla_{T} m(M, T)+\nabla_{N} m(M, N)+\nabla_{M} m(M, M)=0 \tag{4.35}
\end{align*}
$$

We begin by computing (4.18). Since $\nabla_{\Theta_{1}} N=-T\left(\beta_{0}\right) T$, using (4.34), after integrating by parts (taking into account (4.3), (4.8), (4.9), (4.15) and that $m$ is compactly supported in $\bar{\Omega}$ ), we obtain

$$
\begin{aligned}
\Theta_{1}\left(H_{N N}\right)= & \int_{-\infty}^{\infty} \Theta_{1} m(N, N) \\
= & \int_{-\infty}^{\infty} \nabla_{\Theta_{1}} m(N, N)+2 m\left(\nabla_{\Theta_{1}} N, N\right) \\
= & \int_{-\infty}^{\infty}-\beta_{0} T m(T, N)-2 T\left(\beta_{0}\right) m(T, N)-\beta_{0} M m(N, N) \\
& +\int_{-\infty}^{\infty} \beta_{0} m\left(\nabla_{M} M, N\right)+\beta_{0} m\left(M, \nabla_{M} N\right) \\
= & \int_{-\infty}^{\infty}-T\left(\beta_{0}\right) m(T, N)+M\left(\beta_{0}\right) m(N, N)+A_{0}(m(M, M)-m(T+N, N)) \\
= & -\int_{-\infty}^{\infty} T\left(\beta_{0}\right) m(T, N)+A_{0}(m(T+N, N)-m(M, M)) .
\end{aligned}
$$

To establish (4.20) we proceed in a similar way. In fact,
$X_{i}\left(H_{N N}\right)=\int_{-\infty}^{\infty} \beta_{i} \nabla_{N} m(N, N)+\delta_{i} \nabla_{M} m(N, N)+2 m\left(\nabla_{X_{i}} N, N\right)=$

$$
\begin{aligned}
= & \int_{-\infty}^{\infty}-\beta_{i} \operatorname{Tm}(N, T)-\beta_{i} M m(N, M)+\delta_{i} M m(N, N)-2 T\left(\beta_{i}\right) m(T, N) \\
& +\int_{-\infty}^{\infty}-2 \delta_{i} m\left(\nabla_{M} N, N\right)+2 T\left(\delta_{i}\right) m(M, N) \\
& +\int_{-\infty}^{\infty} \beta_{i} m\left(\nabla_{M} N, M\right)+\beta_{i} m\left(N, \nabla_{M} M\right) \\
= & \int_{-\infty}^{\infty}-T\left(\beta_{i}\right) m(T, N)+M\left(\beta_{i}\right) m(N, M)-M\left(\delta_{i}\right) m(N, N) \\
& +\int_{-\infty}^{\infty} A_{i}(m(M, M)-m(N, T+N)) \\
= & -\int_{-\infty}^{\infty} T\left(\beta_{i}\right) m(T, N)+B_{i} m(N, N)+A_{i}(m(N, T+N)-m(M, M)) .
\end{aligned}
$$

The remaining equations follow from analogous computations.

Proof of Theorem 1.1 with Condition I: It follows from Proposition 4.1 and (4.5) that there is a constant $C_{1}>0$ such that

$$
\begin{equation*}
\|d H\|_{L^{2}(Q)} \leq C_{1} \varepsilon\|m\|_{L^{2}\left(S^{2} \bar{\Omega}\right)} \tag{4.36}
\end{equation*}
$$

where $\varepsilon$ can be made arbitrarily small by requiring that $g$ be sufficiently close to the euclidean metric. On the other hand, by the Poincaré inequality, we obtain that there is a constant $C_{2}>0$ such that

$$
\begin{equation*}
\|H\|_{H^{1}(Q)} \leq C_{2}\|d H\|_{L^{2}(Q)}, \tag{4.37}
\end{equation*}
$$

and using Lemma 4.1, it follows that there is a constant $C_{3}>0$ such that

$$
\begin{equation*}
\|m\|_{L^{2}\left(S^{2} \bar{\Omega}\right)} \leq C_{3}\|H\|_{H^{1 / 2}(Q)} \leq C_{3}\|H\|_{H^{1}(Q)} \tag{4.38}
\end{equation*}
$$

Using (4.36)-(4.38) we get $H=0$ if $\varepsilon$ is chosen small enough and, consequently, $m=0$.

## 5 - Proof of Theorem 1.1 with condition II

In this section $\bar{\Omega}$ will be a smooth domain in $\mathbb{R}^{3}$. It is convenient that $\bar{\Omega}$ be placed in the open first octant in $\mathbb{R}^{3}$. Consider the quadratic bundle $Q^{\prime}$ over $\mathcal{G}^{\prime}$ as in the beginning of Section 3. A section $M$ of $Q^{\prime}$ belongs to $L^{2}\left(Q^{\prime}\right)$ if

$$
\begin{equation*}
\|M\|_{0}^{2}=\int_{\mathcal{G}^{\prime}}\left(M_{T_{1} T_{1}}^{2}+M_{T_{2} T_{2}}^{2}+M_{N N}^{2}+2\left(M_{T_{1} N}^{2}+M_{T_{2} N}^{2}+M_{T_{1} T_{2}}^{2}\right)\right) d \mu<\infty, \tag{5.1}
\end{equation*}
$$

where $M_{A B}:=M(A, B), d \mu$ represents the naturally defined Liouville measure on $\mathcal{G}^{\prime}$ and $T_{1}, T_{2}, N$ are the vector fields given by Corollary 3.1. The corresponding Sobolev space based on $L^{2}\left(Q^{\prime}\right)$ will be denoted by $H^{s}\left(Q^{\prime}\right)$. We shall need the

Lemma 3. If $g$ is near the euclidean metric in the $C^{3}$ topology, then

$$
R_{g}: H_{\mathrm{comp}}^{s}\left(S^{2} \bar{\Omega}\right) \rightarrow H_{\mathrm{loc}}^{s+\frac{n-1}{2}}\left(Q^{\prime}\right)
$$

is a bounded linear operator with a bounded inverse.
Proof: The adjoint, $R_{g}^{*}$, of $R_{g}$ is given by

$$
R_{g}^{*} h(x)=\int_{S^{n-1}} h(\omega, \phi(x, \omega)) d \omega
$$

Let $P=(2 \pi)^{1-n} R_{g}^{*} \partial_{s}^{n-1} R_{g}$. Using Fourier inversion formula, making $t \omega=\xi$ and observing that $d t d \omega=|\xi|^{1-n} d \xi$, we obtain

$$
\begin{equation*}
P f(x)=(2 \pi)^{-n} \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} e^{i(\phi(x, \xi)-\phi(y, \xi))} f(y) d \xi d y \tag{5.2}
\end{equation*}
$$

By Taylor's formula with integral remainder, we get

$$
\begin{equation*}
\phi(x, \xi)-\phi(y, \xi)=\left\langle x-y, k_{x, y}(\xi)\right\rangle \tag{5.3}
\end{equation*}
$$

where

$$
\begin{equation*}
k_{x, y}(\xi)=\int_{0}^{1} D_{x} \phi(y+s(x-y), \xi) d s \tag{5.4}
\end{equation*}
$$

We observe that since $g$ is near the euclidean metric, the function $k_{x, y}$ is a global diffeomorphism. If we substitute (5.3) in (5.2) we obtain that $P$ is a pseudodifferential operator of order zero, with amplitude function given by

$$
\begin{equation*}
a(x, y, \xi)=\frac{1}{\operatorname{det}\left[D_{\xi} k_{x, y}\left(k_{x, y}^{-1}(\xi)\right)\right]} \tag{5.5}
\end{equation*}
$$

Hence, we obtain from the standard estimates for pseudodifferential operators (see [4], Proposition 9.2) and the fact that $D_{\xi} k_{x, y}(\xi)$ is near the identity, that $\|P-I\|_{\mathcal{L}\left(L^{2}\right)}<1$ and, consequently, $R_{g}$ is inversible.

Let us consider the following open set

$$
\mathcal{U}=\left\{\Sigma \in \mathcal{G}^{\prime}: \Sigma \text { is transversal to the } x \text {-axis }\right\}
$$

We may parametrize a generalized hiperplane $\Sigma \in \mathcal{U}$ by $\Sigma=\Sigma(x, \theta, \varphi)$, where $x \boldsymbol{e}_{1}$ is the point of intersection of $\Sigma$ with the $x$-axis and $N^{\boldsymbol{e}}=N^{\boldsymbol{e}}(\theta, \varphi)$ is the representation of the normal vector of $\Sigma$ in spherical coordinates. We remind that the generalized hiperplanes are totally geodesic by Condition II. We consider the following map

$$
\operatorname{Exp}: \mathbb{R}^{2} \rightarrow \Sigma
$$

given by

$$
\operatorname{Exp}\left(x_{1}, x_{2}\right)=\operatorname{Exp}_{x} \boldsymbol{e}_{1}\left(x_{1} T_{1}^{\boldsymbol{e}}+x_{2} T_{2}^{\boldsymbol{e}}\right),
$$

where $T_{1}^{\boldsymbol{e}}=\frac{\partial N^{\boldsymbol{e}}}{\partial \theta}, T_{2}^{\boldsymbol{e}}=\frac{\partial N}{\partial \varphi}$ and $\operatorname{Exp}_{x} \boldsymbol{e}_{1}$ denote the exponential map at $x \boldsymbol{e}_{1}$. We write

$$
M=R_{g}(m), \quad(\operatorname{Exp})^{*}\left(\mu_{\Sigma}\right)=\delta d x_{1} d x_{2}
$$

Here $\mu_{\Sigma}$ is the volume element on $\Sigma$ induced by the metric $g$. We may finally write:

$$
M(X, Y)=\int_{\mathbb{R}^{2}} m(\operatorname{Exp}(x))(X \circ \operatorname{Exp}(x), Y \circ \operatorname{Exp}(x)) \delta(x) d x_{1} d x_{2}
$$

Let $\gamma(t, x, \theta, \varphi)=\operatorname{Exp}\left(t\left(x_{1}, x_{2}\right)\right)$ be the $g$-geodesic through $x$ with tangent vector $x_{1} T_{1}^{\boldsymbol{e}}+x_{2} T_{2}^{e}$, and consider the $g$-orthonormal fields

$$
N=\nabla^{g} \phi, \quad T_{1}=\nabla^{g} \phi_{1}, \quad T_{2}=\nabla^{g} \phi_{2}
$$

given by Corollary 3.1, along the $g$-geodesic $\gamma$. Let

$$
\begin{array}{ll}
N:=N(t, x, \theta, \varphi)=N(\gamma(t)), & T_{1}:=T_{1}(t, x, \theta, \varphi)=T_{1}(\gamma(t))  \tag{5.6}\\
T_{2}:=T_{2}(t, x, \theta, \varphi)=T_{2}(\gamma(t)), & T:=T(t, x, \theta, \varphi)=\dot{\gamma}(t)
\end{array}
$$

We note that

$$
\begin{align*}
& \Theta_{1}:=\gamma_{*}\left(\frac{\partial}{\partial \theta}\right)=\beta_{0} N \\
& \Theta_{2}:=\gamma_{*}\left(\frac{\partial}{\partial \varphi}\right)=\beta_{1} T_{1}+\beta_{2} T_{2}+\beta_{3} N  \tag{5.7}\\
& X:=\gamma_{*}\left(\frac{\partial}{\partial x}\right)=\alpha_{1} T_{1}+\alpha_{2} T_{2}+\alpha_{3} N
\end{align*}
$$

where the functions (see Lemma 5.2) $\alpha_{1}, \alpha_{2}, \beta_{0}, \beta_{1}$ and $\beta_{2}$ depend on the variables $x, \theta, \varphi$ and $\alpha_{3}, \beta_{3}$ depend on the variables $t, x, \theta$ and $\varphi$.

Remark 4. If $g$ is near the euclidean metric then $T_{1}, T_{2}, N, X, \delta$ and $\Theta_{i}$ are close to their euclidean counterparts.

We note that $T=x_{1} T_{1}+x_{2} T_{2}$. In fact, since $\Sigma$ is totally geodesic, it follows that $N$ and $T$ are $g$-orthonormal. Therefore $T=a_{1} T_{1}+a_{2} T_{2}$; now using the fact that $T_{i}$ is a $g$-Killing field, we obtain that $a_{i}$ is constant.

We introduce the following notation

$$
A:=\frac{1}{2\left(\beta_{1} x_{2}-\beta_{2} x_{1}\right)} .
$$

Lemma 4. The following statements hold:

$$
\begin{gather*}
\nabla_{N} N=\nabla_{T_{i}} T_{i}=\nabla_{\Theta_{i}} N=0, \quad i=1,2,  \tag{5.8}\\
{\left[N, T_{1}\right]=\left[N, T_{2}\right]=0 .} \tag{5.9}
\end{gather*}
$$

The coefficients $\alpha_{1}, \alpha_{2}, \beta_{0}, \beta_{1}, \beta_{2}$ in (5.7) are independent of the variable $t$.

$$
\begin{gather*}
\nabla_{T_{1}} T_{2}=A T\left(\beta_{3}\right) N, \quad \nabla_{T_{2}} T_{1}=-A T\left(\beta_{3}\right) N  \tag{5.11}\\
\nabla_{T_{1}} N=\nabla_{N} T_{1}=-A T\left(\beta_{3}\right) T_{2}, \quad \nabla_{T_{2}} N=\nabla_{N} T_{2}=A T\left(\beta_{3}\right) T_{1},  \tag{5.12}\\
\nabla_{\Theta_{2}} T_{1}=-\beta_{2} A T\left(\beta_{3}\right) N-\beta_{3} A T\left(\beta_{3}\right) T_{2},  \tag{5.13}\\
\nabla_{\Theta_{2}} T_{2}=\beta_{1} A T\left(\beta_{3}\right) N+\beta_{3} A T\left(\beta_{3}\right) T_{1},  \tag{5.14}\\
\nabla_{\Theta_{2}} N=-\beta_{1} A T\left(\beta_{3}\right) T_{2}+\beta_{2} A T\left(\beta_{3}\right) T_{1}  \tag{5.15}\\
\nabla_{\Theta_{1}} T_{1}=-\beta_{0} A T\left(\beta_{3}\right) T_{2}, \quad \nabla_{\Theta_{1}} T_{2}=\beta_{0} A T\left(\beta_{3}\right) T_{1}  \tag{5.16}\\
N\left(\beta_{1}\right)=N\left(\beta_{2}\right)=N\left(\alpha_{1}\right)=N\left(\alpha_{2}\right)=0 \tag{5.17}
\end{gather*}
$$

Proof: To establish (5.8), we write

$$
\nabla_{N} N=a_{1} T_{1}+a_{2} T_{2} ;
$$

since $T_{i}$ is a $g$-Killing field, we have

$$
a_{i}=g\left(\nabla_{N} N, T_{i}\right)=-g\left(N, \nabla_{N} T_{i}\right)=0 .
$$

The statement (5.9) is a consequence of $\left[\Theta_{1}, T\right]=0$. To get (5.10), we observe that

$$
\begin{equation*}
\nabla_{T_{1}} T_{2}=g\left(\nabla_{T_{1}} T_{2}, N\right) N, \quad \nabla_{T_{2}} T_{1}=g\left(\nabla_{T_{2}} T_{1}, N\right) N \tag{5.18}
\end{equation*}
$$

Using (5.18) and the fact that $\nabla_{\Theta_{2}} T=\nabla_{T} \Theta_{2}$, we obtain that $\beta_{1}$ and $\beta_{2}$ are independent of the variable $t$. Futhermore,

$$
\begin{equation*}
2 A T\left(\beta_{3}\right)=g\left(\nabla_{T_{1}} T_{2}, N\right)-g\left(\nabla_{T_{2}} T_{1}, N\right) \tag{5.19}
\end{equation*}
$$

Since $[X, T]=0$, it follows that $\alpha_{1}$ and $\alpha_{2}$ are also independent of the variable $t$. We observe that

$$
\begin{equation*}
g\left(\nabla_{T_{1}} T_{2}, N\right)=-g\left(T_{2}, \nabla_{T_{1}} N\right)=-g\left(T_{2}, \nabla_{N} T_{1}\right)=-g\left(N, \nabla_{T_{2}} T_{1}\right) \tag{5.20}
\end{equation*}
$$

Using (5.18)-(5.20) we obtain (5.11). To establish (5.17), we use the facts that $\left[\Theta_{1}, \Theta_{2}\right]=\left[X, \Theta_{1}\right]=0$. The remaining formulas are immediate.

We introduce the following notation:

$$
m_{i j}:=m\left(T_{i}, T_{j}\right), \quad m_{i 0}:=m\left(N, T_{i}\right), \quad m_{00}:=m(N, N), \quad i, j=1,2
$$

We shall need the
Proposition 5. If m satisfies the hypotheses of Theorem 1.1 with Condition II and $M=R_{g}(m)$, then the following system of equations holds:

$$
\begin{align*}
X( & \left.M_{T_{i} T_{j}}\right)=\Theta_{k}\left(M_{T_{i} T_{j}}\right)=0, \quad i, j, k=1,2  \tag{5.21}\\
X\left(M_{T_{j} N}\right)= & \sum_{i=1}^{2} \int\left(T_{i}\left(\delta \alpha_{3}\right) m_{i j}-T_{i}\left(\delta \alpha_{i}\right) m_{j o}+(-1)^{j} \delta \alpha_{3} A T\left(\beta_{3}\right) m_{i o}\right)  \tag{5.22}\\
& +\int\left((-1)^{j} \delta \alpha_{3} A T\left(\beta_{3}\right) m_{k(j) o}+X(\delta) m_{j o}\right) \\
\Theta_{1}\left(M_{T_{j} N}\right)= & \sum_{i=1}^{2} \int\left(T_{i}\left(\delta \beta_{0}\right) m_{i j}+(-1)^{j} \delta \beta_{0} A T\left(\beta_{3}\right) m_{i o}\right)  \tag{5.23}\\
& +\int\left((-1)^{j} \delta \beta_{0} A T\left(\beta_{3}\right) m_{k(j) o}+\Theta_{1}(\delta) m_{j o}\right) \\
\Theta_{2}\left(M_{T_{j} N}\right)= & \sum_{i=1}^{2} \int\left(T_{i}\left(\delta \beta_{3}\right) m_{i j}-T_{i}\left(\delta \beta_{i}\right) m_{j o}+(-1)^{j} \delta \beta_{3} A T\left(\beta_{3}\right) m_{i o}\right)  \tag{5.24}\\
& +\int\left((-1)^{j} \delta \beta_{3} A T\left(\beta_{3}\right) m_{k(j) o}+\Theta_{2}(\delta) m_{j o}\right)
\end{align*}
$$

$$
\begin{align*}
X\left(M_{N N}\right)= & \sum_{i=1}^{2} \int\left(T_{i}\left(\delta \alpha_{3}\right) m_{i o}-T_{i}\left(\delta \alpha_{i}\right) m_{o o}+(-1)^{i+1} \delta \alpha_{3} A T\left(\beta_{3}\right) m_{i k(i)}\right)  \tag{5.25}\\
& +\int X(\delta) m_{o o}, \\
\Theta_{1}\left(M_{N N}\right)= & \sum_{i=1}^{2} \int\left(-T_{i}\left(\delta \beta_{0}\right) m_{i o}+(-1)^{i+1} A T\left(\beta_{3}\right) m_{i k(i)}\right)  \tag{5.26}\\
& +\int \Theta_{1}(\delta) m_{o o}, \\
\Theta_{2}\left(M_{N N}\right)= & \sum_{i=1}^{2} \int\left(-T_{i}\left(\delta \beta_{3}\right) m_{o o}+T_{i}\left(\delta \beta_{3}\right) m_{i o}+(-1)^{i} \delta \beta_{3} A T\left(\beta_{3}\right) m_{i k(i)}\right)  \tag{5.27}\\
& +\int \Theta_{2}(\delta) m_{o o} .
\end{align*}
$$

Proof: The meaning of (3.8) in Corollary 3.1 is that $M_{T_{i} T_{j}}=0$ and hence, (5.21) holds. The Transversality Condition satisfied by $m$ means that

$$
\begin{align*}
& \nabla_{T_{1}} m\left(T_{1}, T_{j}\right)+\nabla_{T_{2}} m\left(T_{2}, T_{j}\right)+\nabla_{N} m\left(N, T_{j}\right)=0  \tag{5.28}\\
& \nabla_{T_{1}} m\left(T_{1}, N\right)+\nabla_{T_{2}} m\left(T_{2}, N\right)+\nabla_{N} m(N, N)=0 \tag{5.29}
\end{align*}
$$

We begin by computing (5.22); we have

$$
X\left(M_{T_{j} N}\right)=\int \delta X m\left(T_{j}, N\right)+\int X(\delta) m\left(T_{j}, N\right)
$$

Now using integration by parts (taking into account that $m$ is compactly supported in $\bar{\Omega}$ ), Lemma 5.2 , (5.28) and taking $k(j) \neq j \in\{1,2\}$, we obtain

$$
\begin{aligned}
\int \delta X m\left(T_{j}, N\right)= & \sum_{i=1}^{2} \int \delta \alpha_{i} T_{i} m_{j o}+\int \delta \alpha_{3} N m_{j o} \\
= & \sum_{i=1}^{2} \int-T_{i}\left(\delta \alpha_{i}\right) m_{j o}+\int \delta \alpha_{3} \nabla_{N} m\left(T_{j}, N\right)+\delta \alpha_{3} m^{2}\left(\nabla_{N} T_{j}, N\right) \\
= & \sum_{i=1}^{2} \int\left(-T_{i}\left(\delta \alpha_{i}\right) m_{j o}-\delta \alpha_{3} T_{i} m_{i j}+\delta \alpha_{3} m\left(T_{i}, \nabla_{T_{i}} T_{j}\right)\right) \\
& +\int \delta \alpha_{3} m\left(\nabla_{N} T_{j}, N\right) \\
= & \sum_{i=1}^{2} \int\left(-T_{i}\left(\delta \alpha_{i}\right) m_{j o}+T_{i}\left(\delta \alpha_{3}\right) m_{i j}+(-1)^{j} \delta \alpha_{3} A T\left(\beta_{3}\right) m_{i o}\right) \\
& +\int(-1)^{j} \delta \alpha_{3} A T\left(\beta_{3}\right) m_{k(j) o} .
\end{aligned}
$$

To establish (5.23), we note that

$$
\Theta_{1}\left(M_{T_{j} N}\right)=\int \delta \Theta_{1} m\left(T_{j}, N\right)+\int \Theta_{1}(\delta) m\left(T_{j}, N\right)
$$

It follows from similar arguments that

$$
\begin{aligned}
& \int \delta \beta_{0} \nabla_{N} m\left(T_{j}, N\right)+\delta \beta_{0} m\left(\nabla_{N} T_{j}, N\right)= \\
& \quad=\sum_{i=1}^{2} \int-\delta \beta_{0} \nabla_{T_{i}} m\left(T_{i}, T_{j}\right)+\int \delta \beta_{0} m\left(\nabla_{N} T_{j}, N\right) \\
& =\sum_{i=1}^{2} \int\left(-\delta \beta_{0} T_{i} m_{i j}+\delta \beta_{0} m\left(T_{i}, \nabla_{T_{i}} T_{j}\right)\right)+\int(-1)^{j} \delta \beta_{0} A T\left(\beta_{3}\right) m_{k(j) o} \\
& \quad=\sum_{i=1}^{2} \int\left(T_{i}\left(\delta \beta_{0}\right) m_{i j}+(-1)^{j} \delta \beta_{0} A T\left(\beta_{3}\right) m_{i o}\right)+\int(-1)^{j} \delta \beta_{0} A T\left(\beta_{3}\right) m_{k(j) o}
\end{aligned}
$$

The remaining formulas follow from similar computations.

Proof of Theorem 1.1 with Condition II: It follows from Proposition 5.1 that there is a constant $C_{1}>0$ such that

$$
\begin{equation*}
\|d M\|_{0} \leq C_{1} \varepsilon\|m\|_{0} \tag{5.30}
\end{equation*}
$$

where $\varepsilon$ can be made arbitrarily small by requiring that $g$ be sufficiently close to the euclidean metric. On the other hand, by the Poincaré inequality, we obtain that there is a constant $C_{2}>0$ such that

$$
\begin{equation*}
\|H\|_{1} \leq C_{2}\|d H\|_{0} \tag{5.31}
\end{equation*}
$$

and using Lemma 5.1 with $n=3$, it follows that there is a constant $C_{3}>0$ such that

$$
\begin{equation*}
\|m\|_{0} \leq C_{3}\|M\|_{1} \tag{5.32}
\end{equation*}
$$

Using (5.30)-(5.32) we get that $M=0$ and, consequently, $m=0$.

## REFERENCES

[1] Cardoso, F. and Mendoza, R. - On the hyperbolic Dirichlet to Neumann functional, Comm. in Partial Diff. Equations, 21 (1996), 1235-1252.
[2] Carmo, M. Do - Riemannian Geometry, Birkhäuser, Boston, 1992.
[3] Helgason, S. - The Radon Transform, Progress in Math., 5, Birkhäuser, 1980.
[4] Hounie, J. - Introdução aos operadores pseudo-diferenciais, 16º Colóquio Brasileiro de Matemática, IMPA, 1987.
[5] Lee, J.M., Mendoza, G., Sylvester, J. and Uhlmann, G. - Metric deformations which preserve boundary lengths, preprint.
[6] Uhlmann, G. - Inverse boundary value problems and applications, Astérisque, 207 (1992), 153-211.

Fernando Cardoso,
Departamento de Matemática, Universidade Federal de Pernambuco, Recife-PE., 50.540-740 - BRAZIL
E-mail: fernando@dmat.ufpe.br
and
Claudio Cuevas
Departamento de Matemática, Universidad de la Fronteira, Temuco 54-D - Temuco - CHILE E-mail: cch@epu.dmat.ufro.cl


[^0]:    Received: August 20, 1997.
    1991 AMS Subject Classification: 35L20, 58G20.
    Keywords: Dirichlet to Neumann Functional, Transversality condition, Metric.

    * Research partially supported by CNPq/Brazil.

