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PRIMITIVE QUADRATICS REFLECTED IN B2-SEQUENCES

B. Lindström

Abstract: A B2-sequence of positive integers a1, a2, ..., ar has the property that the

sums ai + aj , 1 ≤ i ≤ j ≤ r, are different. R.C. Bose and S. Chowla have proved the

existence of B2-sequences of size r = q, a power of a prime p, such that the sums ai +aj ,

1 ≤ i ≤ j ≤ r, are different modulo q2 − 1. If θ ∈ GF (q2) is a primitive element, then

A(q, θ) = {a : 1 ≤ a < q2 − 1, θa − θ ∈ GF (q)} gives a Bose–Chowla sequence.

The main result of this paper is a characterization of primitive quadratics over

GF (2k) in terms of coefficients (Theorem 2). This characterization depends on poly-

nomials over GF (2) defined by a recursion. In Theorem 1 we give a shortcut to the

computation of these polynomials.

O. Moreno has proved the existence of primitive quadratics X2 + X + v over

GF (2k). It is unknown how many there are. In Theorem 3 we prove that the num-

ber of Moreno quadratics, divided by 2, equals the number of elements a ∈ A(2k, θ) with

gcd(a, 22k − 1) = 1, when θ is a root of any Moreno quadratic.

1 – Introduction

A quadratic polynomialX2+uX+v over GF (2k) is primitive when the powers

of a root give all non-zero elements of GF (22k). A simple example of a primitive

polynomial is X2 + X + α over GF (4) = {0, 1, α, α2}. On the other hand, the

quadric X2 + αX + 1 is irreducible but not primitive: if θ is a root then θ5 = 1.

I will give a criterion for quadric over GF (2k) to be primitive. I am in-

terested in primitive quadrics because they can be used in the construction of

B2-sequences. A B2-sequence is a sequence of positive integers a1, a2, ..., ar such

that the sums ai + aj , 1 ≤ i ≤ j ≤ r, are distinct. These are sometimes called

Sidon sequences because S. Sidon [6] came up with them in a question on Fourier
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series. Golomb rulers is another name. These are sequences on non-negative

integers such that all non-zero differences of them are different. Golomb rulers

may be applied in coding theory, circuit layout and radio astronomy.

For an elementary introduction to Golomb rulers see [2]. Bh-sequences, a

generalization of B2-sequences, are discussed in Chapter 2 of the monograph [3]

of H. Halberstam and K.F. Roth.

I will now mention briefly how B2-sequences can be determined from primitive

quadratics. Bose and Chowla proved [1] that

(1.1) A =
{

a : 1 ≤ a < q2−1, θa−θ ∈ GF (q)
}

gives a B2-sequence when θ is primitive in GF (q2). If θ is a root of a primitive

quadratic X2 − uX + v over GF (q) and we define ui, vi ∈ GF (q) for i ≥ 1 by

(1.2) θi = ui θ − vi

and ui can be computed recursively by

(1.3) u1 = 1 , u2 = u and ui+1 = uui − v ui−1, i ≥ 2 .

The i for which ui = 1 belong to the B2-sequence A. This algorithm is due to

Z. Zhang [7], Lemma 4.6. The algorithm was improved by me in [4], which also

contains a criterion for primitive quadratic over fields of odd characteristic [4],

Theorem 3.1. We are concerned with a criterion for even characteristic.

2 – A sequence of polynomials

Our criterion for primitive quadratics, Theorem 2, depends on certain poly-

nomials Pn(X) over GF (2), which are defined recursively by

(2.1) P0(X) = 1, P1(X) = 1 +X, Pn+1(X) = XPn(X) + Pn−1(X) ,

where all coefficients are 0 or 1 (mod 2). Here are the first few polynomials,

except P0 and P1

P2(X) = X2 +X + 1

P3(X) = X3 +X2 + 1

P4(X) = X4 +X3 +X2 + 1

P5(X) = X5 +X4 +X2 +X + 1

P6(X) = X6 +X5 +X4 +X + 1 .
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It is tedious to compute the polynomials using (2.1) when n is large, but we

need them. For example, to find a quadratic over GF (27) we need P21(X) and to

find one over GF (29) we need P85(X). But Theorem 1 below gives a short cut.

By this theorem we have

X2 P21(X) = P3(X)P
4
5 (X) + P 4

4 (X) ,

X8 P85(X) = P13(X)P
16
5 (X) + P2(X)P

16
4 (X)

(let r = 2, c = 5, s = 1, resp. r = 4, c = 5, s = 5).

Theorem 1. Let r, c, s be integers, r, c ≥ 1, R = 2r and −R/2 ≤ s < R/2.

Then we have

(2.2) XR/2 PRc+s(X) = PR/2+s(X)P
R
c (X) + PR/2−s−1(X)P

R
c−1(X) .

Proof: We have, by induction over n ≥ 1

(2.3) Pn(w + w−1) = wn + wn−1 + · · ·+ w−n .

The following relations follow easily if X = w + w−1

(2.4)
(wa + w−a)Pb(X) = Pa+b(X) + Pb−a(X) , 0 < a ≤ b

= Pa+b(X) + Pa−b−1(X) , a > b .

The theorem is proved by induction over c ≥ 1 when X = w + w−1. Note that

xR/2 = wR/2 + w−R/2 since R is a power of 2, the characteristic.

We consider first the case c = 1. Let a = R/2 and b = R+ s in (2.4). We find

that

(2.5) XR/2 PR+s(X) = P3R/2+s(X) + PR/2+s(X) .

Then let a = R and b = R/2 + s in (2.4). This gives

(2.6) XR PR/2+s(X) = P3R/2+s(X) + PR/2−s−1(X) .

The relation (2.2) for c = 1 follows by (2.5) and (2.6) since PR
1 (X) = 1+XR and

PR
0 (X) = 1.

The case c = 2 of (2.2) can be verified similarly. We leave this for the reader.

Let a = R and b = Rc+ 1 in (2.4). Then we find that

(2.7) XR PRc+s(X) + PR(c−1)+s(X) = PR(c+1)+s(X) .
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By (2.1) we have since R is a power of 2,

(2.8) XR PR
c (X) + PR

c−1(X) = PR
c+1(X) .

Assume that (2.2) holds for c and c−1. Consider the linear combination with

coefficients XR and 1 and apply (2.7) and (2.8). Then (2.2) follows for c+ 1.

3 – Primitive quadratics

For y ∈ GF (2k) define the trace Tr(y) by

(3.1) Tr(y) = y + y2 + y4 + · · ·+ y2k−1

.

Note that Tr(y)2 = Tr(y) since y2k

= y, and we have

(3.2) Tr(y) = 0 or 1 .

Lemma 3.1. The quadric X2+uX+v over GF (2k) is irreducible if and only

if u 6= 0 and Tr(v/u2) = 1. A root θ of the irreducible quadric satisfies θ2k+1 = v.

Proof: Assume that u 6= 0. Then we have (θ/u)2 + (θ/u) = v/u2 when θ is

a root. Repeated squarings of this relation gives

(θ/u)2i+1 + (θ/u)2
i

= (v/u2)2
i

for i ≥ 0 .

The sum of these relations when i = 0, ..., k − 1 gives

(3.3) Tr(v/u2) = (θ2k

+ θ)/u .

If the quadric is irreducible, then θ and θ2k

are distinct roots and we have

u = θ + θ2k

6= 0 and v = θ2k+1 by the relation between roots and coefficients in

a quadric. Hence, Tr(v/u2) = 1 by (3.3).

Conversely, if u 6= 0 and Tr(v/u2) = 1, then θ2k

6= θ by (3.3) and θ /∈ GF (2k),

i.e. the quadratic is irreducible.

Lemma 3.2. If the quadric X2 + uX + v over GF (2k) is primitive, then v

is primitive in GF (2k).

Proof: Let θ be a root of the quadric. By Lemma 3.1 we have v = θ2k+1. It

follows that the order of v is 2k − 1.
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Lemma 3.3. Assume that the quadricX2+uX+v over GF (2k) is irreducible

and v primitive in GF (2k). If θ is a root, we have order(θ) = a(2k − 1), where a

is a divisor of 2k + 1, and P(a−1)/2(u
2/v) = 0. If Pn(u

2/v) = 0, then order(θ) ≤

(2n+ 1) (2k − 1).

Proof: Since 0 6= θ ∈ GF (22k), the order of θ divides 22k − 1. We may

write order(θ) = a b, where a | 2k + 1 and b | 2k − 1, since 2k + 1 and 2k − 1 are

relatively prime. From θab = 1, we get θ(2k+1)b = 1 and vb = 1 by Lemma 3.1.

Hence, b = 2k − 1, for v is primitive in GF (2k) by assumption. Now we have

order(θ) = a(2k−1) and θa(2k−1) = 1. If we multiply this relation by θ2a, we find

that θ2a = va and we have

(3.4) wa = 1, with w = θ2/v .

Note that w 6= 1 since u 6= 0 by Lemma 3.1. If we expand (wa − 1)/(w − 1)

we find

(3.5) wa−1 + wa−2 + · · ·+ 1 = 0 .

We may write a = 2c+1 since a is odd (a | 2k+1). When we divide (3.5) by wc,

we find that

(3.6) wc + wc−1 + · · ·+ w−c = 0 .

By (2.3) we may write this

(3.7) Pc(w + w−1) = 0 .

If we square the relation θ2 + v = u θ and divide by θ2 v, we find that

(3.8) w + w−1 = u2/v .

Recall that a = 2c+ 1. By (3.7) and (3.8) we have

(3.9) P(a−1)/2(u
2/v) = 0 .

If Pn(u
2/v) = 0, we have Pn(w + w−1) = 0 by (3.8). Working backwards

from (3.7), with n in place of c, we find that θ(2n+1)(2k−1) = 1 and order(θ) ≤

(2n+ 1) (2k − 1) follows.

Theorem 2. The quadratic X2 + uX + v over GF (2k) is primitive if and

only if the following conditions are satisfied
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(a) u 6= 0 and Tr(v/u2) = 1,

(b) v is a primitive element in GF (2k),

(c) P(a−1)/2(u
2/v) 6= 0 when a is a proper divisor of 2k +1 (alt. for all proper

prime divisors p of 2k + 1 and a = (2k + 1)/p).

Proof: Assume that the quadratic is primitive. The necessity of (a), (b) and

(c) then follows by Lemma 3.1, 3.2 and 3.3.

Assume that (a), (b) and (c) are satisfied. The quadric is then irreducible

by Lemma 3.1. If P(a−1)/2(u
2/v) 6= 0 when a is a proper divisor of 2k + 1, we

conclude by Lemma 3.3 that order(θ) = 22k − 1, i.e. θ is primitive in GF (22k).

If P(a−1)/2(u
2/v) 6= 0 when a = (2k + 1)/p and p is any proper prime divisor,

then wa 6= 1, and wb 6= 1 for any proper divisor b | 2k +1. hence, θ is primitive.

Example. Suppose we want a primitive X2+X+v with v ∈ GF (27). Since

27 + 1 = 3 · 43 we need a primitive v in GF (27) with Tr(v) = 1 and P1(v
−1) 6= 0

and P21(v
−1) 6= 0. Only the last inequality is a serious restriction. In fact, P21(X)

is the product of 3 primitive polynomials of degree 7 over GF (2):

X7+X+1 , X7+X6+X5+X4+X2+X+1 , X7+X5+X4+X3+X2+X+1 .

The coefficients of the X-term is 1 in all three implying that the inverse of any

root has trace 1. Hence, 21 primitive v of trace 1 are excluded. But there are 63

primitive elements of trace 1 in GF (27) and there remains 42 that can be used in

a quadratic X2 +X + v. One of them is v = α−3 if α satisfies α7 + α+ 1 = 0. If

θ is a root of X2 +X +α−3 we find the B2-sequence A(2
7, θ) = (1)14 ∪ (147)14 ∪

(227)14 ∪ (491)14 ∪ (741)14 ∪ (859)14 ∪ (1944)14 ∪ (2653)14 ∪ (3059)14 ∪ (5461)2,

where (a)s = {a, 2a, 22a, ..., 2s−1a} and 2sa ≡ a (mod 214 − 1). Observe that

6 generators (1, 227, 491, 859, 2653, 3059) are relatively prime to 214 − 1, which

gives 84 elements with this property.

O. Moreno proved the existence of primitive quadratics X2 −X + v “of trace

1” over GF (q) in [5]. It is unknown how many there are. In the previous example

the number is half as large as the number of elements in A(27, θ) relatively prime

to 214 − 1. This is no accident. It is a special case of the following result.

Theorem 3. The number of primitive quadratics X2+X+v over GF (2k) is

half as large as the number of a ∈ A(2k, θ) which are relatively prime to 22k − 1,

when θ is a root of any of these quadratics.
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Proof: Let

(3.10) A = A(2k, θ) =
{

a : 1 ≤ a < 22k − 1, θa + θ ∈ GF (2k)
}

,

where θ is a root of a (Moreno) primitive quadratic

(3.11) X2 +X + v , v ∈ GF (2k) .

Observe that
(3.12) a ∈ A implies 2a ∈ A (mod 22k − 1) .

For θa + θ ∈ GF (2k) gives θ2a + θ = (θa + θ)2 + v ∈ GF (2k).

Assume that a ∈ A is relatively prime to 22k − 1. Then θa is a primitive

element in GF (22k). We have θa = θ + z with z ∈ GF (2k). It follows that

(θa)2 + θa = θ2 + θ + z2 + z = v + z2 + z (= w) ∈ GF (2k) and θa is root of a

primitive quadratic X2+X+w. The second root is θa2k

with a2k ∈ A by (3.12).

Hence, for each pair {a, a2k} of elements in A there is a Moreno quadratic.

Conversely, let X2 + X + w be a primitive quadratic over GF (2k) and θ1

one root. Then we have θ1 = x θ + y, where x, y ∈ GF (2k). We find that

w = θ2
1 + θ1 = (x

2 + x) θ + x2v + y2 + y. This implies that x2 + x = 0 and x = 0

or 1. But x = 0 is impossible since θ1 /∈ GF (2k). Therefore x = 1 and θ1 = θ+y.

We conclude then that θ1 = θa, a ∈ A, where a is relatively prime to 22k−1 since

θ1 is primitive. A second root is θ
2k

1 = θa2k

.

Therefore there is a one-one correspondence between pairs {a, a2k} of ele-

ments in A with gcd(a, 22k − 1) = 1 and Moreno quadratics over GF (2k), and

the theorem follows.
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