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A NOTE ON MATRIX TRANSFORMATIONS
OF HOLOMORPHIC DIRICHLET SERIES (*)

Lê Hai Khôi

Abstract: The aim of this note is to study matrix transformations of holomorphic

Dirichlet series in bounded convex domains of Cn. The problem considered here is

motivated by the paper [1] of Borwein and Jakimovski for power series of one variable.

1 – Introduction

As is well-known the matrix transformation is one of the methods for summing

series and sequences using an infinite matrix. Namely, having a matrix [ujk]
∞
j,k=1,

a given series

(1.1)
∞
∑

k=1

ck

is transformed into the sequence (σj)
∞
j=1 with

(1.2) σj =
∞
∑

k=1

ujk ck .

The series (1.1) is said to be summable to the sum σ if, for all j = 1, 2, ..., the

series on the right-hand side in (1.2) converges and

lim
j→∞

σj = σ .

The similar notion is also defined for functional series.
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Matrix transformations of power series of one complex variable has been stud-

ied previously by several authors. Most of papers dealed with Nörlund matrices,

i.e,̇ triangular matrices of a special form (see, e.g., [13, 14]). For the general

case of the matrices there seem to be very few articles. Recently Borwein and

Jakimovski [1] considered matrix transformations of power series in the complex

plane C and obtained some results on this direction.

In our previous article [12] we studied matrix transformations of the class of

multiple Dirichlet series with complex frequencies that define entire functions in

Cn.

The present paper continues [12]. We shall be concerned with matrix trans-

formations of holomorphic Dirichlet series in a bounded convex domain of Cn.

It should be noted that the techniques used in [1] do not work for Dirichlet

series considered in our article [12] as well as in this paper, because they are

essentially one-dimensional and moreover, of power series.

Also, since every entire function as well as every holomorphic function in a

convex domain can be represented in the form of Dirichlet series with complex

frequencies (see, e.g., [6, 9]) a study of Dirichlet series attracts a great attention.

Some problems for these series have already been studied [3, 4, 5, 10, 11].

2 – Holomorphic Dirichlet series in a domain

We recall some basic notation which will be used in this paper.

O(Ω) (Ω being a domain in Cn) denotes the space of holomorphic functions

in Ω, with the topology of uniform convergence on compact subsets of Ω.

If z, ζ ∈ Cn then |z| = (z1z̄1 + · · ·+ znz̄n)
1/2; 〈z, ζ〉 = z1ζ1 + · · ·+ znζn.

Let Ω be a bounded convex domain in Cn, with the supporting function

defined as follows

HΩ(ζ) = sup
z∈Ω

Re 〈z, ζ〉 , ζ ∈ Cn .

Let further (λk)∞k=1 be a sequence of complex vectors in Cn.

For a Dirichlet series

(2.1)
∞
∑

k=1

ck e
〈λk,z〉 , z ∈ Ω ,

there is the following characterization of the coefficients of this series when it

converges for the topology of O(Ω) [10] which is important and necessary for

further study.
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Theorem 2.1. If the multiple Dirichlet series (2.1) converges for the topology

of O(Ω) and |λk| → ∞ as k →∞, then

(2.2) lim sup
k→∞

log |ck|+HΩ(λ
k)

|λk|
≤ 0 .

Conversely, if the coefficients of (2.1) satisfy condition (2.2) and if

(2.3) lim
k→∞

log k

|λk|
= 0 ,

then the series (2.1) converges absolutely for the topology of O(Ω).

From this theorem it follows that if (2.3) holds, then the series (2.1) converges

for the topology of O(Ω) if and only if it converges absolutely for the topology of

O(Ω).

From now on a bounded convex domain Ω in Cn with the supporting function

HΩ(ζ) and a sequence (λk)∞k=1 of complex vectors in Cn satisfying condition (2.3)

are considered to be given.

By virtue of Theorem 2.1, without loss of generality, we can assume that

0 ∈ Ω. Then it is clear that

0 < α = inf
|ζ|=1

HΩ(ζ) ≤ β = sup
|ζ|=1

HΩ(ζ) <∞ ,

and, therefore

α|ζ| ≤ HΩ(ζ) ≤ β|ζ| , ∀ ζ ∈ Cn .

Also, to the sequence (λk)∞k=1 we can associate the following sequence space

EΩ =
{

c = (ck); (2.2) satisfies
}

.

Note that for any c = (ck) ∈ EΩ and t ∈ (0, 1)

(2.4)
∞
∑

k=1

|ck| e
tHΩ(λ

k) < +∞ .

This inequality will be used very often in the sequel.

Several properties of the space EΩ were studied in [10], in particular, the

characterization of its Köthe dual was obtained. We recall this result that is

needed in the next section.
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Denote by Eα
Ω the Köthe dual of EΩ, i.e.

Eα
Ω =

{

(uk);
∞
∑

k=1

ck uk converges absolutely for all (ck) ∈ EΩ

}

.

Lemma 2.2 ([10, Corollary 3.2]). The Köthe dual of the space EΩ can be

defined as follows

Eα
Ω =

{

(dk); lim sup
k→∞

log |dk|

HΩ(λk)
< 1

}

.

Also we have the following result.

Lemma 2.3. Let (ak) be a sequence of real numbers. Suppose that

(2.5) lim sup
k→∞

{

ak +
Re 〈λk, z〉

HΩ(λk)

}

< A < +∞ , ∀ z ∈ Ω .

Then

lim sup
k→∞

ak ≤ A− 1 .

Proof: As the function Re 〈λk, z〉 is plurisubharmonic in Ω and we already

have condition (2.5), it is desirable to apply Hartogs’ lemma for the sequence

ϕk(z) = ak +
Re〈λk, z〉

HΩ(λk)
, z ∈ Ω, k = 1, 2, ... .

In this case we have only to prove the local boundedness of the sequence

(ϕk(z)). Indeed, it is clear that ϕk(z) ≤ ak + 1, ∀ z ∈ Ω. Moreover, from (2.5) it

follows, in particular for z = 0, that lim supk→∞ ak < A < +∞. These last two

inequalities show that for each compact subset K ⊂ Ω there exists MK > 0 such

that

ϕk(z) ≤ ak + 1 ≤MK , ∀ z ∈ K, ∀ k ≥ 1 .

Now applying Hartogs’ lemma (see, e.g. [7]) we obtain that if K is a compact

in Ω and ε > 0 then for large k

ϕk(z) = ak +
Re〈λk, z〉

HΩ(λk)
≤ A+

ε

2
, ∀ z ∈ K ,
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which implies that for large k

(2.6) sup
z∈K

ϕk(z) ≤ A+
ε

2
.

Furthermore, for such an ε > 0 we can choose K so large that

(2.7)

sup
z∈K

ϕk(z) = ak + sup
z∈K

Re〈λk, z〉

HΩ(λk)

= ak +
HK(λk)

HΩ(λk)
≥ ak + 1−

ε

2
.

Combining (2.6)–(2.7) gives that for each ε > 0 there exists k0 such that

ak ≤ A− 1 + ε , ∀ k ≥ k0 ,

which means that lim supk→∞ ak ≤ A− 1. The proof is complete.

3 – Matrix transformations of holomorphic Dirichlet series

Denote by EΩ(U) the class of all matrices [ujk]
∞
j,k=1 having the property that

whenever the sequence c = (ck) ∈ EΩ the sequence of functions (fj(z))
∞
j=1 given

by

(3.1) fj(z) :=
∞
∑

k=1

ujk ck e
〈λk,z〉 , j = 1, 2, ... ,

converges locally uniformly in Ω, each Dirichlet series
∑∞

k=1 ujk ck e
〈λk,z〉 being

convergent in Ω, j = 1, 2, ... .

We shall study conditions for a given matrix [ujk]
∞
j,k=1 to belong to the class

EΩ(U).

Theorem 3.1. If the following conditions hold:

∃ lim
j→∞

ujk = uk , k = 1, 2, ... ,(3.2)

and

lim sup
k→∞

(

sup
j≥1

log |ujk|

HΩ(λk)

)

≤ 0 ,(3.3)

then the matrix [ujk] belongs to EΩ(U).
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Proof: Assume that conditions (3.2) and (3.3) hold. Let c = (ck) ∈ EΩ.

Take an arbitrary compact subset K of Ω. Then K ⊂ sΩ for some s ∈ (0, 1).

Due to condition (3.2), for every k ∈ N the sequence (ujk)
∞
j=1 is bounded and

therefore,

Qk := sup
j≥1

log |ujk| < +∞ , ∀ k ≥ 1 .

Hence,

|ujk| ≤ eQk , ∀ k ≥ 1, ∀ j ≥ 1 .

Furthermore, by condition (3.3), for s1 = (1−s)/2, there exists N(s) such that

log |ujk|

HΩ(λk)
≤ s1 , ∀ k > N(s), ∀ j ≥ 1 ,

or equivalently,

(3.4) |ujk| ≤ es1HΩ(λ
k) , ∀ k > N(s), ∀ j ≥ 1 .

Then we have for all j ≥ 1

sup
z∈K

∣

∣

∣

∣

∞
∑

k=1

ujk ck e
〈λk,z〉

∣

∣

∣

∣

≤
∞
∑

k=1

|ujk ck| sup
z∈sΩ

|e〈λ
k,z〉|

=

N(s)
∑

k=1

|ujk ck| e
sHΩ(λ

k) +
∞
∑

k=N(s)+1

|ujk ck| e
sHΩ(λ

k)

≤

N(s)
∑

k=1

|ck| e
Qk+sHΩ(λ

k) +
∞
∑

k=N(s)+1

|ck| e
(s1+s)HΩ(λ

k) < +∞ ,

due to (2.4).

Thus, each series
∑∞

k=1 ujk ck e
〈λk,z〉, j = 1, 2, ..., converges absolutely for the

topology of the space O(Ω) and therefore, represents a holomorphic function fj(z)

in Ω.

We now prove that the sequence (fj) converges uniformly on K.

Let ε be any positive number. We choose N1 ≥ N(s) so that

(3.5)
∞
∑

k=N1+1

|ck| e
(s1+s)HΩ(λ

k) <
ε

4
.

Denote

(3.6) C(N1) :=
N1+1
∑

k=1

|ck| e
sHΩ(λ

k) .
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Consider the first N1 columns of the matrix [ujk]. From condition (3.2) it follows

that there exists N2 such that

(3.7) |upk − uqk| <
ε

2C(N1)
, ∀ k = 1, 2, ..., N1, ∀ p, q > N2 .

Then, for all p, q > N2, we get

sup
z∈K

∣

∣

∣fp(z)− fq(z)
∣

∣

∣ ≤
∞
∑

k=1

∣

∣

∣(upk − uqk) ck
∣

∣

∣ esHΩ(λ
k)

=
N1
∑

k=1

∣

∣

∣(upk − uqk) ck
∣

∣

∣ esHΩ(λ
k) +

∞
∑

k=N1+1

∣

∣

∣(upk − uqk) ck
∣

∣

∣ esHΩ(λ
k)

≤
ε

2C(N1)

N1
∑

k=1

|ck| e
sHΩ(λ

k) +
∞
∑

k=N1+1

(

|upk|+ |uqk|
)

|ck| e
sHΩ(λ

k)

=
ε

2
+

∞
∑

k=N1+1

(

|upk|+ |uqk|
)

|ck| e
sHΩ(λ

k) ,

due to (3.6)–(3.7).

Concerning the last series, by virtue of (3.4)–(3.5) we have

∞
∑

k=N1+1

(

|upk|+ |uqk|
)

|ck| e
sHΩ(λ

k) ≤ 2
∞
∑

k=N1+1

|ck| e
(s1+s)HΩ(λ

k) <
ε

2
.

The theorem is proved.

Theorem 3.2. If the matrix [ujk] belongs to EΩ(U), then the condition (3.2)

and the following condition

(3.8) lim sup
k→∞

(

log |ujk|

HΩ(λk)

)

≤ 0 , ∀ j = 1, 2, ... ,

must necessarily hold.

This theorem is a consequence of two results given below. Namely, the first

part of the theorem follows from Proposition 3.3, while the second one is a con-

sequence of Proposition 3.4 applying for xk = ujk, j = 1, 2, ... .

Proposition 3.3. Suppose that for all “unit vectors” a(m), m = 1, 2, ..., in

EΩ with

a
(m)
k =

{

1, if k = m,

0, otherwise ,
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the sequence (f
(m)
j (z))∞j=1 defined by

(3.9) f
(m)
j (z) :=

∞
∑

k=1

ujk a
(m)
k e〈λ

k,z〉 , j = 1, 2, ... ,

converges at the point z = 0. Then condition (3.2) is satisfied.

Proposition 3.4. Let (xk) be a given sequence of complex numbers. Suppose

that whenever (ck) ∈ EΩ the series
∑∞

k=1 xk ck e
〈λk,z〉 converges in Ω. Then

lim sup
k→∞

log |xk|

HΩ(λk)
≤ 0 .

Proof of Proposition 3.3: Obviously, for each “unit vector” a(m) of the

space EΩ the sequence (3.9) is well defined. Furthermore, from a convergence of

the sequence (f
(m)
j (0))∞j=1, which in this case has a form (ujm)

∞
j=1, it follows that

um = limj→∞ ujm, m ∈ N, exists. Thus condition (3.2) is satisfied.

Proof of Proposition 3.4: From the assumption in the Proposition it

follows that (xk e
〈λk,z〉)∞k=1 ∈ Eα

Ω, ∀ z ∈ Ω, ∀ j ≥ 1. By Lemma 2.2 we have

lim sup
k→∞

log |xk|+Re〈λk, z〉

HΩ(λk)
< 1 , ∀ z ∈ Ω .

Applying Lemma 2.3 gives

lim sup
k→∞

log |xk|

HΩ(λk)
≤ 0 .

The proof is completed.

ACKNOWLEDGEMENTS – The author would like to thank Professor C.O. Kiselman

for stimulating discussions. Also he thanks the referee for useful remarks.

REFERENCES

[1] Borwein, D. and Jakimovski, A. – Matrix transformations of power series, Proc.
Amer. Math. Soc., 122 (1994), 511–523.

[2] Goffman, C. and Pedrick, G. – First Course in Functional Analysis, Prentice-
Hall, Englewood Cliffs, NJ, 1965.



HOLOMORPHIC DIRICHLET SERIES 203

[3] Halvarsson, S. – Generalisations of the Ritt Order and Type for Multiple Dirich-

let Series, Preprint, Uppsala University, 1996.
[4] Halvarsson, S. – Relative Order and Type for Entire Functions Defined by Dirich-

let Series, Preprint, Uppsala University, 1996.
[5] Jain, D.R. and Singh, B. – On a space of analytic Dirichlet transformations of

several complex variables, Indian J. Pure Appl. Math., 11 (1980), N5, 640–647.
[6] Korobeinik, Yu.F. – Representing systems (Russian), Izv. Akad. Nauk SSSR

Ser. Mat., 42 (1978), 325–355. English transl. in Math. USSR Izv., 12 (1978),
309–335.

[7] Krantz, S.G. – Function Theory of Several Complex Variables, Wadsworth &
Brooks/Cole Advanced Books & Software, Pacific Grove, California, 1992.
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