EXISTENCE RESULTS FOR SOME QUASILINEAR ELLIPTIC PROBLEMS WITH RIGHT HANDSIDE IN L^{1}

N. Grenon and O.A. Isselkou

Abstract

We study the existence of unbounded renormalized solutions, for quasilinear elliptic equations in a bounded domain. In a first part, we introduce the symmetrized problem, and we get an existence result assuming the existence of a renormalized supersolution of the symmetrized problem. Afterwards, we get a sub-super solution theorem for an equation with a more general right handside.

1 - Introduction

Let Ω be an open bounded set of R^{N} with $N \geq 1$. We consider the following problem:

$$
\left\{\begin{array}{l}
-\operatorname{div} A(x, u, D u)=F(x, u) \quad \text { in } \Omega, \tag{1.1}\\
u=0 \quad \text { on } \partial \Omega
\end{array}\right.
$$

We assume that:

$$
\begin{align*}
& A(x, s, \xi) \text { is a Caratheodory function: } \Omega \times R^{N+1} \rightarrow R^{N}, \tag{1.2}\\
& \left\langle A(x, s, \xi)-A\left(x, s, \xi^{\prime}\right), \xi-\xi^{\prime}\right\rangle>0 \tag{1.3}\\
& \text { a.e. } x \in \Omega, \quad \forall s \in R, \quad \forall \xi, \xi^{\prime} \in R^{N}, \quad \xi \neq \xi^{\prime}, \\
& \alpha|\xi|^{p} \leq\langle A(x, s, \xi), \xi\rangle \quad \text { a.e. } x \in \Omega, \quad \forall s \in R, \quad \forall \xi \in R^{N}, \tag{1.4}\\
& |A(x, s, \xi)| \leq \beta(|s|)\left(|\xi|^{p-1}+b(x)\right) \quad \text { a.e. } x \in \Omega, \quad \forall s \in R, \quad \forall \xi \in R^{N} \\
& \text { where } \beta \text { is a function: }[0,+\infty[\rightarrow[0,+\infty[\text { defined } \tag{1.5}\\
& \text { everywhere and bounded on the bounded intervalls } \\
& \text { and where } b \text { is a positive function of } L^{p^{\prime}}(\Omega),
\end{align*}
$$

[^0]\[

$$
\begin{gather*}
F(x, s) \text { is a Caratheodory function: } \Omega \times R \rightarrow R^{+}, \tag{1.6}\\
0 \leq F(x, s) \leq \sum_{i=0}^{m} f_{i}(x) \times g_{i}(s) \tag{1.7}
\end{gather*}
$$
\]

where $m \in N$ and $f_{i}(x) \in L^{1}(\Omega), f_{i}(x) \geq 0,0 \leq i \leq m$ and, for $\left.0 \leq i \leq m, g_{i}: R \rightarrow\right] 0,+\infty[$, continous, nondecreasing .

We shall denote by $f^{\star}(s)$ the unidimensional decreasing rearrangement of f, that is to say, the unique decreasing function such that $|f>t|=\left|f^{\star}>t\right|$ for every t. We shall denote by $\tilde{f}(x)$ the spherical decreasing rearrangement of f, that is to say $\tilde{f}(x)=f^{\star}\left(\omega_{N}|x|^{N}\right)$ for every x in $\tilde{\Omega}$, where $\tilde{\Omega}$ is the ball of R^{N} centered at the origin, such that $|\tilde{\Omega}|=|\Omega|$, and where ω_{N} is the measure of the unit ball in R^{N}. For all the definitions and properties concerning symetrization see [5].

Let us consider the symmetrized problem:

$$
\left\{\begin{array}{l}
-\alpha \Delta_{p} u=\sum_{i=0}^{m} \tilde{f_{i}}(x) g_{i}(u) \quad \text { in } \tilde{\Omega}, \tag{1.8}\\
u=0 \quad \text { on } \partial \tilde{\Omega}
\end{array}\right.
$$

where $\Delta_{p} u=\operatorname{Div}\left(|D u|^{p-2} D u\right)$. We shall use the following notations and definitions:

We note:

$$
T_{k} u= \begin{cases}k & \text { if } u \geq k, \\ u & \text { if }-k<u<k, \\ -k & \text { if } u \leq-k,\end{cases}
$$

and $L^{0}(\Omega)$, the space of measurable functions wich are finite a.e. in Ω. Let us recall the definition of [7]:

Definition 1.1. We call renormalized solution of (1.1) a function u such

$$
\begin{aligned}
& \text { that: } u \in L^{0}(\Omega), \\
& \qquad T_{k} u \in W_{0}^{1, p}(\Omega), \quad \forall k \in R^{+}, \\
& \frac{1}{k} \int_{k \leq|u| \leq 2 k}|D u|^{p} d x \rightarrow 0 \quad \text { when } k \rightarrow+\infty, \\
& \int_{\Omega} A(x, u, D u) D u h^{\prime}(u) w d x+\int_{\Omega} A(x, u, D u) D w h(u) d x=\int_{\Omega} F(x, u) h(u) w d x, \\
& \forall w \in W_{0}^{1, p}(\Omega) \cap L^{\infty}(\Omega) \text { and } \forall h \in C^{1}(R) \text { or piecewise affine }
\end{aligned}
$$

and with compact support.

In the same way, we define a renormalized supersolution:
Definition 1.2. We call renormalized supersolution of (1.1) a function ψ such that:

$$
\begin{gathered}
\psi \in L^{0}(\Omega), \\
T_{k} \psi \in W^{1, p}(\Omega), \quad \forall k \in R^{+}
\end{gathered}
$$

$\exists C_{\psi} \in R^{+}$such that, $\forall k \in R^{+}, \quad 0 \leq \psi \leq C_{\psi}$ on $\partial \Omega$,
$\frac{1}{k} \int_{k \leq \psi \leq 2 k}|D \psi|^{p} d x \rightarrow 0 \quad$ when $k \rightarrow+\infty$,
$\int_{\Omega} A(x, \psi, D \psi) D \psi h^{\prime}(\psi) w d x+\int_{\Omega} A(x, \psi, D \psi) D w h(\psi) d x \geq \int_{\Omega} F(x, \psi) h(\psi) w d x$,
$\forall w \in W_{0}^{1, p}(\Omega) \cap L^{\infty}(\Omega)$ and $\forall h \in C^{1}(R)$ or piecewise affine
and with compact support.
The definition of a renormalized subsolution is obtained exchanging \geq by \leq. Let us remark that if a renormalized solution u is in $W_{0}^{1, p}(\Omega) \cap L^{\infty}(\Omega)$, then u is an ordinary weak solution, that is to say u verifies:

$$
\int_{\Omega} A(x, u, D u) D \varphi=\int_{\Omega} F(x, u) \varphi \quad \forall \varphi \in W_{0}^{1, p}(\Omega)
$$

This is also true for sub and supersolutions. The main result of this work is the following:

Theorem 1.1. We suppose that A satisfies (1.2), (1.3), (1.4), (1.5), and that F verifies (1.6), (1.7). If there exists a supersolution $\psi \geq 0$ for the problem (1.8), then there exists a renormalized nonnegative solution u for problem (1.1) such that $|u>t| \leq|\psi>t|$.

Theorem 1.1 is a generalization of ([6]). In this paper the functions f_{i} are supposed to be in $L^{q}(\Omega)$ with $q \geq \max \left(p^{\prime}, N / p\right)$ and ψ in $L^{\infty}(\Omega)$ and of course u is also in $L^{\infty}(\Omega)$, moreover in [6], A is roughly independent of u. Notice that $q \geq \max \left(p^{\prime}, N / p\right)$ insure that the problem:

$$
\left\{\begin{array}{l}
-\alpha \Delta_{p} u=f(x) \quad \text { in } \Omega \tag{1.9}\\
u=0 \quad \text { on } \partial \Omega
\end{array}\right.
$$

has a solution in $W_{0}^{1, p}(\Omega) \cap L^{\infty}(\Omega)$ if $f \in L^{q}(\Omega)$. Here, f is in $L^{1}(\Omega)$, and then the solution of (1.9) is no more in $L^{\infty}(\Omega)$. Such problems with right handside in L^{1} have been studied in [1] and in [7] in which renormalized solutions are introduced.

To prove this theorem, we shall first get a comparison result with the symmetrized problem, and in a second time we shall prove a sub-super solution theorem.

2 - Comparison with the symmetrized problem

Let us consider the following problem:

$$
\left\{\begin{array}{l}
-\operatorname{div} A(x, u, D u)=\sum_{i=0}^{m} f_{i}(x) g_{i}(u) \quad \text { in } \Omega \tag{2.1}\\
u=0 \quad \text { on } \quad \partial \Omega
\end{array}\right.
$$

Theorem 2.1. We suppose that A satisfies (1.2), (1.3), (1.4), (1.5), and that the functions f_{i} and g_{i} satisfy (1.7). If problem (1.8) has a renormalized supersolution $\psi \geq 0$, then problem (2.1) has a nonnegative renormalized solution u such that $|u>t| \leq|\psi>t|$, for all $t \geq 0$.

Proof: Let $n \in N$, we set, for $0 \leq i \leq m, f_{i, n}(x)=\inf (f(x), n)$.
Let $v \in L^{\infty}(\Omega)$, we consider the problem:

$$
\left\{\begin{array}{l}
-\operatorname{Div} A(x, u, D u)=\sum_{i=0}^{m} f_{i, n}(x) g_{i}(v) \quad \text { in } \Omega \tag{2.2}\\
u=0 \quad \text { on } \quad \partial \Omega
\end{array}\right.
$$

Recall that a weak subsolution of (2.2), is a function $v \in W^{1, p}(\Omega) \cap L^{\infty}(\Omega)$ which verifies:

$$
\left\{\begin{array}{l}
\int_{\Omega} A(x, v, D v) D \varphi d x \leq \int_{\Omega} \sum_{i=0}^{m} f_{i, n}(x) g_{i}(v) d x \varphi \quad \forall \varphi \in W_{0}^{1, p}(\Omega) \tag{2.3}\\
v \leq 0 \quad \text { on } \partial \Omega
\end{array}\right.
$$

We prove the following lemma:
Lemma 2.1. We suppose that A satisfies (1.2), (1.3), (1.4), (1.5), and that the functions f_{i} and g_{i} satisfy (1.7). Moreover we suppose that $v \geq 0$ verifies (2.3), then there exists a nonnegative weak solution $u \in W_{0}^{1, p}(\Omega) \cap L^{\infty}(\Omega)$ of (2.2) such that $u \geq v$.

Let $M>0$ such that: $0 \leq v(x) \leq M$. We set:

$$
\bar{A}_{M}(x, u(x), D u(x))= \begin{cases}A(x, M, D u(x)) & \text { if } u(x) \geq M \\ A(x, u(x), D u(x)) & \text { if } v(x) \leq u(x) \leq M \\ A(x, v(x), D u(x)) & \text { if } u(x) \leq v(x)\end{cases}
$$

then the problem:

$$
\left\{\begin{array}{l}
-\operatorname{div} \bar{A}(x, u, D u)=\sum_{i=0}^{m} f_{i, n}(x) g_{i}(v) \quad \text { in } \Omega, \tag{2.4}\\
u=0 \quad \text { on } \partial \Omega
\end{array}\right.
$$

has at least one nonnegative weak solution $u \in W_{0}^{1, p}(\Omega) \cap L^{\infty}$, such that:

$$
\begin{aligned}
\|u\|_{\infty} & \leq \int_{0}^{|\Omega|} \alpha^{-p / p^{\prime}} N^{-p^{\prime}} \omega_{N}^{-p^{\prime} / N} s^{-p^{\prime}+p^{\prime} / N}\left(\int_{0}^{s}\left(\sum_{i=0}^{m} f_{i, n} g_{i}(v)\right)^{*}(\sigma) d \sigma\right)^{p^{\prime} / p} d s \\
& =C_{n}
\end{aligned}
$$

The existence comes from the theorem of [4, p. 180], moreover u is nonnegative because the right handside is nonnegative, and L^{∞} estimate can be proved by symmetrization techniques (see for instance [5] and the demonstrations below). Remark that C_{n} is independent of M, and then we can choose M such that:

$$
\begin{equation*}
M>C_{n} \tag{2.5}
\end{equation*}
$$

We are now going to prove that $u \geq v$. We take $(v-u)^{+}$as test function in (2.3) and (2.2), then,

$$
\int_{\Omega}\left(A(x, v, D v)-\bar{A}_{M}(x, u, D u)\right) D(v-u)^{+} \leq 0
$$

but on $\{x \in \Omega, v \geq u\}$ we have $\bar{A}_{M}(x, u, D u)=A(x, v, D u)$, then from (1.3), we obtain:

$$
(v-u)^{+}=0
$$

and so,

$$
\begin{equation*}
u \geq v \tag{2.6}
\end{equation*}
$$

From (2.5) and (2.6), we can deduce that $\bar{A}_{M}(x, u, D u)=A(x, u, D u)$ and so u is in fact solution of (2.2). This proves Lemma 2.1.

We are now going to construct a sequence $\left(u_{n}\right)$ in the following way:
we set

$$
u_{0}=0 ;
$$

suppose that the sequence is defined until u_{n-1} then u_{n} is a solution of:

$$
\left\{\begin{array}{l}
-\operatorname{div} A\left(x, u_{n}, D u_{n}\right)=\sum_{i=0}^{m} g_{i}\left(u_{n-1}\right) f_{i, n}(x) \tag{2.7}\\
u_{n} \geq u_{n-1} \\
u_{n} \in W_{0}^{1, p}(\Omega) \cap L^{\infty}(\Omega)
\end{array}\right.
$$

We have to show that the sequence $\left(u_{n}\right)$ is well defined:
For $n=0$,

$$
\left\{\begin{array}{l}
-\operatorname{div} A(x, 0,0)=0 \leq \sum_{i=0}^{m} f_{i, 1}(x) g_{i}(0) \tag{2.8}\\
u_{0}=0 \leq 0 \quad \text { on } \partial \Omega
\end{array}\right.
$$

that is to say, u_{0} is a subsolution of problem corresponding to u_{1}, and so from Lemma 2.1, u_{1} exists. Suppose that the sequence is defined until u_{n-1}, then:

$$
-\operatorname{div} A\left(x, u_{n-1}, D u_{n-1}\right)=\sum_{i=0}^{m} g_{i}\left(u_{n-2}\right) f_{i, n-1}(x) \quad \text { in } \Omega
$$

and

$$
u_{n-1} \geq u_{n-2}
$$

then, as for $0 \leq i \leq m, g_{i}$ is nondecreasing,

$$
-\operatorname{div} A\left(x, u_{n-1}, D u_{n-1}\right) \leq \sum_{i=0}^{m} g_{i}\left(u_{n-1}\right) f_{i, n}(x) \quad \text { in } \Omega
$$

and then u_{n} exists from Lemma 2.1. On another hand we construct a sequence $\left(v_{n}\right)$, in the following way:
we set

$$
v_{0}=0
$$

and $v_{n} \in W_{0}^{1, p}(\tilde{\Omega}) \cap L^{\infty}(\tilde{\Omega})$ is a solution of:

$$
-\alpha \Delta_{p} v_{n}=\sum_{i=0}^{m} g_{i}\left(v_{n-1}\right) \tilde{f}_{i, n}(x) \quad \text { in } \tilde{\Omega} .
$$

We are going to prove that the sequence $\left(v_{n}\right)$ has the following property:

$$
v_{n-1} \leq v_{n} \leq \psi \quad \forall n \geq 1
$$

Recall that we suppose that ψ is a renormalized supersolution of problem (1.8). For $n=0$, we have $v_{1} \geq v_{0}=0$. In the inequation satisfied by ψ, we take $w=\left(v_{1}-\psi\right)^{+}$which is in $W_{0}^{1, p}(\tilde{\Omega}) \cap L^{\infty}(\tilde{\Omega})$ and for h a function $h \in C^{1}(R)$ such that $h(s)=1$ if $s \leq\left\|v_{1}\right\|_{\infty}$, and $h(s)=0$ if $s \geq\left\|v_{1}\right\|_{\infty}+1$. Then $h(\psi) w=w$. In the equation satisfied by v_{1} we take $\left(v_{1}-\psi\right)^{+}$as test fuction. This leads to:

$$
\begin{aligned}
\alpha \int_{\Omega}\left(\left|D v_{1}\right|^{p-2} D v_{1}\right. & \left.-|D \psi|^{p-2} D \psi\right) D\left(v_{1}-\psi\right)^{+} \leq \\
& \leq \int_{\Omega}\left(\sum_{i=0}^{m} g_{i}\left(v_{0}\right) \tilde{f}_{i, 1}(x)-\sum_{i=0}^{m} g_{i}(\psi) \tilde{f}_{i}(x)\right)\left(v_{1}-\psi\right)^{+} \leq 0
\end{aligned}
$$

and thus,

$$
v_{1} \leq \psi
$$

Suppose by induction that:

$$
v_{n-2} \leq v_{n-1} \leq \psi
$$

Similarly, in the inequation satisfied by ψ, we take $w=\left(v_{n}-\psi\right)^{+}$which is in $W_{0}^{1, p}(\tilde{\Omega}) \cap L^{\infty}(\tilde{\Omega})$ and for h a function $h \in C^{1}(R)$ such that $h(s)=1$ if $s \leq\left\|v_{n}\right\|_{\infty}$, and $h(s)=0$ if $s \geq\left\|v_{n}\right\|_{\infty}+1$. In the equation satisfied by v_{n} we take $\left(v_{n}-\psi\right)^{+}$ as test function. As g_{i} is nondecreasing, we obtain:

$$
\begin{aligned}
& \int_{\Omega}\left(\left|D u_{n}\right|^{p-2} D v_{n}-|D \psi|^{p-2} D \psi\right) D\left(v_{n}-\psi\right)^{+} \leq \\
& \qquad \int_{\Omega}\left(\sum_{i=0}^{m} g_{i}\left(v_{n-1}\right) \tilde{f}_{i, n}(x)-\sum_{i=0}^{m} g_{i}(\psi) \tilde{f}_{i}(x)\right)\left(v_{n}-\psi\right)^{+} \leq 0
\end{aligned}
$$

Now if we take $\left(v_{n-1}-v_{n}\right)^{+}$as test function in the equations satisfied by v_{n-1} and v_{n}, after substraction, we obtain:

$$
\begin{aligned}
& \int_{\Omega}\left(\left|D v_{n-1}\right|^{p-2} D v_{n-1}-\left|D v_{n}\right|^{p-2} D v_{n}\right) D\left(v_{n-1}-v_{n}\right)^{+} \leq \\
& \quad \leq \int_{\Omega}\left(\sum_{i=0}^{m} g_{i}\left(v_{n-2}\right) \tilde{f}_{i, n-1}(x)-\sum_{i=0}^{m} g_{i}\left(v_{n-1}\right) \tilde{f}_{i, n}(x)\right)\left(v_{n-1}-v_{n}\right)^{+}
\end{aligned}
$$

g_{i} is nondecreasing, and by induction $v_{n-2} \leq v_{n-1}$, thus:

$$
\int_{\Omega}\left(\left|D v_{n-1}\right|^{p-2} D v_{n-1}-\left|D v_{n}\right|^{p-2} D v_{n}\right) D\left(v_{n-1}-v_{n}\right)^{+} \leq 0
$$

and thus,

$$
v_{n-1} \leq v_{n}
$$

For all s in R, we note $s^{-}=-\inf (s, 0)$. Let τ be a function of $W_{0}^{1, p}(\tilde{\Omega})$ such that $0 \leq \tau \leq 1$, then, $\left(v_{n}-k \tau\right)^{-} \in W_{0}^{1, p}(\tilde{\Omega}) \cap L^{\infty}(\tilde{\Omega})$ and $\left\|\left(v_{n}-k \tau\right)^{-}\right\|_{\infty} \leq k$. We take $-\left(v_{n}-k \tau\right)^{-}$as test function in the equation satisfied by v_{n}, and we note $C_{k, \tau}$ different constant which depend on k and τ,

$$
\begin{gathered}
\alpha \int_{\left\{v_{n} \leq k \tau\right\}}\left|D v_{n}\right|^{p} d x \leq \\
\leq k \int_{\left\{v_{n} \leq k \tau\right\}}\left|D v_{n}\right|^{p-1}|D \tau| d x-\int_{\left\{v_{n} \leq k \tau\right\}} \sum_{i=0}^{m} g_{i}\left(v_{n-1}\right) \tilde{f}_{i, n}(x)\left(v_{n}-k \tau\right)^{-}
\end{gathered}
$$

then,

$$
\alpha \int_{\left\{v_{n} \leq k \tau\right\}}\left|D v_{n}\right|^{p} d x \leq C_{k, \tau}\left(\int_{\left\{v_{n} \leq k \tau\right\}}\left|D v_{n}\right|^{p} d x\right)^{\frac{p-1}{p}} d x+C_{k, \tau}
$$

and thus,

$$
\int_{\left\{v_{n} \leq k \tau\right\}}\left|D v_{n}\right|^{p} d x \leq C_{k, \tau}
$$

a fortiori,

$$
\begin{equation*}
\int_{\{\tau \equiv 1\}}\left|D T_{k} v_{n}\right|^{p} d x \leq C_{k, \tau} \tag{2.9}
\end{equation*}
$$

We now specify the choice of τ, we take $\tau=T_{1}\left(\left(\psi-C_{\psi}-1\right)^{+}\right)$, then $w \equiv 1$ on $\{\tau<1\}$, and $w \equiv 0$ on $\left\{\psi \geq C_{\psi}+2\right\}$. In the equation satisfied by v_{n}, we take $w v_{n}$ which is in $W_{0}^{1, p}(\Omega) \cap L^{\infty}(\Omega)$, as test function, and we obtain

$$
\alpha \int_{\Omega}\left|D v_{n}\right|^{p} w d x+\alpha \int_{\Omega}\left|D v_{n}\right|^{p-2} D v_{n} D w v_{n} d x=\int_{\Omega} \sum_{i=0}^{m} g_{i}\left(v_{n-1}\right) \tilde{f}_{i, n}(x) w u_{n} d x
$$

then,
$\alpha \int_{\{w \equiv 1\}}\left|D v_{n}\right|^{p} d x+\alpha \int_{\{w<1\}}\left|D v_{n}\right|^{p} w d x \leq$

$$
\begin{aligned}
& \leq C \int_{\Omega}\left|D v_{n}\right|^{p-1}|D w| d x+C \\
& \leq C \int_{\{w \equiv 1\}}\left|D v_{n}\right|^{p-1}|D w| d x+C \int_{\{w<1\}}\left|D v_{n}\right|^{p-1}|D w| d x+C
\end{aligned}
$$

but, $\{x \in \Omega, w(x)<1\} \subset\{x \in \Omega, \tau(x)=1\}$, then from (2.9),

$$
\alpha \int_{\{w \equiv 1\}}\left|D v_{n}\right|^{p} d x \leq C \int_{\{w \equiv 1\}}\left|D v_{n}\right|^{p-1}|D w| d x+C
$$

and thus,

$$
\alpha \int_{\{w \equiv 1\}}\left|D v_{n}\right|^{p} d x \leq C
$$

but, $\{x \in \Omega, \tau(x)<1\} \subset\{x \in \Omega, w(x)<1\}$, then,

$$
\begin{equation*}
\alpha \int_{\{w \equiv 1\}}\left|D v_{n}\right|^{p} d x \leq C ; \tag{2.10}
\end{equation*}
$$

from (2.9) and (2.10) we deduce that:

$$
\begin{equation*}
T_{K} v_{n} \text { is bounded in } W_{0}^{1, p}(\Omega) . \tag{2.11}
\end{equation*}
$$

We are now going to show that $\tilde{u}_{n} \leq v_{n}$ a.e. in $\tilde{\Omega}$.
For $n=0, \tilde{u}_{0}=0=v_{0}$.
We set:

$$
\varphi(s)= \begin{cases}0 & \text { if } s \leq t \\ \frac{1}{h}(s-t) & \text { if } t<s \leq t+h \\ 1 & \text { if } s>t+h\end{cases}
$$

We can take $\varphi\left(u_{n}\right)$ as test function in the equation satisfied by u_{n}, that leads to:

$$
\begin{aligned}
\frac{1}{h} \int_{\left\{t<u_{n} \leq t+h\right\}} A\left(x, u_{n}, D u_{n}\right) D u_{n} d x= & \frac{1}{h} \int_{\left\{t<u_{n} \leq t+h\right\}} \sum_{i=0}^{m} g_{i}\left(u_{n-1}\right) f_{i, n}(x)\left(u_{n}-t\right) d x \\
& +\int_{\left\{t+h<u_{n}\right\}} \sum_{i=0}^{m} g_{i}\left(u_{n-1}\right) f_{i, n}(x) d x
\end{aligned}
$$

From (1.4), and because $0<\frac{u_{n}-t}{h} \leq 1$ on $\left\{t<u_{n} \leq h+t\right\}$, we get:

$$
\begin{aligned}
\frac{\alpha}{h} \int_{\left\{t<u_{n} \leq t+h\right\}}\left|D u_{n}\right|^{p} \leq & \int_{\left\{t<u_{n} \leq t+h\right\}} \sum_{i=0}^{m} g_{i}\left(u_{n-1}\right) f_{i, n}(x) d x \\
& +\int_{\left\{t+h<u_{n}\right\}} \sum_{i=0}^{m} g_{i}\left(u_{n-1}\right) f_{i, n}(x) d x
\end{aligned}
$$

from Hölder,

$$
\begin{aligned}
& \alpha\left(\frac{1}{h} \int_{\left\{t<u_{n} \leq t+h\right\}}\left|D u_{n}\right|\right)^{p}\left(\frac{1}{h} \int_{\left\{t<u_{n} \leq t+h\right\}} d x\right)^{-\frac{p}{p^{\prime}}} \leq \\
& \quad \leq \int_{\left\{t<u_{n} \leq t+h\right\}} \sum_{i=0}^{m} g_{i}\left(u_{n-1}\right) f_{i, n}(x) d x+\int_{\left\{t+h<u_{n}\right\}} \sum_{i=0}^{m} g_{i}\left(u_{n-1}\right) f_{i, n}(x) d x
\end{aligned}
$$

We note $\nu(t)=\left|u_{n}>t\right|$. Let h tend to zero.

$$
\alpha\left(-\frac{d}{d t} \int_{\left\{t<u_{n}\right\}}\left|D u_{n}\right|\right)^{p}\left(-\nu^{\prime}(t)\right)^{-\frac{p}{p^{\prime}}} \leq \int_{\left\{t<u_{n}\right\}} \sum_{i=0}^{m} g_{i}\left(u_{n-1}\right) f_{i, n}(x) d x .
$$

From the definition of the perimeter of De Giorgi, and the isoperimetric inequality, we have:

$$
-\frac{d}{d t} \int_{\left\{t<u_{n}\right\}}\left|D u_{n}\right| \geq N \omega_{N}^{1 / N} \nu(t)^{1-1 / N}
$$

then,

$$
\alpha N^{p} \omega_{N}^{p / N} \nu(t)^{p-p / N}\left(-\nu^{\prime}(t)\right)^{-\frac{p}{p^{\prime}}} \leq \sum_{i=0}^{m} \int_{t<u_{n}} g_{i}\left(u_{n-1}\right) f_{i, n}(x) d x
$$

but, from the extension of Hardy-Littlewood theorem, which is proved in [6],

$$
\sum_{i=0}^{m} \int_{t<u} g_{i}\left(u_{n-1}\right) f_{i, n}(x) d x \leq \sum_{i=0}^{m} \int_{0}^{\nu(t)}\left(g_{i}\left(u_{n-1}\right)\right)^{\star}(\sigma) f_{i, n}^{\star}(\sigma) d \sigma .
$$

As g_{i} is nondecreasing, we obtain:

$$
\sum_{i=0}^{m} \int_{t<u} g_{i}\left(u_{n-1}\right) f_{i, n}(x) d x \leq \int_{0}^{\nu(t)} \sum_{i=0}^{m} g_{i}\left(u_{n-1}^{\star}\right)(\sigma) f_{i, n}^{\star}(\sigma) d \sigma
$$

thus,

$$
1 \leq \frac{1}{\alpha} N^{-p} \omega_{N}^{-p / N} \nu(t)^{-p+p / N}\left(-\nu^{\prime}(t)\right)^{p / p^{\prime}} \int_{0}^{\nu(t)} \sum_{i=0}^{m} g_{i}\left(u_{n-1}^{\star}\right)(\sigma) f_{i, n}^{\star}(\sigma) d \sigma
$$

and thus,

$$
1 \leq \alpha^{-p^{\prime} / p} N^{-p^{\prime}} \omega_{N}^{-p^{\prime} / N} \nu(t)^{-p^{\prime}+p^{\prime} / N}\left(-\nu^{\prime}(t)\right)\left(\int_{0}^{\nu(t)} \sum_{i=0}^{m} g_{i}\left(u_{n-1}^{\star}\right)(\sigma) f_{i, n}^{\star}(\sigma) d \sigma\right)^{p^{p^{\prime} / p}}
$$

then, we integrate between 0 and $u_{n}^{\star}(s)-\epsilon$ with $\epsilon>0$. We know that:

$$
\left|u_{n}>u_{n}^{\star}(s)-\epsilon\right|=\left|u_{n}^{\star}>u_{n}^{\star}(s)-\epsilon\right| \leq\left|u_{n}^{\star}>u_{n}^{\star}(s)\right| \leq s
$$

then,
$u_{n}^{\star}(s)-\epsilon \leq \alpha^{-p^{\prime} / p} N^{-p^{\prime}} C_{N}^{-p^{\prime} / N} \int_{s}^{\mid \Omega} r^{-p^{\prime}+p^{\prime} / N}\left(\int_{0}^{r} \sum_{i=0}^{m} g_{i}\left(u_{n-1}^{\star}\right)(\sigma) f_{i, n}^{\star}(\sigma) d \sigma\right)^{p^{\prime} / p} d r$.

As it is true for every $\epsilon>0$, we obtain:

$$
u_{n}^{\star}(s) \leq \alpha^{-p^{\prime} / p} N^{-p^{\prime}} C_{N}^{-p^{\prime} / N} \int_{s}^{\mid \Omega} r^{-p^{\prime}+p^{\prime} / N}\left(\int_{0}^{r} \sum_{i=0}^{m} g_{i}\left(u_{n-1}^{\star}\right)(\sigma) f_{i, n}^{\star}(\sigma) d \sigma\right)^{p^{\prime} / p} d r .
$$

We suppose by induction that,

$$
u_{n-1}^{\star}(\sigma) \leq v_{n-1}^{\star}(\sigma)
$$

then,

$$
\begin{aligned}
u_{n}^{\star}(s) & \leq \alpha^{-p^{\prime} / p} N^{-p^{\prime}} C_{N}^{-p^{\prime} / N} \int_{s}^{\mid \Omega} r^{-p^{\prime}+p^{\prime} / N}\left(\int_{0}^{r} \sum_{i=0}^{m} g_{i}\left(v_{n-1}^{\star}\right)(\sigma) f_{i, n}^{\star}(\sigma) d \sigma\right)^{p^{\prime} / p} d r \\
& =v_{n}^{\star}(s) .
\end{aligned}
$$

The last step consists in proving that (u_{n}) converges to a renormalized solution of (2.1). First we take $T_{k} u_{n}$ as test function in the equation satisfied by u_{n},

$$
\int_{\Omega} A\left(x, u_{n}, D u_{n}\right) D T_{k} u_{n} d x \leq \int_{\Omega} \sum_{i=0}^{m} g_{i}\left(u_{n-1}\right) f_{i, n}(x) T_{k} u_{n} d x
$$

this implies from (1.4) that (we note C_{k} different constants independent of n, but which depend on k)

$$
\begin{aligned}
\alpha \int_{\Omega}\left|D T_{K} u_{n}\right|^{p} d x \leq & \int_{u_{n} \leq k} \sum_{i=0}^{m} g_{i}\left(u_{n-1}\right) f_{i, n}(x) u_{n} d x \\
& +k \int_{u_{n} \geq k} \sum_{i=0}^{m} g_{i}\left(u_{n-1}\right) f_{i, n}(x) d x .
\end{aligned}
$$

We know that if $u_{n}(x) \leq k$ then $u_{n-1}(x) \leq k$, then on $\left\{u_{n} \leq k\right\}$, we have $g_{i}\left(u_{n-1}\right) \leq C_{k}$ and $f_{i, n}(x) \leq f_{i}(x)$. Moreover in the second term of the right handside of the previous inequality, we can use the extension of the HardyLittlewood theorem which is given in [6], and we obtain:

$$
\alpha \int_{\Omega}\left|D T_{K} u_{n}\right|^{p} d x \leq C_{k} \int_{\Omega} \sum_{i=0}^{m} f_{i}(x) d x+k \sum_{i=0}^{m} \int_{\left\{\tilde{u}_{n} \geq k\right\}} g_{i}\left(\tilde{u}_{n-1}\right) \tilde{f}_{i, n}(x) d x .
$$

We can add $\sum_{i=0}^{m} \int_{\left\{\tilde{u}_{n}<k\right\}} g_{i}\left(\tilde{u}_{n-1}\right) \tilde{f}_{i, n}(x) \tilde{u}_{n}(x) d x$ which is nonnegative in the
right handside, and so,

$$
\begin{aligned}
\alpha \int_{\Omega}\left|D T_{K} u_{n}\right|^{p} d x \leq & C_{k} \int_{\Omega} \sum_{i=0}^{m} f_{i}(x) d x+k \sum_{i=0}^{m} \int_{\left\{\tilde{u}_{n} \geq k\right\}} g_{i}\left(\tilde{u}_{n-1}\right) \tilde{f}_{i, n}(x) d x \\
& +\sum_{i=0}^{m} \int_{\left\{\tilde{u}_{n}<k\right\}} g_{i}\left(\tilde{u}_{n-1}\right) \tilde{f}_{i, n}(x) \tilde{u}_{n}(x) d x \\
= & C_{k} \int_{\Omega} \sum_{i=0}^{m} f_{i}(x) d x+\sum_{i=0}^{m} \int_{\tilde{\Omega}} g_{i}\left(\tilde{u}_{n-1}\right) \tilde{f}_{i, n}(x) T_{k} \tilde{u}_{n}(x) d x .
\end{aligned}
$$

We have seen that, $\forall n \in N, \tilde{u}_{n} \leq v_{n} \leq \psi$ a.e. in $\tilde{\Omega}$, then,

$$
\begin{aligned}
\alpha \int_{\Omega}\left|D T_{K} u_{n}\right|^{p} d x & \leq C_{k} \int_{\Omega} \sum_{i=0}^{m} f_{i}(x) d x+\sum_{i=0}^{m} \int_{\tilde{\Omega}} g_{i}\left(v_{n-1}\right) \tilde{f}_{i, n}(x) T_{k} v_{n} d x \\
& =C_{k} \int_{\Omega} \sum_{i=0}^{m} f_{i}(x) d x+\int_{\tilde{\Omega}}\left|D T_{k} v_{n}\right|^{p} d x \\
& \leq C_{k}
\end{aligned}
$$

because of (2.11), so we have proved that,

$$
\begin{equation*}
\left\|D T_{K} u_{n}\right\|_{p} \leq C_{k} \tag{2.12}
\end{equation*}
$$

As the sequence $\left(u_{n}\right)$ is nondecreasing, p.p. $x \in \Omega, u_{n}(x)$ tends to infinity or converges to a finite limit, we note $u(x)$. Let $A=\left\{x \in \Omega, u_{n}(x) \rightarrow+\infty\right\}$, and let $B_{n, k}=\left\{x \in \Omega, u_{n}(x)>k\right\}$, then $\forall k \geq 0$,

$$
A \subset \bigcup_{n=0}^{+\infty} B_{n, k}
$$

and

$$
\left|\bigcup_{n=0}^{+\infty} B_{n, k}\right|=\lim _{n \rightarrow \infty}\left|B_{n, k}\right| \quad \forall k \geq 0
$$

because $\left(u_{n}\right)$ is nondecreasing. But,

$$
\left|\left\{x \in \Omega, u_{n}(x)>k\right\}\right| \leq\left|\left\{x \in \tilde{\Omega}, v_{n}(x)>k\right\}\right| \leq|\{x \in \tilde{\Omega}, \psi(x)>k\}|
$$

then,

$$
|A| \leq|\{x \in \tilde{\Omega}, \psi(x)>k\}|, \quad \forall k \in N
$$

and consequently

$$
|A| \leq \lim _{k \rightarrow+\infty}|\{x \in \tilde{\Omega}, \psi(x)>k\}|=0
$$

then,

$$
u_{n}(x) \rightarrow u(x) \quad \text { a.e. } \quad x \in \Omega
$$

We are now going to show that $\left(u_{n}\right)$ converges to a renormalized solution of (2.1).

From (2.12), we can deduce that $D T_{k} u_{n} \rightarrow D T_{k} u$ in $L^{p}(\Omega)$ weak. We are now going to show that $D T_{k} u_{n} \rightarrow D T_{k} u$ in $L^{p}(\Omega)$ strong. We take $T_{k} u_{n}-T_{k} u$ as test function in the equation satisfied by u_{n}, then,

$$
\int_{\Omega} A\left(x, u_{n}, D u_{n}\right) D\left(T_{k} u_{n}-T_{k} u\right) d x=\int_{\Omega} \sum_{i=0}^{m} g_{i}\left(u_{n-1}\right) f_{i, n}(x)\left(T_{k} u_{n}-T_{k} u\right) d x
$$

thus,

$$
\begin{gathered}
\int_{\Omega}\left(A\left(x, u_{n}, D u_{n}\right)-A\left(x, u_{n}, D T_{k} u\right)\right) D\left(T_{k} u_{n}-T_{k} u\right) d x+ \\
\quad+\int_{\Omega} A\left(x, u_{n}, D T_{k} u\right) D\left(T_{k} u_{n}-T_{k} u\right) d x= \\
=\int_{\Omega} \sum_{i=0}^{m} g_{i}\left(u_{n-1}\right) f_{i, n}(x)\left(T_{k} u_{n}-T_{k} u\right) d x
\end{gathered}
$$

As $u_{n}(x) \leq u(x), T_{k} u_{n}-T_{k} u \equiv 0$ on $\left\{x \in \Omega, u_{n}(x) \geq k\right\}$. Then the previous inequality becomes:

$$
\begin{gather*}
\int_{\left\{u_{n} \leq k\right\}}\left(A\left(x, T_{k} u_{n}, D T_{k} u_{n}\right)-A\left(x, T_{k} u_{n}, D T_{k} u\right)\right) D\left(T_{k} u_{n}-T_{k} u\right) d x+ \\
\quad+\int_{\left\{u_{n} \leq k\right\}} A\left(x, T_{k} u_{n}, D T_{k} u\right) D\left(T_{k} u_{n}-T_{k} u\right) d x= \tag{2.13}\\
=\int_{\left\{u_{n} \leq k\right\}} \sum_{i=0}^{m} g_{i}\left(u_{n-1}\right) f_{i, n}(x)\left(T_{k} u_{n}-T_{k} u\right) d x
\end{gather*}
$$

Let n tend to $+\infty$, by Lebesgue theorem, we can see that:

$$
\int_{\left\{u_{n} \leq k\right\}} \sum_{i=0}^{m} g_{i}\left(u_{n-1}\right) f_{i, n}(x)\left(T_{k} u_{n}-T_{k} u\right) d x \rightarrow 0
$$

and

$$
\begin{aligned}
& A\left(x, T_{k} u_{n}, D T_{k} u\right) \xi_{\left\{u_{n} \leq k\right\}} \rightarrow A\left(x, T_{k} u, D T_{k} u\right) \xi_{\{u \leq k\}} \quad \text { in } L^{p^{\prime}}(\Omega) \text { strong } \\
& D\left(T_{k} u_{n}-T_{k} u\right) \rightarrow 0 \quad \text { in } L^{p}(\Omega) \text { weak }
\end{aligned}
$$

then,

$$
\int_{\left\{u_{n} \leq k\right\}} A\left(x, T_{k} u_{n}, D T_{k} u\right) D\left(T_{k} u_{n}-T_{u}\right) d x \rightarrow 0
$$

We can now use the following lemma which is proved in [2].
Lemma 2.2. Suppose that A verifies (1.2), (1.3), (1.4), (1.5), if $\left(z_{n}\right)$ is a sequence such that:

- z_{n} is bounded in $L^{\infty}(\Omega)$,
- $z_{n} \rightarrow z$ in $W_{0}^{1, p}(\Omega)$ weak and a.e. in Ω,
- $\lim _{n \rightarrow 0} \int_{\Omega}\left(A\left(x, z_{n}, D z_{n}\right)-A\left(x, z_{n}, D z\right)\right) D\left(z_{n}-z\right)=0$;
then, $z_{n} \rightarrow z$ in $W_{0}^{1, p}(\Omega)$ strong.

We can apply this lemma to $T_{K} u_{n}$ and deduce that: $T_{K} u_{n} \rightarrow T_{K} u$ in $W_{0}^{1, p}(\Omega)$ strong. Let $w \in W_{0}^{1, p}(\Omega) \cap L^{\infty}(\Omega)$ and $h \in C^{1}(R)$ or piecewise affine, and with compact support, and let k such that $h \equiv 0$ on $]-\infty,-k[\cup] k,+\infty[$

$$
\begin{aligned}
\int_{\Omega} A\left(x, u_{n}, D u_{n}\right) h^{\prime}\left(u_{n}\right) w d x+\int_{\Omega} A(x, & \left.u_{n}, D u_{n}\right) h\left(u_{n}\right) D w d x= \\
& =\int_{\omega} \sum_{i=0}^{m} g_{i}\left(u_{n-1}\right) f_{i, n}(x) h\left(u_{n}\right) w d x
\end{aligned}
$$

that is to say, from the choice of k,
$\int_{\Omega} A\left(x, T_{k} u_{n}, D T_{k} u_{n}\right) h^{\prime}\left(T_{k} u_{n}\right) w d x+\int_{\Omega} A\left(x, T_{k} u_{n}, D T_{k} u_{n}\right) h\left(T_{k} u_{n}\right) D w d x=$

$$
\begin{equation*}
=\int_{\Omega} \sum_{i=0}^{m} g_{i}\left(T_{k} u_{n-1}\right) f_{i, n}(x) h\left(T_{k} u_{n}\right) w d x \tag{2.14}
\end{equation*}
$$

$A\left(x, T_{k} u_{n}, D T_{K} u_{n}\right) \rightarrow A\left(x, T_{k} u, D T_{k} u\right) \quad$ a.e. in Ω, moreover from (1.5),

$$
\left|A\left(x, T_{k} u_{n}, D T_{K} u_{n}\right)\right|^{p^{\prime}} \leq \beta(k)^{p^{\prime}}\left(\left|D T_{k} u_{n}\right|^{p-1}+b(x)\right)^{p^{\prime}}
$$

The right handside converges in $L^{1}(\Omega)$ strong, consequently $\left|A\left(x, T_{k} u_{n}, D T_{k} u_{n}\right)\right|^{p^{\prime}}$ is equiintegrable, and then from Vitali's lemma $\left|A\left(x, T_{k} u_{n}, D T_{k} u_{N}\right)\right|^{p^{\prime}} \rightarrow$ $\left|A\left(x, T_{k} u, D T_{k} u\right)\right|^{p^{\prime}}$. Finally, $A\left(x, T_{k} u_{n}, D T_{k} u_{N}\right) \rightarrow A\left(x, T_{k} u, D T_{k} u\right)$ in $L^{p^{\prime}}(\Omega)$ strong and we can pass to the limit in (2.14), and we obtain

$$
\begin{aligned}
\int_{\Omega} A\left(x, T_{k} u, D T_{k} u\right) h^{\prime}\left(T_{k} u\right) w d x+\int_{\Omega} A(x & \left., T_{k} u, D T_{k} u\right) h\left(T_{k} u\right) D w d x= \\
& =\int_{\Omega} \sum_{i=0}^{m} g_{i}\left(T_{k} u\right) f_{i}(x) h\left(T_{k} u\right) w d x
\end{aligned}
$$

that is to say,

$$
\begin{aligned}
\int_{\Omega} A(x, u, D u) h^{\prime}(u) w d x+\int_{\Omega} A(x, u, D u) & h(u) D w d x= \\
& =\int_{\Omega} \sum_{i=0}^{m} g_{i}(u) f_{i}(x) h(u) w d x
\end{aligned}
$$

$3-$ A sub-supersolution theorem

Theorem 3.1. We suppose that A satisfies (1.2), (1.3), (1.4), (1.5), and that F satisfies (1.6), (1.7), if there exists a nonnegative renormalized supersolution ψ of (1.1), then there exists a nonnegative renormalized solution u of (1.1), such that $u \leq \psi$ a.e. in Ω.

Proof: We can remark that $\varphi=0$ is a subsolution of (1.1) (we could remark that the hypothesis $F(x, s) \geq 0$ could be replaced by: there exists a weak subsolution $\varphi \in W^{1, p}(\Omega) \cap L^{\infty}(\Omega)$ such that $\left.\varphi \leq \psi\right)$.
Let $n \geq 1$, we consider the problem:

$$
\left\{\begin{array}{l}
-\operatorname{div} A(x, u, D u)=F_{n}(x, u(x)) \quad \text { in } \Omega \tag{3.1}\\
u=0 \quad \text { on } \partial \Omega
\end{array}\right.
$$

where $F_{n}(x, s)=\frac{F(x, s)}{1+\frac{1}{n} F(x, s)}$.
Lemma 3.1. Under the hypotheses of Theorem 3.1, we suppose that there exists a weak subsolution $v \in L^{\infty}(\Omega)$ of problem (3.1), such that $0 \leq v \leq \psi$, then there exists a solution $u \in W_{0}^{1, p}(\Omega) \cap L^{\infty}(\Omega)$ of problem (3.1) such that $v \leq u \leq \psi$.

Proof of the Lemma: Let M such that $\|v\|_{\infty} \leq M$. We set:

$$
\bar{A}_{M}(x, u(x), D u(x))= \begin{cases}A\left(x, T_{M} \psi(x), D u(x)\right) & \text { if } u(x) \geq T_{M} \psi(x) \\ A(x, u(x), D u(x)) & \text { if } v(x) \leq u(x) \leq T_{M} \psi(x) \\ A(x, v(x), D u(x)) & \text { if } u(x) \leq v(x)\end{cases}
$$

and

$$
\bar{F}(x, u(x))= \begin{cases}F(x, \psi(x)) & \text { if } u(x) \geq \psi(x) \\ F(x, u(x)) & \text { if } v(x) \leq u(x) \leq \psi(x) \\ F(x, v(x)) & \text { if } u(x) \leq v(x)\end{cases}
$$

$$
\bar{F}_{n}(x, u(x))=\frac{\bar{F}(x, u(x))}{1+\frac{1}{n} \bar{F}(x, u(x))}
$$

Then, $-\operatorname{div} \bar{A}_{M}(x, u(x), D u(x))-\bar{F}_{n}(x, u(x))$ verifies the hypotheses of the theorem of [4, p. 180], and the problem:

$$
\left\{\begin{array}{l}
-\operatorname{div} \bar{A}_{M}(x, u(x), D u(x))=\bar{F}_{n}(x, u(x)) \tag{3.2}\\
u=0 \quad \text { on } \partial \Omega
\end{array}\right.
$$

has at least one solution u in $W_{0}^{1, p}(\Omega) \cap L^{\infty}(\Omega)$ such that:

$$
\|u\|_{\infty} \leq \frac{1}{-p^{\prime}+\frac{p^{\prime}}{N}+\frac{p^{\prime}}{p}+1}|\Omega|^{-p^{\prime}+\frac{p^{\prime}}{N}+\frac{p^{\prime}}{p}+1} \alpha^{-p / p^{\prime}} N^{-p^{\prime}} n^{\frac{p^{\prime}}{p}}=D_{n}
$$

In the following we shall suppose that $M \geq D_{n}$. We are going to show that moreover, $u \leq \psi$. We take $(u-\psi)^{+}$as test function in (3.2), and in the inequation satisfied by ψ, we take $w=(u-\psi)^{+} \in W_{0}^{1, p}(\Omega) \cap L^{\infty}(\Omega)$, and a function $h \in C^{1}(R)$ such that $h(s)=1$ if $s \leq M$ and $h(s)=0$ if $s \geq M+1$. As in the previous section, that leads to:

$$
\begin{aligned}
\int_{\Omega}\left(\bar{A}_{M}(x, u(x), D u(x))-\right. & A(x, \psi(x), D \psi(x))) D(u-\psi)^{+} d x \leq \\
& \leq \int_{\Omega}\left(\bar{F}_{n}(x, u(x))-F(x, \psi(x))(u-\psi)^{+} d x=0\right.
\end{aligned}
$$

thus,

$$
\int_{\Omega}\left(\bar{A}_{M}(x, u(x), D u(x))-A(x, \psi(x), D \psi(x))\right) D(u-\psi)^{+} d x \leq 0
$$

and we deduce that $(u-\psi)^{+}=0$ a.e. in Ω.
We take now $(v-u)^{+}$as test function in (3.2) and in the inequation satisfied by v, and we can show like previously that $u \geq v$. Finally, we have shown that u is a solution of (3.1), and proved the lemma.

We construct a sequence $\left(u_{n}\right)$, such that:

$$
\begin{gathered}
u_{0}=0 \\
u_{n} \in W_{0}^{1, p}(\Omega) \cap L^{\infty}(\Omega) \\
-\operatorname{div} A\left(x, u_{n}, D u_{n}\right)=F_{n}\left(x, u_{n}(x)\right) \\
u_{n-1} \leq u_{n} \leq \psi
\end{gathered}
$$

Using the previous lemma, we can show by induction that we can construct this sequence, if we remark that

$$
-\operatorname{div} A\left(x, u_{n-1}, D u_{n-1}\right)=F_{n-1}\left(x, u_{n-1}(x)\right) \leq F_{n}\left(x, u_{n-1}(x)\right)
$$

that is to say, u_{n-1} is a subsolution of the equation satisfied by u_{n}.
To prove that $T_{k} u_{n}$ is bounded in $W_{0}^{1, p}(\Omega)$, we use the same method as in the previous section to prove (2.11). Let τ be a function of $W_{0}^{1, p}(\Omega)$ such that $0 \leq \tau \leq 1$, then, $\left(u_{n}-k \tau\right)^{-} \in W_{0}^{1, p}(\Omega) \cap L^{\infty}(\Omega)$ and $\left\|\left(u_{n}-k \tau\right)^{-}\right\|_{\infty} \leq k$. We take $-\left(u_{n}-k \tau\right)^{-}$as test function in the equation satisfied by u_{n}, and we note $C_{k, \tau}$ different constant which depend on k and τ,

$$
\int_{\left\{u_{n} \leq k \tau\right\}} A\left(x, u_{n}, D u_{n}\right) D\left(u_{n}-k \tau\right) d x=-\int_{\Omega} F_{n}\left(x, u_{n}\right)\left(u_{n}-\tau k\right)^{-} d x
$$

then, from (1.4) and (1.5),

$$
\alpha \int_{\left\{u_{n} \leq k \tau\right\}}\left|D u_{n}\right|^{p} d x \leq C_{k, \tau} \int_{\left\{u_{n} \leq k \tau\right\}}\left(\left|D u_{n}\right|^{p-1}+b(x)\right) D \tau d x+C_{k, \tau}
$$

then,

$$
\alpha \int_{\left\{u_{n} \leq k \tau\right\}}\left|D u_{n}\right|^{p} d x \leq C_{k, \tau}\left(\int_{\left\{u_{n} \leq k \tau\right\}}\left|D u_{n}\right|^{p} d x\right)^{\frac{p-1}{p}} d x+C_{k, \tau}
$$

and then,

$$
\int_{\left\{u_{n} \leq k \tau\right\}}\left|D u_{n}\right|^{p} d x \leq C_{k, \tau}
$$

a fortiori,

$$
\begin{equation*}
\int_{\{\tau \equiv 1\}}\left|D T_{k} u_{n}\right|^{p} d x \leq C_{k, \tau} \tag{3.3}
\end{equation*}
$$

We now specify the choice of τ, we take $\tau=T_{1}\left(\left(\psi-C_{\psi}-1\right)^{+}\right)$, then $w \equiv 1$ on $\{\tau<1\}$ and $w \equiv 0$ on $\left\{\psi \geq C_{\psi}+2\right\}$. In the equation satisfied by u_{n}, we take $w u_{n}$ which is in $W_{0}^{1, p}(\Omega) \cap L^{\infty}(\Omega)$ as test function.
$\int_{\Omega} A\left(x, u_{n}, D u_{n}\right) D u_{n} w d x+\int_{\Omega} A\left(x, u_{n}, D u_{n}\right) D w u_{n} d x=\int_{\Omega} F_{n}\left(x, u_{n}\right) w u_{n} d x$ then,

$$
\begin{aligned}
& \alpha \int_{\{w \equiv 1\}}\left|D u_{n}\right|^{p} d x+\alpha \int_{\{w<1\}}\left|D u_{n}\right|^{p} w d x \leq \\
& \quad \leq C \int_{\Omega}\left(\left|D u_{n}\right|^{p-1}+b(x)\right)|D w| d x+C \\
& \quad \leq C \int_{\{w \equiv 1\}}\left|D u_{n}\right|^{p-1}|D w| d x+C \int_{\{w<1\}}\left|D u_{n}\right|^{p-1}|D w| d x+C
\end{aligned}
$$

but, $\{x \in \Omega, w(x)<1\} \subset\{x \in \Omega, \tau(x)=1\}$, then from (3.3),

$$
\alpha \int_{\{w \equiv 1\}}\left|D u_{n}\right|^{p} d x \leq C \int_{\{w \equiv 1\}}\left|D u_{n}\right|^{p-1}|D w| d x+C
$$

and thus,

$$
\alpha \int_{\{w \equiv 1\}}\left|D u_{n}\right|^{p} d x \leq C
$$

but, $\{x \in \Omega, \tau(x)<1\} \subset\{x \in \Omega, w(x)<1\}$, then,

$$
\begin{equation*}
\alpha \int_{\{w \equiv 1\}}\left|D u_{n}\right|^{p} d x \leq C \tag{3.4}
\end{equation*}
$$

from (3.3) and (3.4) we deduce that $T_{K} u_{n}$ is bounded in $W_{0}^{1, p}(\Omega)$. On another hand, as $\left(u_{n}\right)$ is nondecreasing and $u_{n} \leq \psi, u_{n}$ converges almost everywhere in Ω to a function u. This implies that $D T_{K} u_{n} \rightarrow D T_{K} u$ in $L^{p}(\Omega)$ weak. In the same way, with slight modifications, we can prove as in the previous section that $T_{k} u_{n} \rightarrow T_{k} u$ in $W_{0}^{1, p}(\Omega)$ strong, and that u is a renormalized solution of (1.1). This proves Theorem 3.1.

We can now prove Theorem 1.1: suppose that there exists a renormalized supersolution $\psi \geq 0$ for problem (1.8), then problem (2.1) has a renormalized solution \bar{u} such that $|\bar{u}>t| \leq|\psi>t|, \forall t \geq 0$. But, \bar{u} is also a renormalized supersolution of (1.1), and then by Theorem 3.1, there exists a nonnegative renormalized solution u of problem (1.1), such that $u \leq \bar{u}$ a.e. in Ω, and thus such that $|u>t| \leq|\psi>t|$.

REFERENCES

[1] Bénilan, P., Boccardo, L., Gallouët, T., Gariepy, R., Pierre, M. and Vazquez, J.L. - An L^{1}-theory of existence and uniqueness of nonlinear elliptic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 22(2) (1995), 240-273.
[2] Boccardo, L., Murat, F. and Puel, J.P. - Existence of bounded solution for nonlinear elliptic unilateral problems, Ann. Mat. Pura ed Appl., 152 (1988), 183-196.
[3] Boccardo, L., Murat, F. and Puel, J.P. - Résultats d'existence pour certains problèmes elliptiques quasilinéaires, Ann. Scuola Norm. Sup. Pisa (4), 11(2) (1984), 213-235.
[4] Lions, J.L. - Quelques Méthodes de Résolutions des Problèmes aux Limites Non Linéaires, Dunod.
[5] Mossino, J. - Inégalités Isopérimétriques et Applications en Physique, Travaux en cours, Hermann.
[6] Mossino, J., Moutoussamy, I. and Simon, A. - Un theorème d'existence et de comparaison pour des problèmes quasi-linéaires elliptiques, C. R. Acad. Sci., 322 (1996), 1123-1128.
[7] Murat, F. - Equations elliptiques non linéaires avec second membre L^{1} ou mesure, preprint laboratoire d'analyse numérique Paris VI.
N. Grenon,

Université d'Orleans - Bâtiment de Mathématiques, Rue de Chartres, 45100 Orléans La Source - FRANCE and
O.A. Isselkou,

Faculté des Sciences de Nouakchott, BP 5026, Nouakchott - MAURITANIE

[^0]: Received: October 14, 1996; Revised: April 7, 1998.
 AMS Subject Classification: 35D05, 35J60.

