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THE EVOLUTION DAM PROBLEM
FOR NONLINEAR DARCY’S LAW AND

DIRICHLET BOUNDARY CONDITIONS *

A. Lyaghfouri

Abstract: In this paper, we study a time dependent dam problem modeling a non-

linear fluid flow through a homogeneous or nonhomogeneous porous medium governed

by a nonlinear Darcy’s law. We prove existence and uniqueness of a weak solution.

Introduction

The dam problem consists of finding the flow region and the pressure of fluid

flow through a porous medium Ω under gravity. The free boundary represents the

region separating the wet and the dry part of the porous medium. Assuming the

flow governed by a linear Darcy’s law and taking Dirichlet boundary conditions

on some part of the boundary, this problem has been widely studied from several

points of view both for the stationary and the evolutionary case.

For the stationary case, the first results are due to C. Baiocchi ([5], [6]) who

solved the case of rectangular dams by introducing the so called Baiocchi’s trans-

formation, which leads him to consider problems of variational inequalities. Then

he established existence and uniqueness results. Although this method is not

adaptable for the general case, many authors ([7], [8], [16], [23]), used same

techniques to treat questions related to heterogeneous or three dimensional rect-

angular dams.

Few years after, the steady problem has been studied in the general case

by H.W. Alt ([2], [3], [4]), H. Brézis, D. Kinderlehrer and G. Stampacchia [9],

J. Carrillo and M. Chipot [15]. An existence theorem has been proved and the

uniqueness of the solution established up to a certain class of disturbing functions.

The regularity of the free boundary was also investigated.
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The evolution dam problem has been solved first by A. Torelli ([24], [25])

in the case of a rectangular domain. He used a similar transformation to the

Baiocchi’s one, which allowed him to reduce the problem to a quasi-variational

inequality problem. He obtained, in this way, results of existence, uniqueness

and regularity of his solution. Unfortunately, this method is not adapted for the

general case.

Later, it was G. Gilardi [19] who proved an existence theorem for a weak

formulation of the evolution dam problem when the porous medium is assumed

to be a general Lipschitz bounded domain of Rn. In [18] E. Dibenedetto and

A. Friedman proved an existence theorem in a general way by an other method,

both for compressible or incompressible flow. Moreover they proved uniqueness

for rectangular dams. The question of uniqueness of the solution, in its generality,

remains open until solved by J. Carrillo [14].

In this study, we consider an incompressible fluid flow governed by a gener-

alized nonlinear Darcy’s law relating the velocity v of the fluid to its pressure p

by:

v = −A(x,∇(p+ xn))

where A is a function defined in Ω × Rn and x = (x1, ..., xn) denotes points in

Rn.

The prime example of nonlinear Darcy’s laws for a homogeneous porous

medium (see [17]) corresponds to the q-Laplacian: A(x, ξ) = |ξ|q−2 ξ. For hetero-

geneous media we have the following measurable perturbations of the q-Laplacian:

A(x, ξ) = |a(x) · ξ|q−2 a(x) · ξ, where a(x) is a measurable positive definite matrix

representing the permeability of the medium at x. Note that when q = 2, we

rediscover the well known linear Darcy Law.

In addition, we would like to consider a model of Dirichlet boundary condi-

tions. The paper is organized as follows: In section 1, we begin by transforming

the problem usually stated in terms of the pressure function into a problem for

the hydrostatic head u = p + xn. The dry part is described by a bounded func-

tion g. Then we give a weaker formulation to our problem. In section 2 and

3 we prove an existence theorem by means of regularization and by using the

Tychonoff fixed point theorem. In section 4, we prove some properties of the

solutions. In particular for any solution (u, g), u is bounded and A-subharmonic

and g is continuous in time variable. In section 5, we assume that q ≤ n + 1,

A(x, ξ) = A(ξ) and A(e) · ν ≤ 0 on the bottom of the dam. Then from section 4,

we derive a monotonicity property for g. Making use of this result, we prove

a comparison theorem and with the help of the continuity of g we deduce the

uniqueness of the solution.
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1 – Statement of the problem

The dam is a bounded locally Lipschitz domain Ω in Rn (n≥2) (see Figure 1).

The boundary Γ of Ω is divided in two parts: an impervious part Γ1 and a pervious

one Γ2 which is assumed to be nonempty and relatively open in Γ. Let now T

be a positive number, Q = Ω × (0, T ) and ϕ a nonnegative Lipschitz function

defined in Q. We define:

Σ1 = Γ1 × (0, T ) , Σ2 = Γ2 × (0, T ) , Σ3 = (Γ2 × (0, T )) ∩ {ϕ > 0}

and Σ4 = (Γ2 × (0, T )) ∩ {ϕ = 0} .

Fig. 1

We shall be interested with the problem of finding the pressure p and the

saturation χ of the fluid. For convenience, we set: ψ = ϕ + xn, u = p + xn and

g = 1 − χ. Starting from the nonlinear Darcy’s law, the mass conservation law

and taking a Dirichlet boundary condition on Σ2, the flow is governed by the

following equations:

(1.1)































































i) u ≥ xn, 0 ≤ g ≤ 1, g(u− xn) = 0 in Q

ii) div
(

A(x,∇u)− gA(x, e)
)

+ gt = 0 in Q

iii) u = ψ on Σ2

iv) g(·, 0) = g0 in Ω

v)
(

A(x,∇u)− gA(x, e)
)

· ν = 0 on Σ1

vi)
(

A(x,∇u)− gA(x, e)
)

· ν ≤ 0 on Σ4



4 A. LYAGHFOURI

where e is the vertical unit vector of Rn, i.e. e = (0, 1) with 0 ∈ Rn−1, ν denoting

the outward unit normal to ∂Ω, g0 is a given function satisfying 0 ≤ g0 ≤ 1 and

A : Ω × Rn −→ Rn is a mapping that satisfies the following assumptions with

some constants q > 1 and 0 < α ≤ β <∞:

(1.2)







the function x 7−→ A(x, ξ) is measurable ∀ ξ ∈ Rn, and

the function ξ 7−→ A(x, ξ) is continuous for a.e x ∈ Ω ,

for all ξ ∈ Rn and a.e. x ∈ Ω

A(x, ξ) · ξ ≥ α |ξ|q ,(1.3)

|A(x, ξ)| ≤ β |ξ|q−1 ,(1.4)

for all ξ, ζ ∈ Rn such that ξ 6= ζ and a.e. x ∈ Ω

(

A(x, ξ)−A(x, ζ)
)

· (ξ − ζ) > 0 ,(1.5)

∃ r > 1: div(A(x, e)) ∈ Lr(Ω) .(1.6)

The condition (1.1) i) means that we look for a nonnegative pressure p and

g(·, t) characterises the wet region Ω(t) at time t. (1.1) iii) means that the trace

pressure at the bottoms of fluid reservoirs is equal to the one of the fluid and

equal to the atmospheric one when the boundary of Ω is in contact with the air.

(1.1) iv) is an initial data. (1.1) v) and (1.1) vi) are due to the fact that the flux

of fluid vanishes on Σ1 (since Γ1 is impervious) and is nonnegative on Σ4 where

the fluid is free to exit from our porous medium.

From the strong formulation (1.1), we are led to consider the following weak

formulation:

(P)



























































Find (u, g) ∈ Lq(0, T,W 1,q(Ω))× L∞(Q) such that :

i) u ≥ xn, 0 ≤ g ≤ 1, g(u− xn) = 0 a.e. in Q ;

ii) u = ψ on Σ2 ;

iii)

∫

Q

(

A(x,∇u)− gA(x, e)
)

· ∇ξ + g ξt dx dt+

∫

Ω
g0(x) ξ(x, 0) dx ≤ 0

∀ ξ∈W 1,q(Q), ξ=0 on Σ3, ξ≥0 on Σ4, ξ(x, T )=0 a.e. in Ω .
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2 – A regularized problem

We first introduce the following approximated problem:

(Pε)















































Find uε ∈W
1,q(Q) such that : uε = ψ on Σ2 ,

∫

Q
A(x,∇uε)·∇ξ + ε |uεt|

q−2 uεt ·ξt +Gε(uε)
(

ξt −A(x, e)·∇ξ
)

dx dt =

=

∫

Ω
Gε(uε(x, T )) ξ(x, T ) dx−

∫

Ω
g0(x) ξ(x, 0) dx

∀ ξ∈W 1,q(Q), ξ=0 on Σ2 ,

where Gε : L
q(Q) (resp.Lq(Ω)) −→ L∞(Q) (resp.L∞(Ω)) is defined by

(2.1) Gε(v) =















0 if v − xn ≥ ε

1− (v − xn)/ε if 0 ≤ v − xn ≤ ε

1 if v − xn ≤ 0 .

Then we have:

Theorem 2.1. Assume that ϕ is a nonnegative Lipschitz continuous function

and that A satisfies (1.2)–(1.5). Then, there exists a solution uε of (Pε).

Proof: It will be done in three steps:

Step 1: We define

V =
{

v∈W 1,q(Q) / v=0 on Σ2
}

and K=
{

v∈W 1,q(Q) / v=ψ on Σ2
}

.

For u ∈ K, we consider the map:

A(u) : W 1,q(Q) −→ R , ξ 7−→ 〈A(u), ξ〉 =
∫

Q
A(x,∇u)·∇ξ+ε |ut|

q−2 ut ξt dx dt .

Then the operator A defined by A : u ∈ K 7−→ A(u), satisfies:

Lemma 2.2. If we denote by (W 1,q(Q))′ the dual space ofW 1,q(Q), we have

i) For every u ∈ K, A(u) ∈ (W 1,q(Q))′;

ii) A is continuous from K into (W 1,q(Q))′;

iii) A is monotone and coercive.

Proof: (see [20] for example).
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Step 2: For v ∈W 1,q(Q), we consider the map: fv : W
1,q(Q) −→ R,

ξ 7−→
∫

Q
Gε(v)

(

A(x, e)·∇ξ−ξt
)

dx dt+

∫

Ω
Gε(v(x, T )) ξ(x, T )− g0(x) ξ(x, 0) dx .

It is clear that fv ∈ (W 1,q(Q))′. Using Lemma 2.2, we deduce (see [20]) that for

every v ∈W 1,q(Q) there exists a unique uε solution of the variational problem

(2.2) uε ∈ K , 〈Auε, ξ〉 = 〈fv, ξ〉 ∀ ξ ∈ V .

Step 3: Now, let us consider the map Fε defined by: Fε : W
1,q(Q) −→ K,

v 7−→ uε. Let us denote by B(0, R(ε)) the closed ball in W 1,q(Q) of center 0 and

radius R(ε). Then we have:

Lemma 2.3.

i) ∃R(ε) > 0 / Fε(B(0, R(ε))) ⊂ B(0, R(ε));

ii) Fε : B(0, R(ε)) −→ B(0, R(ε)) is weakly continuous.

Proof: i) Note that uε − ψ is a suitable test function to (2.2), so:

(2.3)

∫

Q
A(x,∇uε) · ∇uε + ε |uεt|

q dx dt =

=

∫

Q
A(x,∇uε) · ∇ψ + ε |uεt|

q−2 uεt · ψt dx dt

+

∫

Q
Gε(v)A(x, e) · ∇(uε − ψ) dx dt

−
∫

Q
Gε(v) (uε − ψ)t dx dt−

∫

Ω
g0(x) (uε − ψ)(x, 0) dx

+

∫

Ω
Gε(v(x, T )) (uε − ψ)(x, T ) dx .

Using (1.3), (1.4), (2.1), (2.3) and Hölder’s inequality, we get for some con-

stants ci

min(α, ε)

∫

Q
|∇uε|

q + |uεt|
q dx dt ≤ c1 |uε|

q−1
1,q + c2 |uε|1,q + c3 .

By Poincaré’s Inequality, this leads for some constants c′i to |uε|
q
1,q≤c

′
1|uε|

q−1
1,q +

c′2|uε|1,q + c′3 from which we deduce that: |uε|1,q ≤ R(ε) where R(ε) is some con-

stant depending on ε. So we have: Fε(B(0, R(ε))) ⊂ B(0, R(ε)). More precisely,

we have proved that: Fε(W
1,q(Q)) ⊂ B(0, R(ε)).
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ii) Let (vi)i∈I be a generalized sequence in C = B(0, R(ε)) which converges

to v in C weakly.

Set uiε = Fε(vi) and uε = Fε(v). We want to prove that (uiε)i∈I converges

to uε weakly in C. Since C is compact with respect to the weak topology, it

is enough to show that (uiε)i∈I has uε as the unique limit point for the weak

topology in C. So let u be a weak limit point for (uiε)i∈I in C. Using the compact

imbedding: W 1,q(Q) ↪→ Lq(Q), one can construct a sequence (uikε )k∈N such that

{ ik/ k ∈ N } ⊂ I, uikε ⇀ u weakly in W 1,q(Q) and uikε → u strongly in Lq(Q).

Choose uikε − uε as a suitable test function for (2.2) written for uik
ε and uε.

Subtract the equations, so that

(2.4)

∫

Q

(

A(x,∇uikε )−A(x,∇uε)
)

· ∇(uikε − uε) +

+ ε
(

|uikεt |
q−2 uikεt − |uεt|

q−2 uεt
)

· (uikε − uε)t dx dt =

=

∫

Q

(

Gε(vik)−Gε(v)
) (

A(x, e) · ∇(uikε − uε)− (uikε − uε)t
)

dx dt

+

∫

Ω

(

Gε(vik(x, T ))−Gε(v(x, T ))
)

(uikε − uε)(x, T ) dx .

Now we have by (1.4), (2.1), Hölder’s inequality and the fact that |uik
ε −uε|1,q ≤

2R(ε):

(2.5)

∣

∣

∣

∣

∫

Q

(

Gε(vik)−Gε(v)
) (

A(x, e) · ∇(uikε − uε)− (uikε − uε)t
)

dx dt

∣

∣

∣

∣

≤

≤ c1(ε) · |vik − v|q .

(2.6)

∣

∣

∣

∣

∫

Ω

(

Gε(vik(x, T ))−Gε(v(x, T ))
)

(uikε − uε)(x, T ) dx

∣

∣

∣

∣

≤

≤ c2(ε) ·
∣

∣

∣(vik − v) (·, T )
∣

∣

∣

q
.

Now due to (1.5), (2.4)–(2.6) and the compact imbeddings: W 1,q(Q) ↪→ Lq(Q)

and W
1− 1

q
,q
(Ω× {T}) ↪→ Lq(Ω× {T}), we get:

(2.7)

lim
k→+∞

∫

Q

(

A(x,∇uikε )−A(x,∇uε)
)

· ∇(uikε − uε) dx dt = 0 ,

lim
k→+∞

∫

Q

(

|uikεt |
q−2 uikεt − |uεt|

q−2 uεt
)

· (uikε − uε)t dx dt = 0 .

Using (2.7), we deduce that (see [11]) there exists a subsequence of (uik
ε ) also

denoted by (uikε ) such that ∇uikε → ∇uε and uikεt → uεt a.e. in Q. Taking into
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account the boundedness of (uikε ) in W 1,q(Q), we get: ∇uikε ⇀ ∇uε weakly in

Lq(Q) and uikεt ⇀ uεt weakly in Lq(Q). So we have uε = u and uε is the unique

weak limit point of (uiε) in C. Thus uiε = Fε(v
i) ⇀ uε = Fε(v) weakly in C.

Hence the continuity of Fε holds.

At this step, applying the Tychonoff fixed point theorem on B(0, R(ε)) (see

[22]), we derive that Fε has a fixed point. Thus (Pε) has at least one solution.

Let us now show that our sequence (uε) is uniformly bounded in L∞(Q). More

precisely we have:

Proposition 2.4. Let uε be a solution of (Pε) and let ε0 > 0. Then we

have for any ε ∈ (0, ε0) and H such that H ≥ max(ε0 + max{xn, (x
′, xn)∈Ω},

max{ψ(x, t), (x, t)∈Σ2})

(2.9) xn ≤ uε ≤ H a.e. in Q .

Proof: i) Since (uε − H)+ is a suitable test function for (Pε), we have by

(2.1) and the choice of H

(2.10)

∫

Q
A(x,∇uε) · ∇(uε −H)+ + ε|uεt|

q−2 uεt (uε −H)+t dx dt =

=

∫

Q
Gε(uε)

(

A(x, e) · ∇(uε −H)+ − (uε −H)+t

)

dx dt

−
∫

Ω
g0(x) (uε −H)+(x, 0) dx+

∫

Ω
Gε(uε(x, T )) (uε −H)+(x, T ) dx

= −
∫

Ω
g0(x) (uε −H)+(x, 0) dx ≤ 0 .

Then we deduce from (1.3) and (2.10)

∫

Q
α|∇(uε−H)+|q+ε|(uε−H)+t |

qdx dt≤0,

which leads to |∇(uε −H)+| = |(uε −H)+t | = 0 a.e. in Q. Thus (uε −H)+ = 0

and uε ≤ H a.e. in Q.

ii) We denote by (·)− the negative part of a function. Then ξ = (uε− xn)
− is

a test function for (Pε) and one has by taking into account (2.1):

(2.11)

∫

Q
A(x,∇uε) · ∇(uε − xn)

− + ε |uεt|
q−2 uεt · (uε − xn)

−
t dx dt =

=

∫

Ω
(uε − xn)

−(x, T ) dx+

∫

Q
A(x, e) · ∇(uε − xn)

− dx dt

−
∫

Ω
g0(x) (uε − xn)

−(x, 0) dx−
∫

Q
(uε − xn)

−
t dx dt .



THE EVOLUTION DAM PROBLEM 9

Integrating by part the last term of (2.11), we obtain

(2.12)

∫

[uε≤xn]

(

A(x,∇uε)−A(x,∇xn)
)

·(∇uε−∇xn)+ε |(uε−xn)t|
q dx dt ≤ 0 .

Using (1.5) and (2.12) we conclude that uε ≥ xn a.e. in Q.

Now we give an a priori estimate for ∇uε and uεt.

Proposition 2.5. Under assumptions of Proposition 2.4, we have for any

ε ∈ (0, ε0):

(2.13)

∫

Q

(

α |∇uε|
q + ε |uεt|

q
)

dx dt ≤ C ,

where C is a constant independent of ε.

Proof: Using the fact that uε − ψ is a suitable test function, we get

(2.14)

∫

Q
A(x,∇uε) · ∇uε + ε |uεt|

q dx dt =

=

∫

Q
A(x,∇uε) · ∇ψ dx dt+

∫

Q
ε |uεt|

q−2 uεt · ψt dx dt

+

∫

Q
Gε(uε)A(x, e) · ∇(uε − ψ) dx dt−

∫

Q
Gε(uε) (uε − ψ)t dx dt

+

∫

Ω
Gε(uε(x, T )) (uε − ψ)(x, T ) dx−

∫

Ω
g0(x) (uε − ψ)(x, 0) dx .

First let us set: Eε(y) =

∫ y

0
(1 − Hε(s)) ds and Hε(s) = 1 ∧

s+

ε
. We have

0 ≤ (1−Hε(y)) y ≤ Eε(y) ≤ y ∀ y ≥ 0 and using (2.9), we get

(2.15)

∫

Q
−Gε(uε) (uε − ψ)t dx dt =

=

∫

Q
−Gε(uε) (uε − xn)t dx dt+

∫

Q
Gε(uε)ϕt dx dt

= −
∫

Q

∂

∂t
Eε(uε − xn) dx dt+

∫

Q
Gε(uε)ϕt dx dt

=

∫

Ω

[

Eε

(

uε(x, 0)− xn
)

− Eε

(

uε(x, T )− xn
)

]

dx+

∫

Q
Gε(uε)ϕt dx dt ≤ C .
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Next, by (2.9) the last two terms of (2.14) are bounded. So using (1.3),

(2.14), (2.15) and Hölder’s inequality, we derive for some constant C > 0:

0 ≤ Uε ≤ C (1 + Uε
1/q + Uε

1/q′) where Uε =

∫

Q
(α |∇uε|

q + ε |uεt|
q) dx dt.

Hence we get (2.13) since q, q′ > 1.

In the following proposition, we show that uε satisfies an inequality similar to

(P) iii).

Proposition 2.6. Let uε be a solution of (Pε). Then we have:

∫

Q
A(x,∇uε)·∇ξ + ε |uεt|

q−2 uεt · ξt +Gε(uε)
(

ξt −A(x, e)·∇ξ
)

dx dt+

(2.16) +

∫

Ω
g0(x) ξ(x, 0) dx ≤ 0

∀ ξ∈W 1,q(Q), ξ=0 on Σ3, ξ≥0 on Σ4, ξ(x, T )=0 a.e. x∈Ω .

Proof: Let ξ as in (2.16). For any δ > 0, ( pε

δ ∧ ξ), where pε = uε − xn, is a

test function for (Pε). So we can write

∫

Q
A(x,∇uε)·∇

(

pε
δ
∧ ξ

)

−A(x, e)·∇

(

pε
δ
∧ ξ

)

+ ε |uεt|
q−2 uεt ·

(

pε
δ
∧ ξ

)

t
dx dt+

+

∫

Q
Hε(uε − xn)A(x, e)·∇

(

pε
δ
∧ ξ

)

dx dt −
∫

Q
Hε(uε − xn)

(

pε
δ
∧ ξ

)

t
dx dt =

=

∫

Ω

(

1− g0(x)
)

·

(

pε
δ
∧ ξ

)

(x, 0) dx .

The first integral in the left side of this equality can be written as

∫

[uε−xn<δξ]

(

A(x,∇uε)−A(x,∇xn)
)

· ∇
uε − xn

δ
+
ε

δ
|uεt|

q dx dt+

+

∫

[uε−xn≥δξ]

(

A(x,∇uε)−A(x, e)
)

· ∇ξ + ε |uεt|
q−2 uεt ξt dx dt .

Using (1.5) and the fact that 1− g0(x) ≥ 0 a.e. x ∈ Ω, we obtain

(2.17)

∫

[uε−xn≥δξ]

(

A(x,∇uε)−A(x, e)
)

· ∇ξ + ε |uεt|
q−2 uεt ξt dx dt+

+

∫

Q
Hε(uε − xn)A(x, e) · ∇

(

pε
δ
∧ ξ

)

dx dt−
∫

Q
Hε(uε − xn)

(

pε
δ
∧ ξ

)

t
dx dt ≤

≤
∫

Ω
(1− g0(x)) ξ(x, 0) dx .



THE EVOLUTION DAM PROBLEM 11

Let us show that:

lim
δ→0

∫

Q
Hε(uε − xn)A(x, e) · ∇

(

uε − xn
δ

∧ ξ

)

dx dt =(2.18)

=

∫

Q
Hε(uε − xn)A(x, e) · ∇ξ dx dt ,

lim
δ→0

∫

Q
Hε(uε − xn)

(

uε − xn
δ

∧ ξ

)

t
dx dt =

∫

Q
Hε(uε − xn) ξt dx dt .(2.19)

Indeed, taking in account (1.6) we can use the divergence formula to get:

∫

Q
Hε(uε − xn)A(x, e) · ∇

(

uε − xn
δ

∧ ξ

)

dx dt =

= −
∫

Q
div
(

Hε(uε − xn)A(x, e)
)

·

(

uε − xn
δ

∧ ξ

)

dx dt

+

∫

∂Q
Hε(uε − xn)A(x, e) · ν ·

(

uε − xn
δ

∧ ξ

)

dσ(x, t) .

Since ξ ∧
uε−xn
δ

−→ ξ a.e. on [uε > xn] when δ goes to 0, we obtain by the

Lebesgue theorem,

lim
δ→0

∫

Q
Hε(uε − xn)A(x, e) · ∇

(

uε − xn
δ

∧ ξ

)

dx dt =

= −
∫

Q
div
(

Hε(uε−xn)A(x, e)
)

·ξ dx dt +
∫

∂Q
Hε(uε−xn)A(x, e) ·ν ·ξ dσ(x, t) =

=

∫

Q
Hε(uε − xn)A(x, e) · ∇ξ dx dt ,

which proves (2.18). Similarly we establish (2.19).

So combining (2.18)–(2.19) and letting δ → 0 in (2.17) we obtain (2.16) since
∫

Ω
ξ(x, 0) dx = −

∫

Q
ξt dx dt.

3 – Existence of a solution

Theorem 3.1. Assume that ϕ is a nonnegative Lipschitz continuous function

and that A satisfies (1.2)–(1.6). Then there exists a solution (u, g) of (P).

The proof will consist in passing to the limit, when ε goes to 0, in (Pε).

To do this we shall need some lemmas.
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First from definition (2.1) of Gε and estimates (2.9), (2.13) and (1.4), we de-

duce the existence of a subsequence εk of ε and functions: u ∈ Lq(0, T,W 1,q(Ω)),

g ∈ Lq′(Q), A0 ∈ Lq′(Q) such that:

uεk
⇀ u weakly in Lq(0, T,W 1,q(Ω)) ,(3.1)

A(x,∇uεk
)⇀ A0 weakly in Lq′(Q) ,(3.2)

Gεk
(uεk

)⇀ g weakly in Lq′(Q) .(3.3)

Then we can prove:

Lemma 3.2. Let u, g be defined by (3.1) and (3.3) respectively. Then we

have:

i) u = ψ on Σ2, u ≥ xn a.e. in Q;

ii) 0 ≤ g ≤ 1 a.e. in Q.

Proof: We consider the set K1 = {v ∈ L
q(0, T,W 1,q(Ω)) / v ≥ xn a.e. in Q,

v = ψ on Σ2}. K1 is closed and convex in Lq(0, T,W 1,q(Ω)), then it is weakly

closed. Since uεk
∈ K1, u ∈ K1 and i) holds. In the same way, we prove that

g ∈ K2 = {v ∈ Lq′(Q) / 0 ≤ v ≤ 1 a.e. in Q} and ii) holds.

Lemma 3.3. Let u, g be defined by (3.1) and (3.3) respectively. Then we

have:

(3.4) g(u− xn) = 0 a.e. in Q .

Proof: First, note that (3.4) is not an obvious result as it is in the stationary

case (see [17]), since we do not know, a priori, whether uε converges strongly to

u in Lq(Q) because the imbedding Lq(0, T,W 1,q(Ω)) ↪→ Lq(Q) is not compact.

To overcome this difficulty, we are going to prove a strong convergence of the

sequence (Gεk
(uεk

))k in a suitable space.

Next, we have for θ ∈ D(Q), θ ≥ 0 and pεk
= uεk

− xn

0 ≤
∫

Q
Gεk

(uεk
) (uεk

− xn) θ dx dt =

=

∫

Q∩[0≤pεk
≤εk]

(1−Hεk
(pεk

)) pεk
θ dx dt ≤ εk · |θ|∞ · |Q| .

So

(3.5) lim
k→+∞

∫

Q
Gεk

(uεk
) (uεk

− xn) θ dx dt = 0 .
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To get (3.4), it suffices to prove that:

(3.6) lim
k→+∞

∫

Q
Gεk

(uεk
) (uεk

− xn) θ dx dt =
∫

Q
g(u− xn) θ dx dt .

For this purpose we introduce the function: wεk
= εk |uεkt|

q−2 uεkt + Gεk
(uεk

).

From (2.13), since q′ > 1, we have:

(3.7) εk |uεkt|
q−2 uεkt −→ 0 strongly in Lq′(Q) .

Then from (3.3) and (3.7) we deduce that

(3.8) wεk
⇀ g weakly in Lq′(Q) .

We are going to prove that:

(3.9) wεkt ⇀ gt weakly in Lq′(0, T,W−1,q′(Ω)) .

So, let us show that gt ∈ L
q′(0, T,W−1,q′(Ω)). Let ξ ∈ D(0, T,W 1,q

0 (Ω)). Since ξ

is a test function for (Pεk
), we obtain, after letting k → +∞ in (Pεk

), and taking

into account (3.2), (3.3) and (3.7)
∫

Q
g ξt dx dt = −

∫

Q

(

A0 − gA(x, e)
)

· ∇ξ dx dt

from which we deduce (see [10]) that gt=− div(A0−gA(x, e))∈L
q′(0, T,W−1,q′(Ω)).

Now we have in the distributional sense:

wεkt=− div
(

A(x,∇uεk
)−Gεk

(uεk
)A(x, e)

)

and wεkt ⇀ div
(

gA(x, e)−A0
)

=gt

weakly in Lq′(0, T,W−1,q′(Ω)) .

So (3.9) holds.

At this stage let us introduce the spaceW defined by:W={v∈Lq′(0, T, Lq′(Ω))/

vt∈L
q′(0, T,W−1,q′(Ω))} which is a Banach space for the norme: ‖v‖Lq′ (0,T,Lq′ (Ω))+

‖vt‖Lq′ (0,T,W−1,q′ (Ω)). Since Lq′(Ω) and W−1,q′(Ω) are reflexifs, the imbedding

Lq′(Ω) ↪→ W−1,q′(Ω) being continuous and compact (see [1]), we deduce that

(see [20]), the imbedding

(3.10) W ↪→ Lq′(0, T,W−1,q′(Ω)) is compact .

Now, the sequence wεk
∈W and it is bounded in W by (3.8) and (3.9). So up to

a subsequence still denoted by εk, we have wεk
⇀ w weakly in W . But it is easy

to see that w = g. We then deduce from (3.7) and (3.10)

(3.11) Gεk
(uεk

)→ g strongly in Lq′(0, T,W−1,q′(Ω)) .
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Finally, to conclude, it suffices to remark that: (uεk
−xn)θ⇀ (u−xn)θ weakly in

Lq(0,T,W 1,q
0 (Ω)). Then by (3.11), we get (3.6). Consequently

∫

Q
g(u−xn)θ dxdt=0

∀ θ ∈ D(Q), θ ≥ 0 and since g(u− xn) ≥ 0 a.e. in Q, we get (3.4).

Remark 3.4. We have (see [20]) the imbedding W ↪→ C0([0, T ],W−1,q′(Ω))

then g ∈ C0([0, T ],W−1,q′(Ω)). In section 4, we shall improve this regularity and

prove that g ∈ C0([0, T ], Lp(Ω)), ∀ p ∈ [1,+∞[.

Lemma 3.5. Let u, A0 and g be defined by (3.1), (3.2) and (3.3) respectively.

Then we have:

(3.12)

∫

Q

(

A0 − gA(x, e)
)

· ∇(u− ψ) ξ dx dt =
∫

Q
g(ϕ ξ)t dx dt ∀ ξ ∈ D(0, T ) .

Proof: Let ζ be a smooth function such that d(supp ζ,Σ2) > 0 and

supp ζ ⊂ Rn × (τ ′0, T − τ ′0) for T > τ ′0 > 0. Then there exists τ0 > 0 such that:

∀ τ ∈ (−τ0, τ0), (x, t) 7−→ ζ(x, t − τ) is a test function for (Pεk
). So we get, for

all τ ∈ (−τ0, τ0), after letting k go to +∞

(3.13)

∫

Q

(

A0(x, t)− g(x, t)A(x, e)
)

· ∇ζ(x, t− τ) dx dt−

−
∂

∂τ

(

∫

Q
g(x, t+ τ) ζ(x, t) dx dt

)

= 0

since

−
∫

Q
g(x, t) ζt(x, t− τ) dx dt =

∂

∂τ

(

∫

Q
g(x, t) ζ(x, t− τ) dx dt

)

=
∂

∂τ

(

∫

Q
g(x, t+ τ) ζ(x, t) dx dt

)

.

Now it is easy to see that (3.13) still holds for functions ζ in Lq(0, T,W 1,q(Ω))

such that ζ = 0 on Σ2 and ζ = 0 on Ω× ((0, τ0) ∪ (T − τ0, T )). So if we consider

ξ ∈ D(τ0, T − τ0), ξ ≥ 0 and set: ζ = (u− ψ) ξ, we have ∀ τ ∈ (−τ0, τ0)

(3.14)

∫

Q

(

(

A0(x, t)− g(x, t)A(x, e)
)

·∇
(

(u−ψ) ξ
)

− g(ϕ ξ)t

)

(x, t− τ) dx dt =

=
∂G

∂τ
(τ)

with G(τ) =

∫

Q
g(x, t+ τ) ((u− xn) ξ)(x, t) dx dt.
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From (3.14) we know that G ∈ C1(−τ0, τ0). Moreover by Lemmas 3.2 and

3.3, we get G(τ) ≥ 0 = G(0) ∀ τ ∈ (−τ0, τ0). So 0 is an absolute minimum for G

in (−τ0, τ0) and

(3.15)
∂G

∂τ
(0) = 0 .

Combining (3.14) and (3.15) we get (3.12) for all ξ ∈ D(τ0, T − τ0), ξ ≥ 0.

Thanks to Lemma 3.5, we are going to prove a result which allows us to pass

to the limit in (Pεk
).

Lemma 3.6. The sequence (uεk
) (resp. A(x,∇uεk

)) converges strongly to u

(resp. A(x,∇u)) in Lq(0, T,W 1,q(Ω)) (resp. Lq′(Q)).

To prove Lemma 3.6, we need a lemma:

Lemma 3.7. Let u and A0 defined by (3.1) and (3.2) respectively. Then we

have

(3.16)

∫

Q
A(x,∇u)·∇ξ dx dt =

∫

Q
A0(x, t)·∇ξ dx dt ∀ ξ ∈ Lq(0, T,W 1,q(Ω)) .

Proof: Let θ ∈ D(0, T ), θ ≥ 0. Choose ξ = (uεk
−ψ) θ as a test function for

(Pεk
) and write (3.12) for ξ = θ. Subtract the equations, we obtain:

(3.17)

∫

Q
θA(x,∇uεk

) · ∇uεk
dx dt =

=

∫

Q
θ A0 · ∇u dx dt+

∫

Q

(

A(x,∇uεk
)−A0

)

· ∇ψ θ dx dt

−
∫

Q
εk |uεkt|

q−2 uεkt

(

(uεk
− ψ) θ

)

t
dx dt

+

∫

Q
A(x, e) ·

(

Gεk
(uεk

)∇(uεk
− ψ)− g∇(u− ψ)

)

θ dx dt

−
∫

Q
Gεk

(uεk
)
(

(uεk
− ψ) θ

)

t
dx dt−

∫

Q
g(ϕθ)t dx dt .

By (3.2) we have:

(3.18) lim
k→+∞

∫

Q

(

A(x,∇uεk
)−A0

)

· ∇ψ θ dx dt = 0 .
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Remark that
∫

Q
εk |uεkt|

q−2 uεkt ·
(

(uεk
− ψ) θ

)

t
dx dt =

=

∫

Q
εk |uεkt|

q θ dx dt+

∫

Q
εk |uεkt|

q−2 uεkt uεk
θt dx dt−

∫

Q
εk |uεkt|

q−2 uεkt·(ψ θ)t dx dt.

The first term of the above equality is nonnegative. Moreover using (3.7) and the

fact that uεk
is uniformly bounded, we get:

(3.19) lim−
∫

Q
εk |uεkt|

q−2 uεkt ·
(

(uεk
− ψ) θ

)

t
dx dt ≤ 0 .

From (3.4), we deduce:

(3.20)

∫

Q
A(x, e) ·

(

Gεk
(uεk

)∇(uεk
− ψ)− g∇(u− ψ)

)

θ dx dt =

=

∫

Q
θ Gεk

(uεk
)A(x, e) · ∇(uεk

− xn) dx dt

−
∫

Q

(

Gεk
(uεk

)− g
)

A(x, e) · ∇(ϕθ) dx dt .

By (3.3) the last term of (3.20) goes to 0. Applying the divergence formula, we

get:

(3.21)

∣

∣

∣

∣

∫

Q
θ Gεk

(uεk
)A(x, e) · ∇(uεk

− xn) dx dt

∣

∣

∣

∣

=

=

∣

∣

∣

∣

∫

Q
θA(x, e) · ∇

(
∫ min(uεk

−xn,εk)

0

(

1−Hεk
(s)
)

ds

)

dx dt

∣

∣

∣

∣

≤ εk

(
∫

Q
θ | div(A(x, e))| dx dt+

∫

∂Ω×(0,T )
θ |A(x, e) · ν| dσ(x, t)

)

.

We obtain from (3.20)–(3.21):

(3.22) lim
k→+∞

∫

Q
A(x, e) ·

(

Gεk
(uεk

)∇(uεk
− ψ)− g∇(u− ψ)

)

θ dx dt = 0 .

The last two terms of the right hand side of (3.17) can be written:

(3.23) −
∫

Q
Gεk

(uεk
)
(

(uεk
− ψ) θ

)

t
dx dt−

∫

Q
g(ϕθ)t dx dt =

= −
∫

Q
Gεk

(uεk
) (uεk

− xn) θt dx dt−
∫

Q
Gεk

(uεk
) (uεk

− xn)t θ dx dt

+

∫

Q

(

Gεk
(uεk

)− g
)

(ϕθ)t dx dt .
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Arguing as in (3.5), the first term of the right side of (3.23) converges to 0.

Integrating by parts, we can see as in (3.21) that the second term goes also to 0.

Using (3.3), we get

(3.24) lim
k→+∞

−
∫

Q
Gεk

(uεk
)
(

(uεk
− ψ) θ

)

t
dx dt−

∫

Q
g(ϕθ)t dx dt = 0 .

Combining (3.17), (3.18), (3.19), (3.22) and (3.24) we conclude that:

(3.25) lim

∫

Q
θA(x,∇uεk

) · ∇uεk
dx dt ≤

∫

Q
θ A0(x, t) · ∇u dx dt

∀ θ ∈ D(0, T ), θ ≥ 0 .

Let now v ∈ Lq(0, T,W 1,q(Ω)) and θ ∈ D(0, T ) such that θ ≥ 0. Using (1.5)

we have:
∫

Q
θ
(

A(x,∇uεk
)−A(x,∇v)

)

· (∇uεk
−∇v) dx dt ≥ 0 ∀ k ∈ N

which can be written for all k ∈ N:

(3.26)

∫

Q
θA(x,∇uεk

) · ∇uεk
dx dt −

∫

Q
θA(x,∇uεk

) · ∇v dx dt −

−
∫

Q
θA(x,∇v) · ∇(uεk

− v) dx dt ≥ 0 .

Passing to the limit sup in (3.26) and taking into account (3.1)–(3.2) and (3.25),

we get:

(3.27)

∫

Q
θ
(

A0(x, t)−A(x,∇v)
)

· ∇(u− v) dx dt ≥ 0 .

If we choose v = u±λ ξ with ξ ∈ Lq(0, T,W 1,q(Ω)) and λ ∈ [0, 1] in (3.27) we

obtain, after letting λ go to 0 and taking into account (1.2) and (1.4)

∫

Q
θ
(

A0(x, t)−A(x,∇u)
)

· ∇ξ dx dt = 0 ∀ θ ∈ D(0, T ), θ ≥ 0,

∀ ξ ∈ Lq(0, T,W 1,q(Ω))

and by density we get (3.16).

Proof of Lemma 3.6: Taking ξ = θ u in (3.16) with θ ∈ D(0, T ), we get

(3.28)

∫

Q
θA(x,∇u) · ∇u dx dt =

∫

Q
θ A0(x, t) · ∇u dx dt .
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Using (3.25) and (3.28) we obtain:

(3.29) lim

∫

Q
θA(x,∇uεk

) · ∇uεk
dx dt ≤

∫

Q
θA(x,∇u) · ∇u dx dt .

Combining (3.1)–(3.2) and (3.28)–(3.29), one can prove easily:

(3.30) lim

∫

Q
θ
(

A(x,∇uεk
)−A(x,∇u)

)

· ∇(uεk
− u) dx dt ≤ 0 .

Now, since ∇uεk
⇀ ∇u weakly in Lq(Q), we conclude by (3.30) because A

satisfies the Browder’s property (S+) (see [12]), that ∇uεk
→ ∇u strongly in

Lq(Q). Moreover the mapping Lq(Q) → Lq′(Q), v 7→ A(·, v) being continuous,

we deduce that A(x,∇uεk
) converges strongly to A(x,∇u) in Lq′(Q). Now by the

Poincaré Inequality one can see that uεk
converges strongly in Lq(0, T,W 1,q(Ω)).

Proof of Theorem 3.1: It is clear that (P) i) and (P) ii) follow from

Lemma 3.2 and Lemma 3.3. Let ξ ∈ W 1,q(Q), ξ = 0 on Σ3, ξ ≥ 0 on Σ4 and

ξ(x, T ) = 0 a.e. in Ω. Letting k go to +∞ in (2.16) written for ξ and using (3.3),

(3.7) and Lemma 3.6, we get (P) iii). This achieves the proof of Theorem 3.1.

Remark 3.8. Note that the Lemma 3.7 is sufficient for the proof of

Theorem 3.1, however the result of Lemma 3.6 is more precise.

4 – Some properties

Let us first prove a technical lemma which generalizes Lemma 3.5.

Lemma 4.1. Let (u, g) be a solution of (P), let v∈W 1,q(Q) and F ∈W 1,∞
loc (R2),

such that:

i) F (u− xn, v) ∈ L
q(0, T,W 1,q(Ω));

ii) F (ψ − xn, v) ∈W
1,q(Q);

iii) F (z1, z2) ≥ 0 for a.e. (z1, z2) ∈ R2;

iv) either
∂F

∂z1
(z1, z2)≥0 a.e. (z1, z2)∈R2, or

∂F

∂z1
(z1, z2)≤0 a.e. (z1, z2)∈R2.

Then we have ∀ ξ ∈ D(Ω×(0, T )):

(4.1)

∫

Q

(

A(x,∇u)− gA(x, e)
)

· ∇
(

F (u− xn, v) ξ
)

+ g
(

F (0, v) ξ
)

t
dx dt =

=

∫

Q

(

A(x,∇u)− gA(x, e)
)

· ∇
(

F (ψ − xn, v) ξ
)

+ g
(

F (ψ − xn, v) ξ
)

t
dx dt .
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Particularly, if F (ψ − xn, v) ξ = 0 on Σ2, then

(4.2)

∫

Q

(

A(x,∇u)− gA(x, e)
)

· ∇
(

F (u− xn, v) ξ
)

+ g
(

F (0, v) ξ
)

t
dx dt = 0 .

Proof: Arguing as in the proof of Lemma 3.5, we get for ξ∈D(Rn×(τ0, T−τ0)),

ξ ≥ 0, τ0 > 0 and ζ = (F (u− xn, v)− F (ψ − xn, v)) ξ

(4.3)

∫

Q

(

A(x,∇u(x, t))− g(x, t)A(x, e)
)

· ∇
(

F (u− xn, v) ξ
)

(x, t− τ) +

+ g(x, t)
(

F (0, v) ξ
)

t
(x, t− τ) dx dt −

−
∫

Q

(

A(x,∇u(x, t))− g(x, t)A(x, e)
)

· ∇
(

F (ψ − xn, v) ξ
)

(x, t− τ)−

− g(x, t)
(

F (ψ − xn, v) ξ)t (x, t− τ) dx dt =

=
∂

∂τ
G(τ)

with G(τ) =

∫

Q
g(x, t+τ) ((F (u−xn, v)−F (0, v)) ξ)(x, t) dx dt. Since the integrals

on the left hand side of (4.3) are continuous functions on τ , we deduce that

G ∈ C1(−τ0, τ0). Using the monotonicity of F and (3.4), we can see that 0 is an

extremum for G in (−τ0, τ0) and

(4.4)
∂G

∂τ
(0) = 0 .

From (4.3) and (4.4) we deduce the Lemma.

From Lemma 4.1, we have:

Corollary 4.2. Let (u, g) be a solution of (P). Then:

∫

Q
A(x,∇u) · ∇

(

min

(

(u− xn − k)
+

ε
, 1

)

ξ

)

dx dt = 0

∀ ε>0, ∀ k≥0, ∀ ξ∈D(Rn×(0, T )) such that ξ≥0, ξ=0 on Σ3 .

Proof: It suffices to choose F (z1, z2) = min( (z1−k)+

ε , 1) in Lemma 4.1 and to

take in account (3.4).

Corollary 4.3. Let (u, g) be a solution of (P). Then we have u ∈ L∞(Q).
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Proof: Since u ≥ xn a.e. in Q, it suffices to prove that u is bounded above.

So let H be a constant such that:

H ≥ max

(

max
{

xn, (x
′, xn) ∈ Ω

}

, max
{

ψ(x, t), (x, t) ∈ Σ2
}

)

.

Let ξ be a nonnegative function in D(0, T ). Then if one apply Lemma 4.1 with

F (z1, z2) = (z1− z2)
+ and v = H−xn, we get by taking in account (3.4) and the

choice of H:

(4.5)

∫

Q
ξ(t)A

(

x,∇(u−H)
)

· ∇(u−H)+ dx dt = 0 .

Since (u−H)+=0 on Σ2, we deduce from (1.3) and (4.5) that u≤H a.e. in Q.

Theorem 4.4. Let (u, g) be a solution of (P). Then we have in the distri-

butional sense:

(4.6) div
(

A(x,∇u)− gA(x, e)
)

+ gt = 0 .

Moreover, if div(A(x, e)) ≥ 0 in D′(Ω), we have:

(4.7) div
(

gA(x, e)
)

− gt = div
(

A(x,∇u)
)

≥ 0 .

Proof: i) Taking ±ξ ∈ D(Q) as a test function for (P), we get (4.6).

ii) Let ξ ∈ D(Q), ξ ≥ 0, then from Corollary 4.2, we have for ε > 0 and k = 0:

(4.8)

∫

Q
A(x,∇u) · ∇

(

min

(

u− xn
ε

, 1

)

ξ

)

dx dt = 0 .

Note that ξ = 0 on ∂Q, so

(4.9)

∫

Q
A(x, e) · ∇

(

(

1−min

(

u− xn
ε

, 1

))

ξ

)

dx dt ≤ 0 .

Adding (4.8) and (4.9), we get:

1

ε

∫

Q∩[u−xn<ε]
ξ
(

A(x,∇u)−A(x,∇xn)
)

(∇u−∇xn) dx dt+

+

∫

Q
min

(

u− xn
ε

, 1

)

(

A(x,∇u)−A(x,∇xn)
)

· ∇ξ dx dt ≤

≤ −
∫

Q
A(x, e) · ∇ξ dx dt .
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Using (1.5), we get (4.7) by letting ε→ 0 in the last inequality.

We have g ∈ C0([0, T ],W−1,q′(Ω)) (see Remark 3.4). The following theorem

proves strong continuity of g:

Theorem 4.5. Let (u, g) be a solution of (P). Assume that A(x, e) = A(e)

is a constant vector for a.e. x ∈ Ω. Then we have:

(4.10) g ∈ C0([0, T ], Lp(Ω)) ∀ p ∈ [1,+∞[ .

Proof: Using the result of Remark 3.4 and the fact that g is bounded, we

deduce that, for any fixed t, we have:

(4.11) g(x, t+ h) ⇀
h→0

g(x, t) weakly in Lp(Ω), ∀ p ∈ (1,+∞) .

Now let p ∈ (1,+∞) and Ωh = {x ∈ Ω / d(x, ∂Ω) > βh}, then

(4.12)

∣

∣

∣

∣

∫

Ω

(

gp(x, t+ h)− gp(x, t)
)

dx

∣

∣

∣

∣

≤

≤

∣

∣

∣

∣

∫

Ω
gp(x, t+ h) dx−

∫

Ωh

gp(x, t+ h) dx

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

Ωh

(

gp(x, t+ h)− gp(x+ hA(e), t)
)

dx

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

Ωh

gp(x+ hA(e), t) dx−
∫

Ω
gp(x, t) dx

∣

∣

∣

∣

.

It is not difficult to show that, the first and the last terms in the right side of (4.12)

converges to 0, when h→ 0. Using the following inequality: |ap − bp| ≤ p |a− b|

∀ a, b ∈ [0, 1] ∀ p > 1 and (4.7), the second integral of (4.12) can be written:

(4.13)

∣

∣

∣

∣

∫

Ωh

(

gp(x, t+ h)− gp(x+ hA(e), t)
)

dx

∣

∣

∣

∣

≤

≤ p

∫

Ωh

(

g(x+ hA(e), t)− g(x, t+ h)
)

dx .

Combining (4.11) and (4.13), we get g(x, t+ h) −→
h→0

g(x, t) strongly in Lp(Ω)

∀ p ∈ (1,+∞) and thus g(x, t+ h) −→
h→0

g(x, t) strongly in Lp(Ω) ∀ p ∈ [1,+∞[.
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5 – Uniqueness of the solution

In this paragraph we assume that

(5.1) A(x, ξ) = A(ξ) ∀ ξ ∈ Rn a.e. x ∈ Ω and A(e) · ν ≤ 0 on Γ1

where ν denotes the outward unit normal to Γ1.

Let us introduce the following notations:

(5.2)
σ1 = Σ2 ∩ Σ1 = (Γ2 ∩ Γ1)× (0, T ) ,

σ2 = Σ3 ∩ Σ4 = (Γ2 × (0, T )) ∩ {ϕ > 0} ∩ {ϕ = 0} .

We shall assume that σ1 and σ2 are (1, q′) polar sets of Q (see [1]). Recall that

when q > n+1, the only (1, q′) polar set of Q is the empty set. So we also assume

that q ≤ n+ 1.

Then we first state some technical lemmas related to the entropy condition

(1.1) vi) and to the monotonicity of g. Next, we derive a comparison result which

allows us to prove the uniqueness of the solution of (P).

Lemma 5.1. Let (u, g) be a solution of (P). Then we have:

(5.3)

∫

Q

(

A(∇u)−A(e)
)

· ∇ξ + (λ− g)+
(

A(e) · ∇ξ − ξt
)

dx dt ≤ 0

∀ ξ ∈ D(Rn × (0, T )), ξ ≥ 0, ξ = 0 on Σ1 ∪ Σ3, ∀λ ∈ [0, 1] .

Proof: First note that since ξ is a test function for (P) and (1− g)+ = 1− g,

we have (5.3) for λ = 1.

Next, let ε > 0. Applying Corollary 4.2, for k = 0, we get

∫

Q
A(∇u) ·

∇(min(u−xn

ε , 1) ξ) dx dt = 0. Since min(u−xn

ε , 1) ξ = 0 on ∂Ω × (0, T ), we have
∫

Q
A(e) · ∇(min(u−xn

ε , 1) ξ) dx dt = 0. Subtracting the second equality from the

first one, we obtain:

∫

Q
min

(

u− xn
ε

, 1

)

(

A(∇u)−A(e)
)

· ∇ξ dx dt+

+
1

ε

∫

Q∩[u−xn<ε]
ξ
(

A(∇u)−A(∇xn)
)

· (∇u−∇xn) dx dt = 0 .

But the second integral of the above equality is nonnegative by (1.5), then we

deduce (5.3) for λ = 0 by letting ε→ 0.
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Now, we can assume, without loss of generality, that ε0 = d(supp(ξ),

Σ1 ∪ Σ3) > 0.

Let us extend u (resp. g) outside Q by xn (resp. 1) and still denote by u

(resp. g) this function.

For ε ∈ (0, ε0/2), let ρε ∈ D(Rn) with supp(ρε) ⊂ B(0, ε) be a regularizing

sequence and let fε = ρε ∗f , the regularized of a function f . Using (5.3) for λ = 1

and λ = 0 we deduce that
∫

Rn×(0,T )
(A(∇u))ε · ∇ξ − gε

(

A(e) · ∇ξ − ξt
)

dx dt ≤ 0 ,(5.4)

∫

Rn×(0,T )

(

(A(∇u))ε −A(e)
)

· ∇ξ dx dt ≤ 0 .(5.5)

For λ ∈ [0, 1], we deduce from (5.5):

(5.6)

∫

Rn×(0,T )

(

(A(∇u))ε −A(e)
)

· ∇ξ + (λ− gε)
(

A(e) · ∇ξ − ξt
)

dx dt ≤ 0 .

Note that (5.5) and (5.6) are still true for functions of the type Kξ with K ≥ 0

and K ∈ W 1,q
loc (Rn × (0, T )). Whence we deduce for K = min((λ− gε)

+/δ, 1),

δ > 0:

(5.7)

∫

Rn×(0,T )

(

(A(∇u))ε−A(e)
)

·∇ξ + (λ−gε)
(

A(e)·∇(Kξ)−(Kξ)t
)

dx dt =

=

∫

Rn×(0,T )

(

(A(∇u))ε −A(e)
)

·∇(Kξ) + (λ− gε)
(

A(e)·∇(Kξ)− (Kξ)t
)

dx dt

+

∫

Rn×(0,T )

(

(A(∇u))ε −A(e)
)

· ∇
(

(1−K) ξ
)

dx dt ≤ 0 .

Set Iδ =

∫

Rn×(0,T )
(λ− gε)

(

A(e) · ∇(Kξ)− (Kξ)t
)

dx dt = I1δ + I2δ with

I1δ =

∫

Rn×(0,T )
(λ− gε) min

(

(λ− gε)
+/δ, 1

) (

A(e) · ∇ξ − ξt
)

dx dt ,

I2δ =

∫

Rn×(0,T )
(λ− gε) ξ

(

A(e) · ∇

(

min
(

(λ− gε)
+/δ, 1

)

)

−

(

min
(

(λ− gε)
+/δ, 1

)

)

t

)

dx dt

= −
1

2δ

∫

Rn×(0,T )

(

min
(

(λ− gε)
+, δ

)

)2 (

A(e) · ∇ξ − ξt
)

dx dt .

Using the above equalities and Lebesgue’s theorem, we get (5.3) by letting

successively δ → 0 and ε→ 0 in (5.7).
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Lemma 5.2. Let (u, g) be a solution of (P) and let ĝ ∈ L∞(Q) such that:

(5.8) 0 ≤ ĝ ≤ 1 and div(ĝA(e))− ĝt = 0 in D
′(Q) .

Then we have: ∀ k ≥ 0, ∀λ ∈ 1−H(k), ∀ ε > 0,

(5.9)

∫

Ω

{

A(∇u) · ∇

(

min

(

(u−xn−k)
+

ε
, 1

)

ξ

)

+ (λ− g)+
(

A(e) · ∇ξ1− ξ1t

)

+

+ (λ− ĝ)+
(

A(e) · ∇ξ2 − ξ2t
)

}

dx dt ≤ C(u, k, ξ1)

∀ ξ, ξ1, ξ2 ∈ D(Rn× (0, T )), ξ≥0, ξ1≥0, ξ=ξ1=0 on Σ1∪Σ3, ξ2=0 on ∂Q ,

where H denotes the maximal monotone graph associated to the Heaviside func-

tion and

(5.10)

C(u, 0, ξ1) = −
∫

Q

(

A(∇u)−A(e)
)

· ∇ξ1 dx dt

= lim
ε→0

∫

Q

{

(

A(∇u)−A(e)
)

· ∇

(

min

(

u− xn
ε

, 1

))

}

ξ1 dx dt ,

C(u, k, ξ1) = 0 , ∀ k > 0 .

Proof: From (5.8), we have immediately: ∀λ ∈ R, ∀ ξ2 ∈ D(Rn × (0, T ))

such that ξ2 = 0 on ∂Q

(5.11)

∫

Q
(λ− ĝ)+

(

A(e) · ∇ξ2 − ξ2t
)

dx dt = 0 .

Since min( (u−xn−k)+

ε , 1) ξ = 0 on Σ2 for all k ≥ 0, we deduce from Corollary 4.2,

(5.12)

∫

Q
A(∇u) · ∇

(

min

(

(u− xn − k)
+

ε
, 1

)

ξ

)

dx dt = 0 .

Adding (5.11) and (5.12), we deduce (5.9) for k > 0 since in this case λ = 0.

Using (5.12) for k = 0, ξ = ξ1 and the fact that min(u−xn

ε , 1) ξ1 = 0 on

∂Ω× (0, T ), we get:

(5.13)

∫

Q

{

(

A(∇u)−A(∇xn)
)

· ∇

(

min

(

u− xn
ε

, 1

)

)}

ξ1 dx dt+

+

∫

Q

{

(

A(∇u)−A(∇xn)
)

· ∇ξ1

}

·min

(

u− xn
ε

, 1

)

dx dt = 0 .
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Now, letting ε→ 0, in (5.13), we obtain:

(5.14)

∫

Q

(

A(∇u)−A(e)
)

· ∇ξ1 dx dt =

= − lim
ε→0

∫

Q

{

(

A(∇u)−A(e)
)

· ∇

(

min

(

u− xn
ε

, 1

)

)}

ξ1 dx dt .

Hence if we add (5.11), (5.12) and take into account (5.3) written for ξ = ξ1
and (5.14), we get (5.9) for k = 0.

Lemma 5.3. Let (u, g) be a solution of (P) and let θ ∈ C∞(R) ∩ C0,1(R)

such that θ(0) = 0, θ′ ≥ 0, θ ≤ 1. Then we have ∀ k ≥ 0, ∀λ ∈ 1−H(k), ∀ ε > 0:

(5.15)

∫

Q

(

A(∇u)−λA(e)
)

·∇

(

min

(

(k−(u−xn))
+

ε
, 1

)

(

1−θ (u−xn)
)

ξ

)

dx dt−

−
∫

Q
(g − λ)+

(

A(e) · ∇ξ − ξt
)

dx dt ≥ 0

∀ ξ ∈ D(Rn × (0, T )), ξ ≥ 0,
(

1− θ (u− xn)
)

ξ = 0 on Σ2 .

Proof: Let B = Rn × (0, T )\Σ4. Since σ1 and σ2 are (1, q′) polar sets of Q,

then without loss of generality one can assume that ξ∈D(B) and d(supp(ξ),Σ4)=

ε0 > 0.

For ε > 0, let us consider Hε(u − xn) = min(u−xn

ε , 1). Applying Lemma 4.1

with F (z1, z2) = Hε(z1) and F (z1, z2) = θ(z1)Hε(z1), we get since g = 0 almost

everywhere Hε(u− xn) 6= 0:

(5.16)

∫

Q
A(∇u) · ∇

(

(

1− θ (u− xn)
)

ξ ·Hε(u− xn)

)

dx dt = 0 .

Using (5.16) and taking into account (1.5) and (5.1), we get

(5.17)

∫

Q

{

(

A(∇u)−A(e)
)

· ∇

(

(

1− θ (u− xn)
)

ξ

)

}

Hε(u− xn) dx dt ≤

≤
∫

Σ1

−(A(e) · ν)
(

1− θ (u− xn)
)

ξ dσ(x, t) .

Letting ε→ 0 in (5.17), we get

(5.18)

∫

Q
A(∇u) · ∇

(

(

1− θ(u− xn)
)

ξ

)

dx dt ≤ 0 .
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Applying Lemma 4.1 with F (z1, z2) = 1− θ(z1), we obtain since F (0, z2) = 1,

(5.19)

∫

Q
g
(

A(e) ·∇ξ− ξt
)

dx dt =

∫

Q
A(∇u) ·∇

(

(

1− θ (u−xn)
)

ξ

)

dx dt ≤ 0

for any ξ ∈ D(B) such that ξ ≥ 0, (1−θ (u−xn)) ξ = 0 on Σ2 and d(supp(ξ),Σ4) =

ε0 > 0.

Let us extend g by 0 outside Q and still denote by g this function.

For ε ∈ (0, ε0/2), let ρε ∈ D(Rn × (0, T )) be a regularizing sequence with

supp(ρε) ⊂ B(0, ε). Set gε = ρε ∗ g.

From (5.19), one derives easily for any λ ∈ R and for K = min((gε−λ)
+/δ, 1),

δ > 0,

(5.20)

∫

Rn×(0,T )
(gε − λ)

(

A(e) · ∇(Kξ)− (Kξ)t
)

dx dt ≤ 0 .

Arguing as in the proof of Lemma 5.1, by letting successively δ → 0 and ε→ 0

in (5.20), we get (5.15) for k = 0.

Assume that k > 0. Then λ = 0 and (g − λ)+ = g.

Since s 7−→ min( (k−s)+

ε , 1) is a nonincreasing function, we obtain by applying

Lemma 4.1:

∫

Q

(

A(∇u)− gA(e)
)

· ∇

(

min

(

(k − (u− xn))
+

ε
, 1

)

·
(

1− θ (u− xn)
)

ξ

)

+

+min

(

k

ε
, 1

)

g ξt dx dt = 0

which can be written by taking into account (5.15) for k = 0 and the fact that

g · (u− xn) = 0 a.e. in Q:

∫

Q
A(∇u)·∇

(

min

(

(k−(u−xn))
+

ε
, 1

)

·
(

1−θ (u−xn)
)

ξ

)

−g
(

A(e)·∇ξ−ξt
)

dx dt =

=

(

min

(

k

ε
, 1

)

− 1

)
∫

Q
g
(

A(e) · ∇ξ − ξt
)

dx dt ≥ 0 .

Hence the lemma follows for k > 0.

Then, we can prove:

Theorem 5.4. Let (u1, g1) and (u2, g2) be two solutions of (P). Let B be a

bounded open subset of Rn such that either B ∩ Γ = ∅ or B ∩ Γ is a Lipschitz
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graph. Then we have for i = 1, 2:

(5.21)

∫

Q

{

(

(

A(∇ui)−A(∇um)
)

−(gi−gM )A(e)

)

·∇v+(gi−gM ) vt

}

dx dt ≤ 0

∀ v ∈ D(B × (0, T )), v ≥ 0, supp(v) ∩ (Σ1 ∪ Σ3) = ∅ ,

where um = min(u1, u2) and gM = max(g1, g2).

Proof: Let us consider (u1, g1) and (u2, g2) as two pairs defined almost

everywhere in Q×Q in the following way:

(5.22) (u1, g1) (resp. (u2, g2)) :

(x, t, y, s) 7−→ (u1(x, t), g1(x, t)) (resp. (u2(y, s), g2(y, s))) .

Let v ∈ D(B × (0, T )), v ≥ 0, supp(v) ∩ (Σ1 ∪ Σ3) = ∅. Let ρ1,δ ∈ D(R),

ρ1,δ ≥ 0,

∫

R
ρ1,δ(t) dt = 1, supp(ρ1,δ) ⊂ (−δ, δ) and let ρ2,δ ∈ D(Rn), ρ2,δ ≥ 0,

∫

Rn
ρ2,δ(x) dx = 1, supp(ρ2,δ) ⊂ B(xδ, δ) where xδ → 0 when δ → 0, is such that:

(5.23) ρ2,δ

(

x− y

2

)

= 0 ∀ (x, y) ∈ (B ∩ Ω)× (B\Ω) .

If we set ζ(x, t, y, s) = v(x+y
2 , t+s

2 ) ρ1,δ(
t−s
2 ) ρ2,δ(

x−y
2 ), then for δ small enough,

ζ ∈ D(B × (0, T )×B × (0, T )) and satisfies for Σ = ∂Ω× (0, T ):

(5.24) ζ = 0 on ((Σ1 ∪ Σ3)×Q) ∪ (Q× Σ) .

Then, for almost every (y, s) ∈ Q we can apply Lemma 5.2 to (u1, g1) with

k = u2(y, s) − yn, λ = g2(y, s), ξ(x, t) = ζ(x, t, y, s), ξ1(x, t) = ζ(x, t, y, s) and

ξ2(x, t) = 0. So, denoting ∇x = ( ∂
∂x1

, ..., ∂
∂xn

), we get after integrating over Q:

(5.25)

∫

Q×Q

{

A(∇xu1) · ∇x

(

min

(

((u1 − xn)− (u2 − yn))
+

ε
, 1

)

ζ

)

+

+ (g2 − g1)
+
(

A(e) · ∇xζ − ζt
)

}

dx dt dy ds ≤

≤
∫

Q
C(u1, u2 − yn, ζ) dy ds .

Similarly, for almost every (x, t) ∈ Q, we apply Lemma 5.3 to (u2, g2) with

θ = 0, k = u1(x, t) − xn, λ = g1(x, t), ξ(y, s) = ζ(x, t, y, s). Then we have after
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integrating over Q, since g1 does not depend on y and ζ = 0 on Q× Σ:

(5.26)

∫

Q×Q
−

{

A(∇yu2) · ∇y

(

min

(

((u1 − xn)− (u2 − yn))
+

ε
, 1

)

ζ

)

−

− (g2 − g1)
+
(

A(e) · ∇yζ − ζs
)

}

dx dt dy ds ≤ 0 .

Since u1 does not depend on y, u2 does not depend on x and

min( ((u1−xn)−(u2−yn))+

ε , 1) ζ = 0 on (Σ×Q) ∪ (Q× Σ), we easily derive that:

∫

Q×Q
A(∇xu1)·∇y

(

min

(

((u1−xn)−(u2−yn))
+

ε
, 1

)

ζ

)

dx dt dy ds = 0 ,(5.27)

−
∫

Q×Q
A(∇yu2)·∇x

(

min

(

((u1−xn)−(u2−yn))
+

ε
, 1

)

ζ

)

dx dt dy ds = 0 .(5.28)

Now since (∇x + ∇y)u1 = ∇xu1 and (∇x + ∇y)u2 = ∇yu2, we get by adding

(5.25), (5.26), (5.27), (5.28) and taking in account (1.5)

(5.29)

∫

Q×Q

{(

(

A
(

(∇x +∇y)u1
)

−A
(

(∇x +∇y)u2
)

)

· (∇x +∇y) ζ

)

·

·min

(

((u1−xn)−(u2−yn))
+

ε
, 1

)

+(g2−g1)
+
(

A(e)·(∇x+∇y)ζ−ζt−ζs
)

}

dx dt dy ds ≤

≤
∫

Q
C(u1, u2−yn, ζ) dy ds−

−
∫

Q×(Q∩[u2=yn])

{

(

A(∇xu1)−A(e)
)

· ∇x

(

min

(

u1 − xn
ε

, 1

)

)}

ζ dx dt dy ds .

Using (5.10) and the Lebesgue theorem, we get
∫

Q
C(u1, u2−yn, ζ) dy ds =

= lim
ε→0

∫

Q∩[u2=yn]

{

∫

Q

{

(

A(∇xu1)−A(e)
)

·∇x

(

min

(

u1−xn
ε

, 1

)

)}

ζ dx dt

}

dy ds

whence by letting ε→ 0 in (5.29), we obtain:

(5.30)

∫

Q×Q

(

{(

A
(

(∇x +∇y)u1
)

−A
(

(∇x +∇y)u2
)

)

· (∇x +∇y) ζ

}

·

·χ
(

[u1−u2 ≥ xn−yn]
)

+(g2−g1)
+
(

A(e)·(∇x+∇y) ζ−ζt−ζs
)

)

dx dt dy ds ≤ 0 .
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At this stage, let us introduce the following change of variables:

x+ y

2
= z ,

t+ s

2
= τ ,

x− y

2
= σ ,

t− s

2
= θ .

Moreover, let:

û1(z, τ, σ, θ) = u1(z + σ, τ + θ), ĝ1(z, τ, σ, θ) = g1(z + σ, τ + θ) ,

û2(z, τ, σ, θ) = u2(z − σ, τ − θ), ĝ2(z, τ, σ, θ) = g2(z − σ, τ − θ) ,

γ1(z, τ, σ, θ) = γ(z + σ, τ + θ), γ2(z, τ, σ, θ) = γ(z − σ, τ − θ) ,

where γ is the characteristic function of Q. Then, from (5.30) we have:

∫

R2n+2

γ1 · γ2

{

(

χ
(

[û1 − û2 ≥ 2σn]
)

·
(

A(∇zû1)−A(∇zû2)
)

)

· ∇zv +

+ (ĝ2 − ĝ1)
+
(

A(e) · ∇zv − vτ
)

}

ρ1,δ ρ2,δ dz dτ dσ dθ ≤ 0 .

Hence, by letting δ → 0, we get (5.21).

Lemma 5.5. Let (u1, g1) and (u2, g2) be two solutions of (P). Let B be a

bounded open subset of Rn such that either B ∩ Γ = ∅ or B ∩ Γ is a Lipschitz

graph. Let g ∈ L∞(Q) such that:

(5.31) 0 ≤ g ≤ gi a.e. in Q , div(gA(e))− gt = 0 in D
′(Q) .

Then we have for i, j ∈ {1, 2}, i 6= j:

(5.32)

∫

Q

{

(

(

A(∇ui)−A(∇um)
)

+(gj−g)
+A(e)

)

·∇v−(gj−g)
+vt

}

dx dt ≤ 0

∀ v ∈ D(B×(0, T )), v ≥ 0, supp(v) ∩ (σ1 ∪ Σ4) = ∅ .

Proof: We consider (u1, g1) and (u2, g2) as two pairs of functions defined in

Q×Q like in (5.22). Let v be as in (5.32), let ρ1,δ1 ∈D(R), ρ1,δ1≥0,

∫

R
ρ1,δ1(t) dt=1,

supp(ρ1,δ1) ⊂ (−δ1, δ1) and let ρ2,δ2 ∈ D(Rn), ρ2,δ2 ≥ 0,

∫

Rn
ρ2,δ2(x) dx = 1,

supp(ρ2,δ2) ⊂ B(xδ2 , δ2) where xδ2 → 0 when δ2 → 0, is such that: ρ2,δ2(
x−y
2 ) = 0

∀ (x, y) ∈ (B\Ω) × (B ∩ Ω). Then for δ1 and δ2 small enough, let us define

ζ ∈ D(B×(0, T )×B×(0, T )) by: ζ(x, t, y, s) = v(x+y
2 , t+s

2 ) ρ1,δ1(
t−s
2 ) ρ2,δ2(

x−y
2 ).

Then we have:

(5.33) ζ = 0 on (Σ×Q) ∪ (Q× (σ1 ∪ Σ4)) .
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Now, since supp(v)∩(σ1∪Σ4) = ∅, we can find η such that 0 < η < min
supp(v)∩Σ3

ϕ,

if supp(v) ∩ Σ3 6= ∅. Then there exists θ ∈ C∞(R) ∩ C0,1(R) such that θ′ ≥ 0

and θ(r) = 0 if r ≤ 0, θ(r) = 1 if r ≥ η. If supp(v) ∩ Σ3 = ∅, we take θ = 0.

Consequently, for δ1 and δ2 small enough, we have

(5.34)
(

1− θ (u2 − yn)
)

ζ = 0 on (Σ×Q) ∪ (Q× Σ2) .

Using (5.34), for a.e. (y, s) ∈ Q, we can apply Lemma 5.2 to (u1, g1) with

k = u2(y, s) − yn, λ = g2(y, s), ξ(x, t) = ξ2(x, t) = ζ(x, t, y, s), ξ1(x, t) = 0

and ĝ = g. So we get after integrating over Q:

(5.35)

∫

Q×Q

{

A(∇xu1) · ∇x

(

Fε(u1, u2) ζ
)

+

+ (g2 − g)
+
(

A(e) · ∇xζ − ζt
)

}

dx dt dy ds ≤ 0

where Fε(u1, u2) = min( ((u1−xn)−(u2−yn))+

ε , 1). Similarly, for a.e. (x, t) ∈ Q,

we apply Lemma 5.3 to (u2, g2), with k = u1(x, t) − xn, λ = g(x, t), ξ(y, s) =

ζ(x, t, y, s). Then we have:

(5.36)

∫

Q×Q
−

{

(

A(∇yu2)− gA(e)
)

· ∇y

(

Fε(u1, u2) ζ
(

1− θ(u2 − yn)
)

)

−

− (g2 − g)
+
(

A(e) · ∇yζ − ζs
)

}

dx dt dy ds ≤ 0 .

By Corollary 4.2, we get:

(5.37)

∫

Q×Q
A(∇xu1) · ∇x

(

Fε(u1, u2) ζ
)

dx dt dy ds = 0 .

Then we get by adding (5.35) and (5.36):
∫

Q×Q

{

(

A(∇xu1)−A(∇yu2)
)

· (∇x +∇y)
(

Fε(u1, u2) ζ
)

+

+ (g2 − g)
+
(

A(e) · (∇x +∇y) ζ − ζt − ζs
)

}

dx dt dy ds −

−
∫

Q×Q
A(∇xu1) · ∇y

(

Fε(u1, u2) ζ
)

dx dt dy ds

+

∫

Q×Q
A(∇yu2) · ∇x

(

Fε(u1, u2) ζ
)

dx dt dy ds

+

∫

Q×Q
A(∇yu2) · ∇y

(

Fε(u1, u2) θ(u2 − yn) ζ
)

dx dt dy ds

+

∫

Q×Q
gA(e) · ∇y

(

Fε(u1, u2)
(

1− θ (u2 − yn)
)

ζ

)

dx dt dy ds ≤ 0
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which leads by taking into account (5.31), (5.34), (5.37)

(5.38)

∫

Q×Q

{(

A
(

(∇x+∇y)u1
)

−A
(

(∇x+∇y)u2
)

)

·(∇x+∇y)
(

Fε(u1, u2) ζ
)

}

+

+ (g2 − g)
+
(

A(e) · (∇x +∇y) ζ − ζt − ζs
)

dx dt dy ds +

+

∫

Q×Q

(

A
(

(∇x +∇y)u2
)

− gA(e)

)

· (∇x +∇y)
(

Fε(u1, u2) θ(u2 − yn) ζ
)

−

−

(

A
(

(∇x +∇y)u1
)

− gA(e)

)

· (∇x +∇y)
(

Fε(u1, u2) ζ
)

dx dt dy ds ≤ 0 .

Let us denote by I1(ε, δ1, δ2) the first integral in (5.38) and by I2(ε, δ1, δ2) the

second one. Using (1.5) we get by letting successively δ2 → 0, δ1 → 0, ε→ 0

(5.39)

∫

Q

(

A(∇u1)−A(∇um)
)

· ∇v + (g2 − g)
+
(

A(e) · ∇v − vt
)

dx dt ≤

≤ lim inf
ε→0

(

lim
δ1→0

(

lim
δ2→0

I1(ε, δ1, δ2)
)

)

.

Now letting δ2 → 0, we get:

(5.40) I2(ε, δ1) = lim
δ2→0

I2(ε, δ1, δ2) =

=

∫ T

0

∫

Q

{

(

A(∇u2)− gA(e)
)

· ∇

(

min

(

(u1−u2)
+

ε
, 1

)

θ(u2 − xn) v ρ1,δ1

)

−
(

A(∇u1)− gA(e)
)

· ∇

(

min

(

(u1 − u2)
+

ε
, 1

)

v ρ1,δ1

)}

dx dt ds ,

where u1 = u1(x, t), g = g(x, t), u2 = u2(x, s), g2 = g2(x, s), v = v(x, t+s
2 ), ρ1,δ1 =

ρ1,δ1(
t−s
2 ). By taking into account that (1−θ(u2(x, s)−xn)) v(x, t, s) ρ1,δ1(

t−s
2 )=0

∀ (x, t) ∈ Σ2, ∀ s ∈ (0, T ), we deduce from Lemma 4.1 with F (z1, z2) =

min( (z1−z2)+

ε , 1) (1− θ(z2)) and v = u2 − xn:

∫ T

0

∫

Q

(

A(∇u1)− g1A(e)
)

·

· ∇

(

min

(

(u1 − u2)
+

ε
, 1

)

(

1− θ(u2 − xn)
)

v ρ1,δ1

)

dx dt ds = 0



32 A. LYAGHFOURI

and therefore, from (5.40), we get by taking into account that g ≤ g1 and that

θ(0) = 0:

(5.41) I2(ε, δ1) =

=

∫ T

0

∫

Q

(

A(∇u2)− g2A(e)
)

·∇

(

min

(

(u1−u2)
+

ε
, 1

)

θ(u2 − xn) v ρ1,δ1

)

dx dt ds

−
∫ T

0

∫

Q

(

A(∇u1)− g1A(e)
)

·∇

(

min

(

(u1−u2)
+

ε
, 1

)

θ(u2 − xn) v ρ1,δ1

)

dx dt ds .

Apply Lemma 4.1 to u2 with v = u1−xn, F (z1, z2) = min( (z2−z1)+

ε , 1) (1−θ(z1))

and F (z1, z2) = min( (z2−z1)+

ε , 1). Subtract the equations, we get by taking in

account the fact that θ(0) = 0, g2 · (u2 − xn) = 0 a.e. in Q and since

±

(

min

(

(u1−ψ(x, s))
+

ε
, 1

)

−min

(

(ψ(x, t)−ψ(x, s))+

ε
, 1

)

)

θ(ψ(x, s)−xn) v ρ1,δ1

is a test function for (P):

(5.42)

∫ T

0

∫

Q

(

A(∇u2)−g2A(e)
)

·∇

(

min

(

(u1−u2)
+

ε
, 1

)

θ(u2−xn) v ρ1,δ1

)

dx dt ds =

=

∫ T

0

∫

Q

(

A(∇u2)− g2A(e)
)

·∇

(

min

(

(ψ(x, t)−ψ(x, s))+

ε
, 1

)

θ(ψ(x, s)− xn) vρ1,δ1

)

+ g2
∂

∂s

(

min

(

(ψ(x, t)− ψ(x, s))+

ε
, 1

)

θ(ψ(x, s)− xn) vρ1,δ1

)

dx dt ds .

In the same way, we have by applying Lemma 4.1 to u1 with v = u2 − xn,

F (z1, z2) = min( (z1−z2)+

ε , 1) θ(z2)

(5.43)

∫ T

0

∫

Q

(

A(∇u1)−g1A(e)
)

·∇

(

min

(

(u1−u2)
+

ε
, 1

)

θ(u2−xn) v ρ1,δ1

)

dx dt ds =

=

∫ T

0

∫

Q

(

A(∇u1)− g1A(e)
)

· ∇

(

min

(

(ψ(x, t)−ψ(x, s))+

ε
, 1

)

θ
(

ψ(x, s)− xn
)

v ρ1,δ1

)

+ g1
∂

∂t

(

min

(

(ψ(x, t)− ψ(x, s))+

ε
, 1

)

θ
(

ψ(x, s)− xn
)

v ρ1,δ1

)

dx dt ds .
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Combining (5.41)–(5.43) we get since g1 does not depend on s and g2 does not

depend on t:

(5.44) I2(ε, δ1) =

∫

(0,T )2

∫

Ω

{

(

A(∇u2)−A(∇u1)
)

+

+ (g1 − g2)A(e) · ∇

(

min

(

(ψ(x, t)−ψ(x, s))+

ε
, 1

)

θ
(

ψ(x, s)− xn
)

v

)

+ (g2−g1)

(

∂

∂t
+
∂

∂s

)

(

min

(

(ψ(x, t)−ψ(x, s))+

ε
, 1

)

θ
(

ψ(x, s)− xn
)

v

)}

ρ1,δ1 dx dt ds.

Then by letting δ1 → 0 in (5.44) we obtain obviously I2(ε) = limδ1→0 I2(ε, δ1) = 0

and therefore from (5.38)–(5.40) we deduce (5.32).

From the above lemma we can prove the following result:

Lemma 5.6. Let (u1, g1) and (u2, g2) be two solutions of (P). Let B be a

bounded open subset of Rn such that B ∩ Γ = ∅ or B ∩ Γ is a Lipschitz graph.

Then we have for i = 1, 2:

(5.45)

∫

Q

{(

(

A(∇ui)−A(∇um)
)

−(gi−gM )A(e)

)

·∇v+(gi−gM ) vt

}

dx dt ≤ 0

∀ v ∈ D(B×(0, T )), v ≥ 0, supp(v) ∩ (σ1 ∪ Σ2) = ∅ .

Proof: Let v ∈ D(B× (0, T )), v ≥ 0 and supp(v) ∩ (σ1 ∪ Σ2) = ∅. Let

θε ∈W
1,∞(Ω) defined by θε(x) = (1− d(x,∂Ω)

ε )+, set Ωε = {x ∈ Ω / d(x, ∂Ω) < ε}

and let g as in (5.31). Then, from Lemma 5.4, we have for i = 1, 2

∫

Q

(

(

A(∇ui)−A(∇um)
)

− (gi − gM )A(e)

)

· ∇v + (gi − gM ) vt dx dt ≤

≤
∫

Q

(

(

A(∇ui)−A(∇um)
)

− (gi − gM )A(e)

)

·∇(vθε) + (gi − gM ) (vθε)t dx dt =

=

∫

Q

(

(

A(∇ui)−A(∇um)
)

+ (gj − g)
+A(e)

)

·∇(vθε)− (gj− g)
+(vθε)t dx dt

+

∫

Q

(

(gj − gi)
+ − (gj − g)

+
) (

A(e) · ∇(v θε)− (v θε)t
)

dx dt

=

∫

Ωε×(0,T )

(

(gj−gi)
+− (gj− g)

+
) (

A(e)·∇(vθε)−(vθε)t
)

dx dt by Lemma 5.5
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≤ max(1, β)

(

|Ωε×(0, T )|1/2
(

(

∫

Ωε×(0,T )
|∇v|2 dx dt

)1/2
+
(

∫

Ωε×(0,T )
|vt|

2 dx dt
)1/2

)

+
1

ε

∫

Ωε×(0,T )
v dx dt

)

.

From Hölder and Poincaré inequalities, we deduce the existence of a constant

C such that:
∫

Q

{(

(

A(∇ui)−A(∇um)
)

− (gi − gM )A(e)

)

· ∇v + (gi − gM ) vt

}

dx dt ≤

≤ max(1, β)

(

(

T 1/2 |Ωε|
1/2 + ε1/2 C

)

·

·

(

(

∫

Ωε×(0,T )
|∇v|2 dx dt

)1/2
+
(

∫

Ωε×(0,T )
|vt|

2 dx dt
)1/2

)

)

which leads to (5.45) by letting ε go to 0.

Lemma 5.7. Let (u1, g1) and (u2, g2) be two solutions of (P). Let B be a

bounded open subset of Rn such that B ∩ Γ = ∅ or B ∩ Γ is a Lipschitz graph.

Then we have for i = 1, 2:

(5.46)

∫

Q

{(

(

A(∇ui)−A(∇um)
)

−(gi−gM )A(e)

)

·∇v+(gi−gM ) vt

}

dx dt ≤ 0

∀ v ∈ D(B×(0, T )), v ≥ 0, supp(v) ∩ (Σ1 ∪ Σ4) = ∅ .

Proof: Let v be as in Lemma 5.7. Let θ be a smooth function such that

θ(0) = 0, 0 ≤ θ ≤ 1 and v(1 − θ(ψ − xn)) = 0 on Σ. Let θε, Ωε and g as in the

precedent proof, one derives for i, j = 1, 2:
∫

Q

(

(

A(∇ui)−A(∇um)
)

− (gi − gM )A(e)

)

· ∇v + (gi − gM ) vt dx dt ≤

≤
∫

Ωε×(0,T )

(

(gj−gi)
+−(gj−g)

+
)

(

A(e)·∇

(

v θε
(

1−θ(uj−xn)
)

)

−(vθε)t

)

dx dt .

We conclude by using Hölder and Poincaré inequalities and letting ε go to 0.

From the previous lemmas, we can easily state the following theorem:

Theorem 5.8. Let (u1, g1) and (u2, g2) be two solutions of (P). Then we

have for i = 1, 2:

(5.47)

∫

Q

{(

(

A(∇ui)−A(∇um)
)

−(gi−gM )A(e)

)

·∇v+(gi−gM ) vt

}

dx dt ≤ 0

∀ v ∈ D(B×(0, T )), v ≥ 0, v(x, 0) = v(x, T ) = 0 a.e. in Ω .
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Proof: Let v like in (5.47). By taking into account that σ1 and σ2 are (1, q
′)

polar sets ofQ, there exists a sequence (vε) such that: vε ∈ D(Ω×(0, T )\(σ1∪σ2)),

vε ≥ 0, vε −→ v in W 1,q(Q). By means of partition of the unit we can write:

vε = uε,1 + vε,1 + wε,1 where uε,1, vε,1 and wε,1 satisfy respectively Lemma 5.4,

Lemma 5.6 and Lemma 5.7, whence we get for i = 1, 2
∫

Ω

(

(

A(∇ui)−A(∇um)
)

− (gi − gM )A(e)

)

· ∇vε + (gi − gM ) vεt dx dt ≤ 0

and by letting ε→ 0, we obtain (5.47).

Now we have the following uniqueness result:

Theorem 5.9. Assume that (5.1)–(5.2) satisfied, then there exists one and

only one solution of (P).

Proof: Apply (5.47) to a function v ∈ D(0, T ), v ≥ 0, we get:
∫

Q
(gi−gM ) vt dx dt ≤ 0 which leads to

d

dt

∫

Ω
(gM−gi) dx ≤ 0 in D

′(0, T ), i=1, 2.

Taking into account (4.10), we deduce that g1= g2= gM a.e. in Q. From Theo-

rem 5.8 we have now for i = 1, 2

(5.48)

∫

Q

(

A(∇ui)−A(∇um)
)

· ∇v dx dt ≤ 0 ∀ v ∈ D(Ω× (0, T )), v ≥ 0 .

By approximation, (5.48) still holds for v = ui − um and then we get by (1.5),

since u1 − u2 = 0 on Σ2, u1 = u2 = um a.e. in Q. This achieves the proof.
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[20] Lions, J.L. – Quelques méthodes de résolution des problèmes aux limites non
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