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SOME EMBEDDINGS OF THE SPACE OF
PARTIALLY COMPLEX STRUCTURES

C. Ferreira and A. Machado

Abstract: Let E be a Euclidean n-dimensional vector space. A partially complex

structure with dimension k in E is a couple (F, J), where F ⊂ E is a real vector sub-

space, with dimension 2k, and J : F → F is a complex structure in F , compatible with

the induced inner product. The space of all such structures can be identified with the

holomorphic homogeneous non symmetric space O(n)/(U(k)× O(n− 2k)). We study a

family (Gkt(E))t∈[0,π[ of equivariant models of this homogeneous space inside the orthog-

onal group O(E), from the viewpoint of its extrinsic geometry. The metrics induced by

the biinvariant metric of O(E) correspond to an interval of the one-parameter family of

invariant compatible metrics of this homogeneous space, including the Kähler and the

naturally reductive ones. The manifolds Gkt(E) are (2, 0)-geodesic inside O(E); some of

them are minimal inside O(E) and others are minimal inside a suitable sphere. We show

also that the model Fk(E) inside the Lie algebra o(E), corresponding to the compatible

f -structures of Yano, is (2, 0)-geodesic and minimal inside a sphere.

1 – Introduction

It has been known for a long time that a large class of compact symmetric

homogeneous spaces can be isometric and equivariantly embedded in a convenient

Euclidean space with an image that is minimal on a sphere (cf., for example

Kobayashi [3] and Takeushi & Kobayashi [7]). These examples have been regarded

later by Ferus [1] from the viewpoint of the notion of symmetric submanifold.
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More recently Uhlenbeck [8] used a slight modification of this method in order

to embed the complex Grassmann manifold as a totally geodesic submanifold of

the unitary group.

In this article we look to some interesting equivariant embeddings of a compact

non symmetric homogeneous space, the space of partially complex structures.

Following Salamon [6], given a Euclidean n-dimensional space E, a partially

complex structure on E, with complex dimension k, is a couple (F, J), where

F is a 2k-dimensional real vector subspace and J is a complex structure on F

compatible with the inner product. There is a natural transitive action of the

orthogonal group O(E) on the set of partially complex structures that realizes it

as a homogeneous manifold O(n)/U(k)×O(n−2k) and it is well known that this

manifold can be equivariantly embedded into the Lie algebra o(E) by associating

to each couple (F, J) the skew-adjoint linear map λ : E → E that equals J on F

and is 0 on F⊥. The image Fk(E) of this embedding is the set of all skew-adjoint

linear maps λ such that λ3 = −λ a set whose origin goes back to the notion of

f -structure of Yano [9]. The set of all partially complex structures on E, with

complex dimension k, is a complex manifold in a natural way (cf., for example,

Rawnsley [4]) and carries a one-parameter family of non homothetic invariant

metrics, all of them compatible with the complex structure; among these ones

there are two specially important, the Kähler metric and the naturally reductive

one. The metric induced in Fk(E) by the ambient space is of course one of these

invariant metrics but it is not any of the two we have referred.

Although the embedding that we denote by Fk(E) has been considered by

several authors, it seems that its extrinsic geometry has not received sufficient

attention. In section 3 we will show that this manifold, with its complex structure

(Jλ), has some interesting extrinsic properties: it is minimal inside a sphere and

its second fundamental form hλ verifies hλ ◦ (Jλ × Jλ) = hλ, a relation that

is opposed to the usual condition of circularity or pluriharmonicity and that is

referred as “(2, 0)-geodesic” in Rigoli & Tribuzy [5]. Moreover, and although

this has of course an intrinsic nature, we remark also that Fk(E) has a traceless

covariant derivative of the complex structure, in other words, it is a semi-Kähler

manifold in the sense of Gray [2] or cosymplectic as in Salamon [6].

We obtain in section 4 a new family of equivariant embeddings of our mani-

fold, now into the orthogonal group, by taking the image Gkt(E) of the homoth-

etic manifold tFk(E) by the exponential map of this group, for each real t 6= 0

modπ. In fact, for each such t, the map Fk(E) → Gkt(E), λ 7→ exp(tλ), is a

non homothetic equivariant diffeomorphism that can be easily described explic-

itly. The complex structure of Fk(E) induces a complex structure on each Gkt(E)

that is compatible with the Riemannian metric that comes from O(E), a met-
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ric that belongs to the one-parameter family referred above. The metrics of the

one-parameter family that are associated to each one of the manifolds Gkt(E),

modulo homothety, constitute a one side unbounded interval and include the two

most important ones, the naturally reductive metric, for t = ± 2π3 mod 2π, and

the Kähler metric, for t = ±π
2 mod 2π. Similarly to Fk(E), each manifold Gkt(E)

is semi-Kähler and (2, 0)-geodesic inside O(E) (not as a submanifold of the whole

Euclidean space L(E;E)). We constat the existence here of some phenomena of

minimality: For each value of n and k, such that n ≥ 2k > 2, Gkt(E) is minimal

inside O(E), when cos(t) = − n−2k
n−k−1 , and Gkt(E) is minimal inside a sphere cen-

tered at a IdE , when cos(t) = −k+1
2k and a = n−3k−1

n . We remark also that, when

n = 3k− 1, the values of t such that Gkt(E) is minimal inside O(E) are the ones

that correspond to the naturally reductive metric.

2 – Notations and prerequisites

In this section we will fix some notations and recall some well known facts

that we will use latter.

If E and F are Euclidean or Hermitian spaces, we will consider in the vector

space L(E;F ), of all linear maps E → F , the Hilbert–Schmidt inner product.

If λ ∈ L(E;F ), the adjoint linear map of λ will be denoted by λ∗. The vector

subspaces of L(E;E) whose elements are the self-adjoint linear maps and the

skew-adjoint ones will be denoted by Lsa(E;E) and L−sa(E;E), respectively.

Let E be a Euclidean space. The intrinsic geometry of the orthogonal group

O(E) ⊂ L(E;E), with its natural biinvariant metric, can be deduced from the

extrinsic one; in fact, this biinvariant metric is precisely the one that is induced

on O(E) as a Riemannian submanifold of L(E;E). We will use several times the

fact that, for each ξ ∈ O(E), the orthogonal projection from L(E;E) onto the

tangent space Tξ(O(E)) is given by πξ(α) =
α−ξ◦α∗◦ξ

2 .

We will now recall a well known isometric embedding of the Grassmann man-

ifold into Lsa(E;E) (cf., for example, Ferus [1]). The set Grk(E) ⊂ Lsa(E;E)

(0 ≤ k ≤ dim(E)),

Grk(E) =
{
λ ∈ Lsa(E;E) | λ2 = λ, Tr(λ) = k

}
,

can be regarded as a model for the Grassmannian of the k-dimensional vector

subspaces of E, by means of the identification of each vector subspace F with the

orthogonal projection πF from E onto F , and, for each λ ∈ Grk(E), the tangent
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vector space is

Tλ(Grk(E)) =
{
α ∈ Lsa(E;E) | α ◦ λ+ λ ◦ α = α

}
.

When E is a Hermitian vector space, the Grassmannian Grk(E) is only a real

submanifold of L(E;E) but it has a natural complex structure, namely the one for

which the action of the general linear group GL(E) is holomorphic. This complex

structure is defined by the structure linear maps Jλ : Tλ(Grk(E))→ Tλ(Grk(E)),

Jλ(α) = i α(2λ− Id).

3 – The first embedding of the space of partially complex structures

Let E be a Euclidean n-dimensional space. By a partially complex structure

on E we mean a couple (F, J), where F ⊂ E is an even dimensional vector

subspace and J : F → F is a complex structure, compatible with the inner

product (cf. Salamon [6]). This compatibility can be characterized by the fact

that J : F → F is an orthogonal isomorphism or, equivalently, by the equality

J∗ = −J . We will associate, to each partially complex structure (F, J), the linear

map λ ∈ L(E;E) that equals J on F and vanishes on F⊥, in other words, the one

that has matrix

[
J 0
0 0

]
(here and henceforth, whenever a vector subspace F ⊂ E

is implicitly associated to a situation, we will assume that a matrix of linear maps

must be interpreted in terms of the orthogonal direct sum E = F ⊕F⊥). Then λ,

like J , is skew-adjoint and λ3 = −λ; in fact −λ2 is the orthogonal projection onto

F and J is the restriction of λ to F . Reciprocally, given λ ∈ L(E;E) such that

λ3 = −λ and λ is skew-adjoint, then −λ2 is self-adjoint and idempotent, hence

the orthogonal projection onto a vector subspace F ⊂ E, and the restriction J ,

of λ to F , maps F onto F and is easily seen to be a complex structure on F

such that λ corresponds to the couple (F, J). This allows us to identify the set

of partially complex structures with the subset F(E) ⊂ L(E;E),

F(E) =
{
λ ∈ L(E;E) | λ3 = −λ, λ∗ = −λ

}
,

whose elements are the compatible f -structures in the sense of Yano [9], and the

set of those whose associated vector subspace has real dimension 2k with

Fk(E) =
{
λ ∈ L(E;E) | λ3 = −λ, λ∗ = −λ, Tr(λ2) = −2k

}
,

that is of course open and closed in F(E). There is a natural transitive action

of the Lie group O(E) on each Fk(E), that associates, to each ξ ∈ O(E) and
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to each linear map λ, corresponding to the couple (F, J), the linear map λ′ that

corresponds to the couple (F ′, J ′), such that F ′ = ξ(F ) and ξ/F : F → F ′ is

complex linear, with respect to the complex structures J and J ′; in fact, as it is

readily seen, we have λ′ = ξ λ ξ∗ (from now on, we will often omit the composition

sign). The fact that this transitive action is smooth and the compactness of O(E)

allow us to deduce:

Proposition 1. For each integer k such that 0 ≤ 2k ≤ n, Fk(E) is a compact

submanifold of L(E;E).

Each Fk(E) is open and closed in the union F(E), that is hence also a compact

manifold. In fact, the Fk(E) with 2k < n are connected components of F(E),

because the action of the connected subgroup SO(E) on each of them is also

transitive, and, by a similar reason, if 0 < 2k = n, Fk(E) is the union of two

connected components.

Proposition 2. The manifold Fk(E) has dimension 2nk − 3k2 − k and, for

each λ ∈ Fk(E), corresponding to the couple (F, J), the elements of the tangent

vector space Tλ(Fk(E)) are the linear maps α ∈ L(E;E) that verify any of the

following two equivalent conditions:

a) α∗ = −α and αλ2 + λαλ+ λ2 α = −α;

b) The matrix of α is

[
α1,1 α1,2
α2,1 0

]
, with α1,1 : F → F skew-adjoint and anti-

linear (with respect to J) and α1,2 = −α∗
2,1.

Proof: The isotropy subgroup at λ is the set of elements ξ ∈ O(E) whose

matrix is

[
ξ1,1 0
0 ξ2,2

]
, with ξ1,1 : F → F unitary, with respect to J , and

ξ2,2 : F⊥ → F⊥ orthogonal; its dimension is hence k2 + (n−2k) (n−2k−1)
2 . The

dimension of the orthogonal group being n(n−1)
2 , we deduce that the dimen-

sion of the manifold Fk(E) is equal to 2nk − 3k2 − k. The fact that each

λ ∈ Fk(E) verifies λ∗ = −λ and λ3 = −λ implies, by differentiation that each

α ∈ Tλ(Fk(E)) verifies condition a). If α ∈ L(E;E) verifies condition a) and

has matrix

[
α1,1 α1,2
α2,1 α2,2

]
, then one deduces, from the first equality, that α1,1 and

α2,2 are skew-symmetric and that α1,2 = −α∗
2,1 and, from the second one, that

α2,2 = 0 and −α1,1 + J α1,1 J = 0, hence J α1,1 = −α1,1 J , so that we have

condition b). We remark now that the space of linear maps α1,1 : F → F that

are skew-adjoint and anti-linear has dimension k2 − k, because the space of all
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skew-adjoint linear maps has dimension 2k2 − k and the space of those that are

skew-adjoint and C-linear has dimension k2. Hence the dimension of the space

of linear maps α : E → E that verify condition b) is 2nk − 3k2 − k, the same as

the dimension of the tangent space Tλ(Fk(E)) and this terminates our proof.

It is well known that F(E) is diffeomorphic to the closed complex subman-

ifold of the complex Grassmannian Gr(EC), of the complexified EC of E (with

the associated Hermitian inner product), whose elements correspond to the com-

plex vector subspaces that are orthogonal to their conjugates (the isotropic sub-

spaces) and that, as such, F(E) inherits a complex structure, that is invariant

under the action of O(E) (Rawnsley [4], Proposition 2.1). This diffeomorphism

Ψ associates, to each λ ∈ F(E), corresponding to the couple (F, J), the orthog-

onal projection from EC onto the i eigenspace of the complex linear extension

J : FC → FC. For our purposes, it will be enough to exhibit Ψ as a smooth

immersion from F(E) into Gr(EC), in order to characterize the linear maps

Jλ : Tλ(F(E))→ Tλ(F(E)) that define the complex structure of F(E).

Proposition 3. The map Ψ:F(E)→Gr(EC) is defined by Ψ(λ)=− 12(λ2+iλ),

where, as usual, we use the same letter to denote a linear map E → E and its

complex linear extension EC → EC. The map Ψ is hence a smooth immersion.

Proof: Let λ ∈ F(E) correspond to the couple (F, J). The fact that the

complex structure J is compatible with the inner product of E implies that the

complexified FC is the orthogonal direct sum of the subspaces F ′
C and F ′′

C, whose

elements are respectively the i eigenvectors and the−i eigenvectors of the complex

linear extension J : FC → FC. Hence, the orthogonal projection from FC onto F ′
C

is 12(Id− i J) and the fact that −λ2 : EC → FC is the orthogonal projection form

EC onto FC implies that the orthogonal projection of EC onto F ′
C is−12(Id−i J)λ2

i.e., −12(λ2 + i λ), because Jλ2 = −λ,whence our characterization of Ψ(λ). By

differentiation we obtain DΨλ(α) = −12(αλ + λα + i α), and, looking to the

imaginary part of the second member, we deduce that Ψ is an immersion.

Proposition 4. For each λ ∈ F(E), corresponding to the couple (F, J), there

exists a complex structure Jλ of the tangent vector space Tλ(F(E)), defined by

Jλ(α) = (IdE + λ2)αλ− λα or, in matricial terms,

[
α1,1 α1,2
α2,1 0

]
7−→

[−J α1,1 −J α1,2
α2,1 J 0

]
=

[
α1,1 J −J α1,2
α2,1 J 0

]
.

The family (Jλ) defines F(E) as a complex manifold and is, in fact, the only

one that makes the smooth immersion Ψ : F(E) → Gr(EC) holomorphic. The
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complex structure on F(E) is compatible with the inner product that comes from

the ambient space Lsa(E;E) and with the action of O(E).

Proof: Recalling the matricial characterization of the tangent vector space

in Proposition 2 and the fact that J∗ = −J , we deduce that the matricial char-

acterization of Jλ defines indeed a linear map Jλ : Tλ(F(E)) → Tλ(F(E)) and

that Jλ ◦ Jλ = −Id. The intrinsic characterization of Jλ(α) is a simple con-

sequence of the matricial one. We have hence an almost complex structure in

F(E) and, in order to conclude that it is indeed a complex structure, it will

be enough to prove that the immersion Ψ is holomorphic. In order to do that,

we use matrices relative to the direct sums E = F ⊕ F⊥ and EC = FC ⊕ F⊥
C ,

as well as the intrinsic characterization of the complex structure of the Grass-

mann manifold in section 2: If α ∈ Tλ(F(E)) has matrix

[
α1,1 α1,2
α2,1 0

]
, then

DΨλ(α) = −12(αλ + λα + i α) has matrix − 12
[

iα1,1 J α1,2 + i α1,2
α2,1 J + i α2,1 0

]

and Ψ(λ) = −12(λ2 + i λ) and 2Ψ(λ) − Id have matrices 1
2

[
Id− i J 0

0 0

]
and

[−i J 0
0 −Id

]
so that JΨ(λ)(DΨλ(α)) = iDΨλ(α) ◦ (2Ψ(λ) − Id) has matrix

−12
[

i α1,1 J −i J α1,2 + α1,2
−α2,1 + i α2,1 J 0

]
, that is also the matrix of DΨλ(Jλ(α)),

hence JΨ(λ)(DΨλ(α)) = DΨλ(Jλ(α)), as we want. The fact that the complex

structure is compatible with the inner product that comes from the ambient

space follows easily from its matricial characterization and its compatibility with

the action of O(E) comes from its intrinsic characterization.

Let us remark that some authors (cf. Rigoli & Tribuzy [5]) use the −i eigen-
space of the complex extension of J , instead of the i eigenspace, and obtain hence

the conjugate complex structure in F(E).

It is well known that there are two specially interesting Riemannian metrics in

F(E): The first one, the naturally reductive metric, can be characterized by the

condition that, for each fixed element λ ∈ F(E), the map Rλ : O(E) → F(E),

ξ 7→ ξ λ ξ∗, should be a Riemannian submersion; the second one, the Kähler

metric, can be obtained from the metric of the complex Grassmann manifold

Gr(EC) by the requirement that Ψ : F(E) → Gr(EC) should be an isometric

immersion. Unfortunately, with the exception of some degenerate cases, the

Riemannian metric in F(E) that comes from the ambient space Lsa(E;E) is

neither of these two, even modulo homothety. Let, in fact λ ∈ F(E) correspond

to the couple (F, J) and let us use the corresponding direct sum E = F ⊕ F⊥
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to exhibit matricial characterizations. We have then, in what concerns each of

these metrics:

The linear map D(Rλ)Id : L−sa(E;E) → Tλ(F(E)) applies each α, with

matrix

[
α1,1 α1,2
α2,1 α2,2

]
, into αλ− λα, with matrix

[
α1,1 J − J α1,1 −J α1,2

α2,1 J 0

]
, so

that its kernel Hλ is the set of such α with α1,1 a C-linear map, α1,2 = 0 and

α2,1 = 0, and the orthogonal complement Mλ of Hλ is the set of skew-adjoint

linear maps α whose matrix is

[
α1,1 α1,2
α2,1 0

]
, with α1,1 anti-linear. The image of

such α ∈Mλ has matrix

[
2α1,1 J −J α1,2
α2,1 J 0

]
, so that there are elements in Mλ

whose image have the norm multiplied by different positive constants.

We have seen, in the course of the proof of Proposition 4, how the linear

maps DΨλ : Tλ(F(E)) → TΨ(λ)(Gr(EC)) are defined in matricial terms and this

shows, as before, that there are elements in Tλ(F(E)) whose image have the norm

multiplied by different positive constants.

Another way to verify that the induced metric in F(E) is not a Kähler metric

is to compute the covariant derivative of the complex structure. The formula

that we will obtain for the referred covariant derivative and the computation of

the second fundamental form of F(E) inside L−sa(E;E) will show the existence,

after all, of some relationships between the metric and complex structures.

First of all, the matricial characterization of the tangent vector spaces ob-

tained in Proposition 2 implies readily that, for each λ ∈ F(E), corresponding

to the couple (F, J), the orthogonal projection πλ : L−sa(E;E) → Tλ(F(E))

associates, to each β ∈ L−sa(E;E) with matrix

[
β1,1 β1,2
β2,1 β2,2

]
, the element with

matrix

[ 1
2(β1,1 + J β1,1 J) β1,2

β2,1 0

]
and this allows us to deduce the following in-

trinsic characterization of πλ:

Proposition 5. If λ ∈ F(E), the orthogonal projection πλ : L−sa(E;E) →
Tλ(F(E)) is defined by πλ(β) =

1
2(λβ λ− 3λ2 β λ2 − 2λ2 β − 2β λ2).

The second fundamental form hλ : Tλ(F(E)) × Tλ(F(E)) → Tλ(F(E))⊥ can

be computed through the use of the formula hλ(α, β) = Dπλ(α)(β). This leads

to the intrinsic characterization of hλ(α, β) in next proposition, from which the

matricial one follows through a long, but straightforward, computation.

Proposition 6. The second fundamental form of F(E) inside L−sa(E;E) is
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defined by

hλ(α, β) =
1

2

(
αβ λ+ λβ α− 3αλβ λ2 − 3λαβ λ2 − 3λ2 β αλ− 3λ2 β λα−

− 2αλβ − 2λαβ − 2β αλ− 2β λα

)

and, in matricial terms,

([
α1,1 α1,2
α2,1 0

]
,

[
β1,1 β1,2
β2,1 0

])
7−→

[
µ1,1 0
0 µ2,2

]
,

µ1,1 =
1

2

(
−α1,1 J β1,1 − β1,1 J α1,1 + α1,2 β2,1 J + J β1,2 α2,1 +

+ J α1,2 β2,1 + β1,2 α2,1 J

)
,

µ2,2 = −α2,1 J β1,2 − β2,1 J α1,2 .

As horrible as the previous formulas may seem, they allow us, nevertheless,

to conclude:

Proposition 7. The second fundamental form hλ of F(E) verifies the con-

dition

hλ
(
Jλ(α), Jλ(β)

)
= hλ(α, β) .

Proof: Use the matricial formulas for hλ and Jλ in Propositions 6 and 4.

Let us remark that the previous condition, that is the opposite of the usual

condition of circularity or pluriharmonicity, translates the fact that the embed-

ding of F(E) into L−sa(E;E) is (2, 0)-geodesic, in the sense of Rigoli & Tribuzy

[5]. This condition plays also an important role in Ferus [1], where it is referred

as “equation (4)”. It is also straightforward to compute the trace of the second

fundamental form from its matricial characterization.

Proposition 8. For each λ ∈ F(E), corresponding to the couple (F, J), the

trace of the second fundamental form hλ : Tλ(F(E)) × Tλ(F(E)) → Tλ(F(E))⊥

is −2n−3k−12 λ. Hence, the manifold Fk(E) is minimal on the sphere centered on

0 and with radius
√
2k .

Proposition 9. Let λ ∈ F(E) correspond to the couple (F, J). The covariant

derivative ∇Jλ : Tλ(F(E)) → L(Tλ(F(E));Tλ(F(E))) of the complex structure
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of F(E) is defined in matricial terms by

([
α1,1 α1,2
α2,1 0

]
,

[
β1,1 β1,2
β2,1 0

])
7−→

[
0 −α1,1 β1,2

β2,1 α1,1 0

]
.

Proof: For each λ ∈ F(E), let Jλ : L−sa(E;E) → L−sa(E;E) be the lin-

ear map defined by Jλ(β) = (IdE + λ2)β λ − λβ, a linear map that extends

the complex structure Jλ : Tλ(F(E)) → Tλ(F(E)), by the intrinsic characteri-

zation of this one given in Proposition 4. In matricial terms, Jλ is defined by[
β1,1 β1,2
β2,1 β2,2

]
7→

[−J β1,1 −J β1,2
β2,1 J 0

]
and, differentiating the intrinsic formula,

DJλ(α)(β) = (αλ+ λα)β λ+ (Id+ λ2)β α−αβ, whence, if α, β ∈ Tλ(F(E))

have matrices

[
α1,1 α1,2
α2,1 0

]
and

[
β1,1 β1,2
β2,1 0

]
, then DJλ(α)(β) has matrix

[
J α1,2 α2,1 J − α1,1 β1,1 − α1,2 β2,1 −α1,1 β1,2

β2,1 α1,1 β2,1 α1,2 − α2,1 β1,2

]

(recall that α1,1 and β1,1 are anti-linear, with respect to J). Using the formula

∇Jλ(α)(β) = DJλ(α)(β) + Jλ(hλ(α, β))− hλ(α, Jλ(β))

as well as the matricial characterizations of Jλ and hλ, one obtains the stated

matricial formula for ∇Jλ(α)(β).

One of the consequences of the preceding formula is that we have∇Jλ(α)(α)=0,

when the matrix of α ∈ Tλ(F(E)) has one of the following forms

[
α1,1 0
0 0

]
or

[
0 α1,2

α2,1 0

]
. The fact that, as one verifies easily, Tλ(F(E)) has an orthonormal

basis with each element of one of these forms implies:

Proposition 10. The bilinear map Tλ(F(E)) × Tλ(F(E)) → Tλ(F(E)) de-

fined by (α, β) 7→ ∇Jλ(α)(β) is traceless, hence F(E) is a semi-Kähler manifold

(Gray [2]).

Proof: The condition that the above bilinear map is traceless is known to

be equivalent to the fact that the Kähler form is coclosed (this is essentially [2],

formula 4.6).
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4 – A family of embeddings into the orthogonal group

Let again E be a Euclidean n-dimensional space. In section 3 we embedded

the space of partially complex structures into the vector space of skew-adjoint

maps E → E, obtaining as image a submanifold F(E) ⊂ L−sa(E;E). We will

verify now that, by taking the image of the homothetic copies tF(E) by the

exponential map of the orthogonal group, we obtain a family of non isometric

embeddings into O(E), whose induced metrics include the Kähler metric and the

naturally reductive one.

For each partially complex structure (F, J) and each t ∈ R, we will denote

Jt : F → F the orthogonal isomorphism defined by

Jt = cos(t) IdF + sin(t) J ,

whose adjoint map, J∗
t = cos(t) IdF − sin(t) J , is the inverse of Jt, and we will

denote ξt : E → E the orthogonal isomorphism whose matrix, relative to the

orthogonal decomposition E = F ⊕ F⊥ is

[
Jt 0
0 IdF⊥

]
. The fact that, by differ-

entiation, we obtain J ′
t = Jt ◦ J implies that Jt = exp(t J) so that, in particular,

Js+t = Js ◦ Jt. We will also use often, without further reference, the formulas

Jt + J∗
t = 2 cos(t) IdF , Jt − J∗

t = 2 sin(t) J . In the same spirit, if λ ∈ F(E),

with matrix

[
J 0
0 0

]
, is the element corresponding to the couple (F, J), we ver-

ify readily that ξt = IdE + sin(t)λ + (1 − cos(t))λ2, a formula that implies, by

differentiation, that ξ′t = ξt ◦ λ so that ξt = exp(t λ).

Proposition 11. For each t ∈ R, such that sin(t) 6= 0, there exists a diffeo-

morphism Λt from F(E) onto a submanifold Gt(E) ⊂ O(E) defined by

Λt(λ) = exp(t λ) = ξt = IdE + sin(t)λ+ (1− cos(t))λ2 ,

whose inverse Λ−1
t : Gt(E)→ F(E) is defined by Λ−1

t (ξ) = ξ−ξ∗

2 sin(t) .

Proof: The matricial characterization of Λt(λ) = ξt implies that, if we denote

Gt(E) the image of the map Λt : F(E) → O(E), we have a well defined smooth

map Gt(E) → F(E) defined by ξ 7→ 1
2 sin(t)(ξ − ξ∗) and that this map is a left

inverse to Λt.

We will denote Gkt(E) the subset of Gt(E) whose elements correspond to the

couples (F, J) such that F has real dimension 2k; each Gkt(E) is open and closed

in Gt(E) and, by restriction of Λt, we obtain diffeomorphisms Fk(E)→ Gkt(E), so

that Gkt(E), like Fk(E), is a compact submanifold with dimension 2nk−3k2−k.
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The formula for Λt shows that it is equivariant so that, as with Fk(E), the natural

transitive action of O(E) in each Gkt(E) is the action by conjugation. We will

now identify intrinsically the elements of Gkt(E):

Proposition 12. We have

Gt(E) =
{
ξ ∈ O(E) | ξ2 − ξ∗ = (2 cos(t) + 1) (ξ − IdE)

}

=
{
ξ ∈ O(E) | ξ3 − IdE = (2 cos(t) + 1) (ξ2 − ξ)

}

and Gkt(E) is the subset of Gt(E) whose elements have trace n− 2k (1− cos(t)).

Proof: The equivalence between the two conditions comes by composing

both members of the equalities either with ξ or with ξ*. The fact that each

ξ ∈ Gkt(E) belongs to O(E), verifies ξ2 − ξ∗ = (2 cos(t) + 1) (ξ − IdE) and has

trace n− 2k(1− cos(t)) is a trivial consequence of the matricial characterization

of the linear map ξ that corresponds to a couple (F, J), if we recall that a skew-

adjoint map is traceless. Let us assume now that ξ ∈ O(E) verifies ξ2 − ξ∗ =

(2 cos(t)+ 1) (ξ− IdE). Taking the adjoint to both members we obtain ξ∗2− ξ =

(1 + 2 cos(t)) (ξ∗ − IdE) and defining then λ = 1
2 sin(t) (ξ − ξ∗) we deduce that

λ∗ = −λ and λ3 = −λ, so that λ ∈ F(E); computing then Λt(λ) = Id+sin(t)λ+

(1− cos(t))λ2, we obtain ξ, hence ξ ∈ Gt(E).

A specially simple case is the one with t = ± 2π3 mod 2π; the manifold Gt(E)

is just the set of cubic roots of the identity in the orthogonal group. Also, for

t = ±π
2 mod 2π, another important case as will be seen later, the manifold Gt(E)

is contained (in general strictly) in the set of fourth roots of the identity in this

group.

Proposition 13. Let λ ∈ F(E) correspond to the couple (F, J) and let

ξ = Λt(λ) ∈ Gt(E). The isomorphism D(Λt)λ : Tλ(F(E))→ Tξ(Gt(E)) is defined

then by

D(Λt)λ(α) = sin(t)α+ (1− cos(t)) (αλ+ λα)

or, in matricial terms, by

[
α1,1 α1,2
α2,1 0

]
7−→ 2 sin

(
t

2

) [
cos( t2)α1,1 Jt/2 α1,2
α2,1 Jt/2 0

]
.

Proof: The intrinsic formula comes readily by differentiation of Λt(λ) =

IdE + sin(t)λ + (1 − cos(t))λ2 and the matricial one follows if we recall the
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fact that α1,1 is anti-linear as well as the identity sin(t) IdF + (1 − cos(t)) J =

2 sin( t2) cos(
t
2) IdF + 2 sin2( t2) J = 2 sin( t2) Jt/2.

Proposition 14. Let ξ ∈ Gt(E) correspond to the couple (F, J). The tangent

vector space Tξ(Gt(E)) is then the set of all β ∈ L(E;E) whose matrix relative to

the direct sum E = F ⊕ F⊥ has the form

[
β1,1 β1,2
β2,1 0

]
, with β1,1 : F → F anti-

linear and skew-adjoint and β∗
1,2 = −β2,1 J∗

t (this last equality being equivalent

to β∗
2,1 = −J∗

t β1,2).

Proof: If β ∈ Tξ(Gt(E)), let α, with matrix

[
α1,1 α1,2
α2,1 0

]
, be the element of

Tλ(F(E)) whose image by the isomorphism D(Λt)λ is β. Then β1,1 = sin(t)α1,1
is anti-linear and skew-adjoint, because this happens to α1,1, and

β∗
1,2 =

(
2 sin

(
t

2

)
Jt/2 α1,2

)∗

= −2 sin
(
t

2

)
α2,1 J

∗
t/2 =

= −2 sin
(
t

2

)
α2,1 Jt/2 J

∗
t = −β2,1 J∗

t .

All we have to remark now is that, if 2k is the real dimension of F , the fact

that the vector space of all anti-linear and skew-adjoint maps F → F has real

dimension k2 − k implies that the space of all linear maps β ∈ L(E;E) whose

matrix verify the conditions above has dimension 2nk − 3k2 − k, equal to the

dimension of the manifold Gt(E) at ξ.

Remark 1. The matricial characterization of the tangent vector space

Tλ(Fk(E)) referred in Proposition 2 implies that this space is the orthogonal

direct sum of two vector subspaces, invariant by the isotropy subgroup of O(E),

namely the ones that correspond to matrices with each of the two forms

[
α1,1 0
0 0

]

and

[
0 α1,2

α2,1 0

]
. This fact implies the existence of a one-parameter family of

(homothety classes of) invariant Riemannian metrics on Fk(E), namely those

that are obtained by maintaining the orthogonality of the two subspaces and the

inner product in the second one and multiplying by a positive factor the inner

product in the first subspace. One of the consequences of the matricial character-

ization of the isomorphism D(Λt)λ in Proposition 13 is that the original metric

in Fk(E) and the ones that are induced by the non isometric diffeomorphisms Λt

are, roughly speaking, half the spectrum of these invariant ones, namely those

that correspond to a multiplicative factor less or equal to one. It would be inter-

esting to find other natural embeddings of Fk(E), inducing the other half of the

spectrum.
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Proposition 15. When t = ± 2π3 mod 2π, the Riemannian metric induced in

Gt(E) by the ambient space is the naturally reductive one, modulo homothety.

Proof: Let ξ ∈ Gt(E) correspond to the couple (F, J) and let λ ∈ F(E) be

the corresponding element. In section 3 we identified the orthogonal complement

Mλ of the isotropy Lie algebra Hλ ⊂ o(E) as the set of skew-adjoint maps

whose matrix has the form

[
α1,1 α1,2
α2,1 0

]
, with α1,1 anti-linear and we showed

that the image of such element in Tλ(F(E)) had matrix

[
2α1,1 J −J α1,2
α2,1 J 0

]
.

By composition with the isomorphism D(Λt)λ : Tλ(F(E))→ Tξ(Gt(E)) we obtain

an isomorphism Mξ = Mλ → Tξ(Gt(E)) associating, to each α with matrix[
α1,1 α1,2
α2,1 0

]
, the element with matrix 2 sin( t2)

[
2 cos( t2)α1,1 J −Jt/2 Jα1,2
α2,1 J Jt/2 0

]
,

so that, recalling that J and Jt/2 are orthogonal isomorphisms, we conclude that

this isomorphism is homothetic when | cos( t2)| = 1
2 .

Like F(E), the manifold Gt(E) is also a complex manifold in a natural way

that may be characterized by the condition that the diffeomorphism Λt : F(E)→
Gt(E) should be holomorphic. Using the matricial characterization of the deriva-

tive of this diffeomorphism in Proposition 13 and the matricial characterization

of the structure linear maps of F(E) in Proposition 4, we deduce immediately the

following matricial characterization of the structure linear maps of the complex

manifold Gt(E):

Proposition 16. For each ξ ∈ Gt(E), corresponding to the couple (F, J), the

structure map Jξ : Tξ(Gt(E))→ Tξ(Gt(E)) is defined, in matricial terms, by

[
β1,1 β1,2
β2,1 0

]
7−→

[−J β1,1 −J β1,2
β2,1 J 0

]
=

[
β1,1 J −J β1,2
β2,1 J 0

]
.

By equivariance, we know that the complex structure of Gt(E) is invariant by

the action of O(E). The matricial characterization of the structure maps in the

preceding proposition shows that this complex structure is also compatible with

the Riemannian structure of Gt(E) that comes from the ambient space.

In order to calculate the second fundamental form of Gt(E) inside L(E;E),

we need a formula for the orthogonal projections onto the tangent vector spaces:

Proposition 17. For each ξ ∈ Gt(E), corresponding to a couple (F, J), the

orthogonal projection πξ : L(E;E)→ Tξ(Gt(E)) is defined, in matricial terms rel-
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ative to the orthogonal direct sum E = F ⊕F⊥, by

[
γ1,1 γ1,2
γ2,1 γ2,2

]
7→
[
β1,1 β1,2
β2,1 0

]
,

where β1,1 = 1
4 (γ1,1 − γ∗1,1 + J γ1,1 J − J γ∗1,1 J), β1,2 = 1

2 (γ1,2 − Jt γ
∗
2,1),

β2,1 =
1
2 (γ2,1 − γ∗1,2 Jt).

Proof: The matricial characterization of Tξ(Gt(E)) in Proposition 14 implies

easily that πξ(γ) should have a matrix of the referred type, with β1,1 the orthogo-

nal projection of γ1,1 onto the vector subspace of L(F ;F ) whose elements are the

skew-adjoint anti-linear maps and with the couple (β1,2, β2,1) the orthogonal pro-

jection of the couple (γ1,2, γ2,1) onto the vector subspace of L(F⊥;F )×L(F ;F⊥)

whose elements are the couples (β1,2, β2,1) with β∗
1,2 = −β2,1 J∗

t . The fact that

Tξ(Gt(E)) ⊂ Tξ(O(E)) implies that πξ(γ) is also the orthogonal projection onto

Tξ(Gt(E)) of the orthogonal projection of γ onto Tξ(O(E)), this last projec-

tion with matrix 1
2

[
γ1,1 − Jt γ

∗
1,1 Jt γ1,2 − Jt γ

∗
2,1

γ2,1 − γ∗1,2 Jt γ2,2 − γ∗2,2

]
, by the formula referred in

section 2. The fact that we have already (γ1,2 − Jt γ
∗
2,1)

∗ = γ∗1,2 − γ2,1 J
∗
t =

−(γ2,1 − γ∗1,2 Jt) J
∗
t implies now, by our initial remarks, the correctness of the

stated formulas for β1,2 and β2,1. In what concerns β1,1, we remark that the

orthogonal projection of 1
2 (γ1,1− Jt γ

∗
1,1 Jt) onto the space of anti-linear maps is

1

4

(
(γ1,1 − Jt γ

∗
1,1 Jt) + J(γ1,1 − Jt γ

∗
1,1 Jt) J

)
=

=
1

4

(
γ1,1 + J γ1,1 J −

(
cos(t) Id+ sin(t) J

)
γ∗1,1

(
cos(t) Id+ sin(t) J

)
−

−
(
cos(t) J − sin(t) Id

)
γ∗1,1

(
cos(t) J − sin(t) Id

))
=

=
1

4

(
γ1,1 − γ∗1,1 + J γ1,1 J − J γ∗1,1 J

)

and the fact that this projection is readily seen to be also skew-adjoint implies

that it is also the orthogonal projection onto the subspace of anti-linear skew-

adjoint maps.

Proposition 18. For each ξ ∈ Gt(E), corresponding to the couple (F, J), the

second fundamental form of Gt(E) inside L(E;E), hξ : Tξ(Gt(E))× Tξ(Gt(E))→
Tξ(Gt(E))⊥, is defined, in matricial terms, by

([
β1,1 β1,2
β2,1 0

]
,

[
γ1,1 γ1,2
γ2,1 0

])
7−→

[
µ1,1 µ1,2
µ2,1 µ2,2

]
,
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µ1,1 =
1

4 sin(t)

(
2
(
β1,1 γ1,1 J + γ1,1 β1,1 J

)
+ 2 sin(t)

(
β1,2 γ2,1 + γ1,2 β2,1

)
+

+ (1 + cos(t))
(
J β1,2 γ2,1 + β1,2 γ2,1 J + J γ1,2 β2,1 + γ1,2 β2,1 J

))

µ1,2 =
1

2

(
β1,1 J

∗
t γ1,2 + γ1,1 J

∗
t β1,2

)

µ2,1 =
1

2

(
β2,1 J

∗
t γ1,1 + γ2,1 J

∗
t β1,1

)

µ2,2 =
1

2(1−cos(t))

(
−β2,1 γ1,2 − γ2,1 β1,2 + β2,1 J

∗
t γ1,2 + γ2,1 J

∗
t β1,2

)
.

Proof: First of all, and in order to be able to differentiate, we write down a

non matricial formula for the orthogonal projection computed in Proposition 17.

In fact, using the matricial characterizations:

2 IdE − ξ − ξ∗

2(1− cos(t))
=

[
IdF 0
0 0

]
,

ξ + ξ∗ − 2 cos(t) IdE
2(1− cos(t))

=

[
0 0
0 IdF⊥

]
,

ξ − ξ∗

2 sin(t)
=

[
J 0
0 0

]
,

(1− 2 cos(t)) ξ − ξ∗ + 2 cos(t) IdE
2(1− cos(t))

=

[
Jt 0
0 0

]
,

we can write

πξ(γ) =
1

16(1− cos(t))2
(2 IdE − ξ − ξ∗) (γ − γ∗) (2 IdE − ξ − ξ∗) +

+
1

16 sin(t)2
(ξ − ξ∗) (γ − γ∗) (ξ − ξ∗) +

+
1

8(1− cos(t))2
(2 IdE − ξ − ξ∗) γ

(
ξ + ξ∗ − 2 cos(t) IdE

)
+

+
1

8(1− cos(t))2

(
ξ + ξ∗ − 2 cos(t) IdE

)
γ (2 IdE − ξ − ξ∗)−

− 1

8(1− cos(t))2

(
(1− 2 cos(t)) ξ − ξ∗ + 2 cos(t) IdE

)
γ∗
(
ξ + ξ∗ − 2 cos(t) IdE

)
−

− 1

8(1− cos(t))2

(
ξ + ξ∗− 2 cos(t) IdE

)
γ∗
(
(1− 2 cos(t)) ξ − ξ∗+ 2 cos(t) IdE

)
.
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By using the formula hξ(β, γ) = Dπξ(β)(γ), we can now write

hξ(β, γ) = − 1

16(1− cos(t))2
(β + β∗) (γ − γ∗) (2 IdE − ξ − ξ∗) −

− 1

16(1− cos(t))2
(2 IdE − ξ − ξ∗) (γ − γ∗) (β + β∗) +

+
1

16 sin(t)2
(β − β∗) (γ − γ∗) (ξ − ξ∗) +

+
1

16 sin(t)2
(ξ − ξ∗) (γ − γ∗) (β − β∗)−

− 1

8(1− cos(t))2
(β + β∗) γ

(
ξ + ξ∗ − 2 cos(t) IdE

)
+

+
1

8(1− cos(t))2
(2 IdE − ξ − ξ∗) γ (β + β∗) +

+
1

8(1− cos(t))2
(β + β∗) γ (2 IdE − ξ − ξ∗)−

− 1

8(1− cos(t))2

(
ξ + ξ∗ − 2 cos(t) IdE

)
γ (β + β∗)−

− 1

8(1− cos(t))2

(
(1− 2 cos(t))β − β∗

)
γ∗
(
ξ + ξ∗ − 2 cos(t) IdE

)
−

− 1

8(1− cos(t))2

(
(1− 2 cos(t)) ξ − ξ∗ + 2 cos(t) IdE

)
γ∗
(
β + β∗

)
−

− 1

8(1− cos(t))2
(β + β∗) γ∗

(
(1− 2 cos(t)) ξ − ξ∗ + 2 cos(t) IdE

)
−

− 1

8(1− cos(t))2

(
ξ + ξ∗ − 2 cos(t) IdE

)
γ∗
(
(1− 2 cos(t))β − β∗

)

and the matricial characterization follows by a long but straightforward compu-

tation, using the identities 3 − 4 cos(t) + cos2(t) = (1 − cos(t)) (3 − cos(t)) and
sin(t)
1−cos(t) =

1+cos(t)
sin(t) .

The preceding formula for the second fundamental form of the manifold Gt(E)

inside the Euclidean space L(E;E) will be useful, in particular, in calculating the

covariant derivative of the complex structure:

Proposition 19. For each ξ ∈ Gt(E), the covariant derivative of the complex

structure ∇Jξ : Tξ(Gt(E))→ L(Tξ(Gt(E));Tξ(Gt(E))) is defined by the condition

that, whenever β, γ ∈ Tξ(Gt(E)) have matrices

[
β1,1 β1,2
β2,1 0

]
and

[
γ1,1 γ1,2
γ2,1 0

]
,
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∇Jξ(β)(γ) has matrix
cos(t)

sin(t)

[
0 −Jt β11 γ1,2

γ2,1 β1,1 Jt 0

]
. As a consequence, the

manifold Gt(E) is always semi-Kähler and, in the case where t = ±π
2 mod 2π,

Gt(E) is even a Kähler manifold.

Proof: For each ξ ∈ Gt(E), corresponding to the couple (F, J), let

Jξ : L(E;E) → L(E;E) be defined, in matricial terms, by

[
γ1,1 γ1,2
γ2,1 γ2,2

]
7→

[−J γ1,1 −J γ1,2
γ2,1 J 0

]
, a linear map that is hence a prolongation of the structure

map Jξ : Tξ(Gt(E)) → Tξ(Gt(E)). Using the second and third matricial char-

acterizations referred in the proof of the preceding result, we get the intrinsic

characterization

Jξ(γ) =
1

4 sin(t) (1− cos(t))

(
ξ + ξ∗ − 2 cos(t) Id

)
γ (ξ − ξ∗)− 1

2 sin(t)
(ξ − ξ∗) γ ,

that allows us to write, by differentiation,

DJξ(β)(γ) =
1

4 sin(t) (1− cos(t))
(β + β∗) γ (ξ − ξ∗) +

+
1

4 sin(t) (1− cos(t))

(
ξ + ξ∗ − 2 cos(t) Id

)
γ (β − β∗)− 1

2 sin(t)
(β − β∗) γ .

Using the formula∇Jξ(β)(γ) = DJξ(β)(γ)+Jξ(hξ(β, γ))−hξ(β, Jξ(γ)), as well as
the matricial characterization of the second fundamental form in Proposition 18,

we obtain the stated matricial formula, after a long but straightforward calcu-

lation. This matricial formula implies, in particular, that we ∇Jξ(β)(β) = 0,

whenever the matrix of β ∈ Tξ(Gt(E)) has one of the two forms

[
β1,1 0
0 0

]
or

[
0 β1,2

β2,1 0

]
, and the fact that Tξ(Gt(E)) has an orthonormal basis with each

element of one of these forms implies that the bilinear map (β, γ) 7→ ∇Jξ(β)(γ)
is traceless, so that we have a semi-Kähler manifold. It is clear that we have

even a Kähler manifold whenever cos(t) = 0, that is to say, whenever t = ± π
2

mod 2π.

We compute next the second fundamental form of Gt(E) when we take the

orthogonal group O(E) as ambient space, instead of the whole space L(E;E).

Proposition 20. Let ξ ∈ Gt(E) correspond to the couple (F, J). The second

fundamental form ĥξ : Tξ(Gt(E))×Tξ(Gt(E))→ Tξ(O(E)), of Gt(E) inside O(E),
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is then defined, in matricial terms, by

([
β1,1 β1,2
β2,1 0

]
,

[
γ1,1 γ1,2
γ2,1 0

])
7−→

[
µ̂1,1 0
0 µ̂2,2

]
,

µ̂1,1 =
1

4 sin(t)

((
1 + cos(t)

) (
Jβ1,2 γ2,1 + β1,2 γ2,1 J + J γ1,2 β2,1 + γ1,2 β2,1 J

)
+

+ 2 cos(t)
(
β1,1 γ1,1 J Jt + γ1,1 β1,1 J Jt

))

µ̂2,2 =
1

4(1− cos(t))

(
β2,1(J

∗
2t − Id) γ1,2 + γ2,1(J

∗
2t − Id)β1,2

)
.

Hence, Gt(E) is (2, 0)-geodesic inside O(E), in the sense that ĥξ(Jξ(β), Jξ(γ)) =

ĥξ(β, γ) .

Proof: The fact that ĥξ(β, γ) is the orthogonal projection of hξ(β, γ) onto

the tangent space Tξ(O(E)) implies, by the formula referred in section 2, that

ĥξ(β, γ) = 1
2(hξ(β, γ) − ξ ◦ hξ(β, γ)∗ ◦ ξ) so that, with the notations of Propo-

sition 18, ĥξ(β, γ) has matrix

[
µ̂1,1 µ̂1,2
µ̂2,1 µ̂2,2

]
, with µ̂1,1 = 1

2(µ1,1 − Jt µ
∗
1,1 Jt),

µ̂1,2 = 1
2(µ1,2 − Jt µ

∗
2,1), µ̂2,1 = 1

2(µ2,1 − µ∗1,2 Jt) and µ̂2,2 = 1
2(µ2,2 − µ∗2,2).

The stated formulas follow in a straightforward way, if we recall the charac-

terization of the tangent space Tξ(Gt(E)) in Proposition 14. The equality

ĥξ(Jξ(β), Jξ(γ)) = ĥξ(β, γ) has a trivial verification, if we recall the matricial

characterization of the structure maps Jξ in Proposition 16.

By a straightforward computation, we can determine the trace of the preceding

second fundamental form:

Proposition 21. Let E have dimension n and let ξ ∈ Gkt(E) correspond to

the couple (F, J). The trace of the second fundamental form ĥξ, of Gkt(E) inside

O(E), has then a matrix

[
ρ̂1,1 0
0 0

]
, ρ̂1,1 = −n−2k+(n−k−1) cos(t)

2 sin(t) J Jt. Hence, if

k > 1, there exists t such Gkt(E) is minimal inside O(E), namely the one defined

by the condition cos(t) = − n−2k
n−k−1 .

As a special case, we realize that, when k > 1 and n = 3k − 1, the manifolds

Gkt(E) that are minimal inside O(E) are the ones with t = ± 2π3 mod 2π, hence

the ones that have the naturally reductive metric.

It is easily seen that, for each a ∈ R, the manifolds Gkt(E) are contained in

spheres centered at a IdE so that it is natural to ask when are these manifolds
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minimal in such spheres. This is known to be equivalent to the fact that the

trace of the second fundamental form hξ, of Gkt(E) inside L(E;E), is a multiple

of ξ−a IdE and our last proposition, whose proof is again straightforward, shows

that the answer is “sometimes yes”.

Proposition 22. Let E have dimension n and let ξ ∈ Gkt(E) correspond to

the couple (F, J). The trace of the second fundamental form hξ, of Gkt(E) inside

L(E;E), has then a matrix

[
ρ1,1 0
0 ρ2,2

]
,

ρ1,1 =
n− 2k

2
IdF +

−(n− k − 1)− (n− 2k) cos(t)

2 sin(t)
J , ρ2,2 = −k IdF⊥ .

As a consequence, if k > 1, the manifold Gkt(E) is minimal in a sphere centered

at a IdE , for a = n−3k−1
n and cos(t) = −k+1

2k .
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