PERIODIC SOLUTIONS FOR
 A THIRD ORDER DIFFERENTIAL EQUATION UNDER CONDITIONS ON THE POTENTIAL

Feliz Minhós

Abstract: We prove an existence result to the nonlinear periodic problem

$$
\left\{\begin{array}{c}
x^{\prime \prime \prime}+a x^{\prime \prime}+g\left(x^{\prime}\right)+c x=p(t) \\
x(0)=x(2 \pi), \quad x^{\prime}(0)=x^{\prime}(2 \pi), \quad x^{\prime \prime}(0)=x^{\prime \prime}(2 \pi)
\end{array}\right.
$$

where $g: \mathbb{R} \mapsto \mathbb{R}$ is continuous, $p:[0,2 \pi] \mapsto \mathbb{R}$ belongs to $\mathbb{L}^{1}(0,2 \pi), a \in \mathbb{R}, c \in \mathbb{R} \backslash\{0\}$, under conditions on the asymptotic behaviour of the primitive of the nonlinearity g. This work uses the Leray-Schauder degree theory and improves a result contained in [EO], weakening the condition on the oscillation of g. The arguments used were suggested by [GO], [HOZ] and [SO].

1 - Introduction and statements

Consider the third order differential equation

$$
\begin{equation*}
x^{\prime \prime \prime}+a x^{\prime \prime}+g\left(x^{\prime}\right)+c x=p(t) \tag{1.1}
\end{equation*}
$$

for $t \in[0,2 \pi]$, with periodic boundary conditions

$$
\begin{equation*}
x(0)=x(2 \pi), \quad x^{\prime}(0)=x^{\prime}(2 \pi), \quad x^{\prime \prime}(0)=x^{\prime \prime}(2 \pi) \tag{1.2}
\end{equation*}
$$

where $g: \mathbb{R} \mapsto \mathbb{R}$ is continuous, $p:[0,2 \pi] \mapsto \mathbb{R}$ belongs to $\mathbb{L}^{1}(0,2 \pi), a, c \in \mathbb{R}$ and $c \neq 0$. In [EO] Ezeilo and Omari studied problem (1.1)-(1.2) assuming that g satisfies the following condition

$$
\begin{equation*}
m^{2}+h^{-}(|s|) \leq \frac{g(s)}{s} \leq(m+1)^{2}-h^{+}(|s|) \tag{1.3}
\end{equation*}
$$

[^0]for $|s| \geq r>0$, where $m \in \mathbb{N}$ and $h^{ \pm}:[0,+\infty[\mapsto \mathbb{R}$ are two functions such that
\[

$$
\begin{equation*}
\lim _{|s| \rightarrow+\infty}|s| h^{ \pm}(|s|)=+\infty \tag{1.4}
\end{equation*}
$$

\]

We observe that conditions (1.3) and (1.4) imply, for $|s|$ big enough, that $\frac{g(s)}{s}$ lies strictly between m^{2} and $(m+1)^{2}$.

Moreover $\liminf _{|s| \rightarrow+\infty} \frac{g(s)}{s}$ or $\underset{|s| \rightarrow+\infty}{\limsup } \frac{g(s)}{s}$ may attain either m^{2} or $(m+1)^{2}$ but "slowly" on account of condition (1.4).

In our work $\frac{g(s)}{s}$ is not obliged to stay in the interval $\left[m^{2},(m+1)^{2}\right]$, although there is some "density" control given by a condition about the asymptotic behaviour of the potential of g, as used in [GO], $[\mathrm{SO}]$ and [OZ] (see conditions (g) and (G)).

We prove the existence of a periodic solution to the problem (1.1)-(1.2), using degree theory, spaces $\mathbb{L}^{p}(0,2 \pi)$, with norms $\left\|\|_{p}(1 \leq p \leq+\infty), \mathcal{C}^{k}(0,2 \pi)\right.$, of k-times continuously differentiable functions, whose norms are denoted by $\left\|\|_{\mathcal{C}^{k}}\right.$ $(k=0,1,2, \ldots)$ and the Sobolev spaces $\mathbb{W}_{2 \pi}^{3, p}(0,2 \pi)$, that consist of functions u in $\mathbb{W}^{3, p}(0,2 \pi)$ such that $u(0)=u(2 \pi), u^{\prime}(0)=u^{\prime}(2 \pi), u^{\prime \prime}(0)=u^{\prime \prime}(2 \pi)$.

Consider the eigenvalue problem

$$
\begin{equation*}
x^{\prime \prime \prime}+a x^{\prime \prime}+c x=-\lambda x^{\prime} \tag{1.5}
\end{equation*}
$$

with conditions (1.2), $a \in \mathbb{R}, c \in \mathbb{R} \backslash\{0\}$ and λ a real parameter.
We recall [EO] that:
(a) Any $\lambda \neq m^{2}$ is not an eigenvalue, for each $m=1,2, \ldots$;
(b) $\lambda=m^{2}$ is an eigenvalue, for some $m=1,2, \ldots$, if and only if $c=a m^{2}$.

Note that, from (a) and (b), the eigenvalue, when exists, is unique and the corresponding eigenspace, which we denote by \mathcal{E}_{m}, consists of elements x that can be written as

$$
x=\frac{1}{\sqrt{2 \pi}}\left(A_{m} e^{i m t}+A_{-m} e^{-i m t}\right)
$$

with $m \in \mathbb{N}_{1}, A_{m} \in \mathbb{C}$ and $A_{-m}=\bar{A}_{m}$. For more details see [AOZ].

2 - Existence result

Let us consider the problem

$$
(\mathcal{P})\left\{\begin{array}{c}
x^{\prime \prime \prime}+a x^{\prime \prime}+g\left(x^{\prime}\right)+c x=p(t) \\
x(0)=x(2 \pi), \quad x^{\prime}(0)=x^{\prime}(2 \pi), \quad x^{\prime \prime}(0)=x^{\prime \prime}(2 \pi)
\end{array}\right.
$$

with $a, c \in \mathbb{R}, c \neq 0, g: \mathbb{R} \mapsto \mathbb{R}$ continuous and $p \in \mathbb{L}^{1}(0,2 \pi)$, a real function.
Denote by G the primitive of the nonlinear function g, that is, $G(u)=\int_{0}^{u} g(\tau) d \tau$.
Theorem 1. For $m \in \mathbb{N}$, assume that g satisfies
(g)

$$
m^{2} \leq \liminf _{|u| \rightarrow \pm \infty} \frac{g(u)}{u} \leq \limsup _{|u| \rightarrow \pm \infty} \frac{g(u)}{u} \leq(m+1)^{2}
$$

and

$$
\begin{equation*}
m^{2}<\limsup _{u \rightarrow+\infty} \frac{2 G(u)}{u^{2}}, \quad \liminf _{u \rightarrow+\infty} \frac{2 G(u)}{u^{2}}<(m+1)^{2} \tag{G}
\end{equation*}
$$

Then problem (\mathcal{P}) has, at least, one solution for every $p \in \mathbb{L}^{1}(0,2 \pi)$.

To prove Theorem 1 we need some preliminar results.
Let us define an operator $\mathcal{A}: \mathbb{W}_{2 \pi}^{3,1}(0,2 \pi) \mapsto \mathbb{L}^{1}(0,2 \pi)$ by

$$
\mathcal{A} x=x^{\prime \prime \prime}+a x^{\prime \prime}+c x
$$

and denote the inner product in $\mathbb{L}^{2}(0,2 \pi)$ as $\langle\cdot, \cdot\rangle$.
Lemma 1. For every $x \in \mathbb{W}_{2 \pi}^{3,2}(0,2 \pi)$, we have

$$
\left\langle\mathcal{A} x+m^{2} x^{\prime}, \quad \mathcal{A} x+(m+1)^{2} x^{\prime}\right\rangle \geq 0
$$

and the equality holds if and only if $x=0$ or either m^{2} or $(m+1)^{2}$ is an eigenvalue of (1.5) and $x \in \mathcal{E}_{m}$ or $x \in \mathcal{E}_{m+1}$, respectively.

Proof. Using the Fourier expansion of x, we can write

$$
x(t)=\frac{1}{\sqrt{2 \pi}} \sum_{k \in \mathbb{Z}} c_{k} e^{i k t}
$$

and obtain

$$
\begin{aligned}
\left\langle\mathcal{A} x+m^{2} x^{\prime}\right. & \left., \mathcal{A} x+(m+1)^{2} x^{\prime}\right\rangle \geq \\
& \geq \sum_{k \in \mathbb{Z}}\left[k^{2}\left(m^{2}-k^{2}\right)\left((m+1)^{2}-k^{2}\right)+\left(c-a k^{2}\right)^{2}\right]\left|c_{k}\right|^{2} \geq 0
\end{aligned}
$$

Furthermore, the equality holds if and only if $c_{k}=0$ unless

$$
k^{2}=m^{2} \quad \text { or } k^{2}=(m+1)^{2} \quad \text { and } \quad c=a k^{2},
$$

that means, if and only if $x=0$ or either m^{2} or $(m+1)^{2}$ is an eigenvalue of (1.5) and $x \in \mathcal{E}_{m}$ or $x \in \mathcal{E}_{m+1}$, respectively.

For the sequel, let us fix a number θ such that $m^{2}<\theta<(m+1)^{2}$ and define an operator $\mathcal{L}_{\theta}: \mathbb{W}_{2 \pi}^{3,1}(0,2 \pi) \mapsto \mathbb{L}^{1}(0,2 \pi)$, by setting

$$
\mathcal{L}_{\theta} x=x^{\prime \prime \prime}+a x^{\prime \prime}+c x+\theta x^{\prime} .
$$

So, \mathcal{L}_{θ} is invertible with the inverse $\mathcal{K}_{\theta}: \mathbb{L}^{1}(0,2 \pi) \mapsto \mathbb{W}_{2 \pi}^{3,1}(0,2 \pi)$. By the compact imbedding of $\mathbb{W}_{2 \pi}^{3,1}(0,2 \pi)$ into $\mathcal{C}^{1}(0,2 \pi)$, problem (\mathcal{P}) can be reformulated as a compact fixed point problem in the form

$$
\begin{equation*}
x=\mathcal{K}_{\theta}\left[\theta x^{\prime}-g\left(x^{\prime}\right)+p(t)\right] \tag{2.1}
\end{equation*}
$$

in, say, $\mathcal{C}^{1}(0,2 \pi)$.
We consider the homotopy

$$
\begin{equation*}
x=\mu \mathcal{K}_{\theta}\left[\theta x^{\prime}-g\left(x^{\prime}\right)+p(t)\right], \tag{2.2}
\end{equation*}
$$

with $\mu \in[0,1]$ and the corresponding problem

$$
\left(\mathcal{P}_{\mu}\right)\left\{\begin{array}{l}
x^{\prime \prime \prime}+a x^{\prime \prime}+c x=(\mu-1) \theta x^{\prime}+\mu\left[p(t)-g\left(x^{\prime}\right)\right] \\
x(0)=x(2 \pi), \quad x^{\prime}(0)=x^{\prime}(2 \pi), \quad x^{\prime \prime}(0)=x^{\prime \prime}(2 \pi)
\end{array}\right.
$$

In order to apply Leray-Schauder degree theory we prove the existence of a bounded set Ω in $\mathcal{C}^{1}([0,2 \pi])$, containing the origin, such that no solution of $\left(\mathcal{P}_{\mu}\right)$, or equivalently of (2.2), for any $\mu \in[0,1]$, belongs to the boundary of Ω.

Next steps will guarantee the tools for building such set Ω.
Claim 1. Let x be a solution of $\left(\mathcal{P}_{\mu}\right)$. Then there are constants $d_{0}>0$ and $K>0$, independent of x, such that when $\|x\|_{\mathcal{C}^{1}}>d_{0}$ we have $\|x\|_{\infty} \leq K\left\|x^{\prime}\right\|_{\infty}$.

Proof: Integrating the equation of $\left(\mathcal{P}_{\mu}\right)$ one obtains

$$
c \int_{0}^{2 \pi} x(t) d t=\mu \int_{0}^{2 \pi}\left[p(t)-g\left(x^{\prime}\right)\right] d t
$$

By (g) there exist $a_{1}, a_{2} \in \mathbb{R}^{+}$such that $\left|g\left(x^{\prime}\right)\right| \leq a_{1}\left|x^{\prime}\right|+a_{2}$. So, using the Mean Value Theorem, for some $t_{0} \in[0,2 \pi]$,

$$
\left|x\left(t_{0}\right)\right| \leq \frac{1}{2 \pi|c|} \int_{0}^{2 \pi}\left|p(t)-g\left(x^{\prime}\right)\right| d t \leq \kappa_{1}\left\|x^{\prime}\right\|_{\infty}+\kappa_{2}
$$

By the Fundamental Theorem of Calculus and Hölder's inequality,

$$
|x(t)| \leq \int_{t_{0}}^{t}\left|x^{\prime}(t)\right| d t+\left|x\left(t_{0}\right)\right| \leq \kappa_{3}\left\|x^{\prime}\right\|_{\infty}+\kappa_{4}
$$

where the constants $\kappa_{1}, \kappa_{2}, \kappa_{3}$ and κ_{4} are independent of x. But this inequality implies that if $\|x\|_{\mathcal{C}^{1}} \rightarrow+\infty$ then $\left\|x^{\prime}\right\|_{\infty} \rightarrow+\infty$ and so the thesis follows easily.

The above estimate on the solutions of $\left(\mathcal{P}_{\mu}\right)$ will be very useful in several steps of the proof of Theorem 1 and will play an important role in the construction of a set Ω, where the degree is well defined.

Claim 2. Let $\left(x_{n}\right)$ be a sequence of solutions of

$$
\left(\mathcal{P}_{n}\right)\left\{\begin{array}{c}
x_{n}^{\prime \prime \prime}+a x_{n}^{\prime \prime}+c x_{n}=\left(\mu_{n}-1\right) \theta x_{n}^{\prime}+\mu_{n}\left[p(t)-g\left(x_{n}^{\prime}\right)\right], \\
x_{n}(0)=x_{n}(2 \pi), \quad x_{n}^{\prime}(0)=x_{n}^{\prime}(2 \pi), \quad x_{n}^{\prime \prime}(0)=x_{n}^{\prime \prime}(2 \pi),
\end{array}\right.
$$

with $\mu_{n} \in[0,1], m^{2}<\theta<(m+1)^{2}$, such that $\left\|x_{n}^{\prime}\right\|_{\infty} \rightarrow+\infty$.
Then, for a subsequence, $\frac{x_{n}}{\left\|x_{n}^{\prime}\right\|_{\infty}}$ converges in $\mathbb{W}_{2 \pi}^{3,1}(0,2 \pi)$ to some function $v \not \equiv 0$, when $\mu_{n} \rightarrow 1$.

Moreover, either

$$
m^{2} \text { is an eigenvalue of } \mathcal{A}, \quad v \in \mathcal{E}_{m} \quad \text { and } \quad \frac{\left\|g\left(x_{n}^{\prime}\right)-m^{2} x_{n}^{\prime}\right\|_{1}}{\left\|x_{n}^{\prime}\right\|_{\infty}} \longrightarrow 0
$$ or $(m+1)^{2}$ is an eigenvalue of $\mathcal{A}, \quad v \in \mathcal{E}_{m+1} \quad$ and $\quad \frac{\left\|g\left(x_{n}^{\prime}\right)-(m+1)^{2} x_{n}^{\prime}\right\|_{1}}{\left\|x_{n}^{\prime}\right\|_{\infty}} \longrightarrow 0$.

Proof: Consider, as in [HOZ] (Prop. 2.1), $g(u)=q(u) u+r(u)$ with q and r continuous functions such that

$$
\begin{equation*}
m^{2} \leq q(u) \leq(m+1)^{2}, \quad \forall u \in \mathbb{R} \tag{2.3}
\end{equation*}
$$

and

$$
\lim _{|u| \rightarrow+\infty} \frac{r(u)}{u}=0 .
$$

Applying this decomposition and setting $v_{n}=\frac{x_{n}}{\left\|x_{n}^{\prime}\right\|_{\infty}}$, then v_{n} satisfies

$$
\left\{\begin{array}{c}
v_{n}^{\prime \prime \prime}+a v_{n}^{\prime \prime}+c v_{n}=\left(\mu_{n}-1\right) \theta v_{n}^{\prime}-\mu_{n} q\left(x_{n}^{\prime}\right) v_{n}^{\prime}+\mu_{n} \frac{p(t)-r\left(x_{n}^{\prime}\right)}{\left\|x_{n}^{\prime}\right\|_{\infty}}, \\
v_{n}(0)=v_{n}(2 \pi), \quad v_{n}^{\prime}(0)=v_{n}^{\prime}(2 \pi), \quad v_{n}^{\prime \prime}(0)=v_{n}^{\prime \prime}(2 \pi)
\end{array}\right.
$$

The second member of the equation is bounded in $\mathbb{L}^{\infty}(0,2 \pi)$ and so, for a subsequence, it converges weakly in $\mathbb{L}^{1}(0,2 \pi)$. By the continuity of the inverse operator, it follows that v_{n} converges weakly in $\mathbb{W}_{2 \pi}^{3,1}(0,2 \pi)$ and then strongly in $\mathcal{C}^{1}(0,2 \pi)$ to a function $v \not \equiv 0$, since $\left\|v^{\prime}\right\|_{\infty}=1$. Furthermore, we can suppose that, for a subsequence, $\mu_{n} \rightarrow \mu_{0} \in[0,1]$ and $q\left(x_{n}^{\prime}\right)$ converges in $\mathbb{L}^{\infty}(0,2 \pi)$, with respect to the weak* topology, to a function $q_{0}(t) \in \mathbb{L}^{\infty}(0,2 \pi)$, where

$$
m^{2} \leq q_{0}(t) \leq(m+1)^{2}
$$

If we set

$$
\begin{equation*}
\tilde{q}(t)=\left(\mu_{0}-1\right) \theta-\mu_{0} q_{0}(t), \tag{2.4}
\end{equation*}
$$

the weak continuity of \mathcal{L}_{θ} implies that v verifies

$$
\left\{\begin{array}{c}
v^{\prime \prime \prime}+a v^{\prime \prime}+c v=\tilde{q}(t) v^{\prime} \tag{2.5}\\
v(0)=v(2 \pi), \quad v^{\prime}(0)=v^{\prime}(2 \pi), \quad v^{\prime \prime}(0)=v^{\prime \prime}(2 \pi)
\end{array}\right.
$$

with

$$
\begin{equation*}
-(m+1)^{2} \leq \tilde{q} \leq-m^{2} . \tag{2.6}
\end{equation*}
$$

Using Lemma 1, (2.5) and (2.6) we obtain

$$
\begin{aligned}
& 0 \leq\left\langle\mathcal{A} v+m^{2} v^{\prime}, \quad \mathcal{A} v+(m+1)^{2} v^{\prime}\right\rangle= \\
& =\int_{0}^{2 \pi}\left(\tilde{q}+m^{2}\right)\left(\tilde{q}+(m+1)^{2}\right)\left(v^{\prime}\right)^{2} d t \leq 0
\end{aligned}
$$

which implies $\left\langle\mathcal{A} v+m^{2} v^{\prime}, \mathcal{A} v+(m+1)^{2} v^{\prime}\right\rangle=0$. Since $v \neq 0$, if $c \neq a m^{2}$ and $c \neq a(m+1)^{2}$, by Lemma 1 , the above equality can not hold and then Claim 2 is trivially satisfied. So suppose that either $c=a m^{2}$ or $c=a(m+1)^{2}$. Then either

$$
\begin{equation*}
m^{2} \text { is an eigenvalue of } \mathcal{A}, \quad v \in \mathcal{E}_{m} \quad \text { and } \quad \tilde{q}=-m^{2} \tag{2.7}
\end{equation*}
$$

or
(2.8) $\quad(m+1)^{2}$ is an eigenvalue of $\mathcal{A}, \quad v \in \mathcal{E}_{m+1} \quad$ and $\quad \tilde{q}=-(m+1)^{2}$.

From (2.4), we also conclude that $\mu_{0}=1$ and $q\left(x_{n}^{\prime}\right) \rightarrow-\tilde{q}$ in $\mathbb{L}^{\infty}(0,2 \pi)$, with respect to the weak* topology. Therefore if (2.7) holds, using (2.3) we have

$$
\left\|q\left(x_{n}^{\prime}\right)-m^{2}\right\|_{1}=\int_{0}^{2 \pi}\left|q\left(x_{n}^{\prime}\right)-m^{2}\right| d t=\int_{0}^{2 \pi}\left(q\left(x_{n}^{\prime}\right)-m^{2}\right) d t \longrightarrow 0
$$

Hence

$$
\begin{aligned}
& \left\|\frac{g\left(x_{n}^{\prime}\right)}{\left\|x_{n}^{\prime}\right\|_{\infty}}-m^{2} v^{\prime}\right\|_{1}=\left\|q\left(x_{n}^{\prime}\right) v_{n}^{\prime}+\frac{r\left(x_{n}^{\prime}\right)}{\left\|x_{n}^{\prime}\right\|_{\infty}}-m^{2} v^{\prime}\right\|_{1} \leq \\
& \quad \leq\left\|q\left(x_{n}^{\prime}\right)\right\|_{\infty}\left\|v_{n}^{\prime}-v^{\prime}\right\|_{1}+\left\|q\left(x_{n}^{\prime}\right)-m^{2}\right\|_{1}\left\|v^{\prime}\right\|_{\infty}+\left\|\frac{r\left(x_{n}^{\prime}\right)}{\left\|x_{n}^{\prime}\right\|_{\infty}}\right\|_{1} \longrightarrow 0 .
\end{aligned}
$$

If (2.8) holds the proof is similar.
Claim 3. There are constants $d_{1}>0$ and $0<\eta_{1}<1<\eta_{2}$ such that if x is a solution of $\left(\mathcal{P}_{\mu}\right)$, for some $\mu \in[0,1]$ and satisfying $\left\|x^{\prime}\right\|_{\infty} \geq d_{1}$, then

$$
\max x_{n}^{\prime} \cdot \min x_{n}^{\prime}<0 \quad \text { and } \quad \eta_{1}<\frac{\max x^{\prime}}{-\min x^{\prime}}<\eta_{2}
$$

Proof: Assume, by contradiction, that the first part of the thesis does not hold. So, there is a sequence $\left(x_{n}\right)$ of solutions of $\left(\mathcal{P}_{n}\right)$ such that $\left\|x_{n}^{\prime}\right\|_{\infty} \rightarrow+\infty$ and $\max x_{n}^{\prime} \cdot \min x_{n}^{\prime} \geq 0$.

By Claim 2, $\frac{x_{n}}{\left\|x_{n}^{\prime}\right\|_{\infty}} \rightarrow v$ in $\mathbb{W}_{2 \pi}^{3,1}(0,2 \pi)$ and, therefore, $\frac{x_{n}^{\prime}}{\left\|x_{n}^{\prime}\right\|_{\infty}} \rightarrow v^{\prime}$ in $\mathcal{C}^{0}(0,2 \pi)$ with either $v \in \mathcal{E}_{m}$ or $v \in \mathcal{E}_{m+1}$. Moreover, we can write

$$
v^{\prime}(t)=A_{m} \cos m t+B_{m} \sin m t
$$

or

$$
v^{\prime}(t)=A_{m+1} \cos (m+1) t+B_{m+1} \sin (m+1) t
$$

and, on both cases,

$$
\max \frac{x_{n}^{\prime}}{\left\|x_{n}^{\prime}\right\|_{\infty}} \cdot \min \frac{x_{n}^{\prime}}{\left\|x_{n}^{\prime}\right\|_{\infty}} \longrightarrow \max v^{\prime} \cdot \min v^{\prime}<0
$$

For proving the second part, we suppose, again by contradiction, that, for every $n \in \mathbb{N}$ there is a $\left(x_{n}\right)$ solution of some $\left(\mathcal{P}_{n}\right)$, with $\left\|x_{n}^{\prime}\right\|_{\infty} \geq d_{1}$, such that $\frac{\max x_{n}^{\prime}}{-\min x_{n}^{\prime}} \leq \frac{1}{n}$. Then $\frac{\max x_{n}^{\prime}}{-\min x_{n}^{\prime}} \rightarrow 0$, which contradicts

$$
\frac{\max \frac{x_{n}^{\prime}}{\left\|x_{n}^{\prime}\right\|_{\infty}}}{-\min \frac{x_{n}^{\prime}}{\left\|x_{n}^{\prime}\right\|_{\infty}}} \longrightarrow \frac{\max v^{\prime}}{-\min v^{\prime}}>0
$$

The proof for η_{2} is similar.

In the proof of next claim we shall use the condition on the potential.
Claim 4. Suppose that conditions (g) and (G) hold. Then there is a sequence $\left(\gamma_{n}\right)$, with $\gamma_{n} \rightarrow+\infty$, such that, if x is a solution of $\left(\mathcal{P}_{\mu}\right)$, for some $\mu \in[0,1]$, we have $\max x^{\prime} \neq \gamma_{n}$, for every n.

Proof: By condition (G) we can take a sequence of real numbers $\left(\gamma_{n}\right)$, with $\gamma_{n} \rightarrow+\infty$, such that

$$
\begin{equation*}
\left.\lim _{\gamma_{n} \rightarrow+\infty} \frac{2 G\left(\gamma_{n}\right)}{\gamma_{n}^{2}}=\lambda \in\right] m^{2},(m+1)^{2}[\tag{2.9}
\end{equation*}
$$

Assume, by contradiction, that there is a subsequence of $\left(\gamma_{n}\right)$, which we shall note by $\left(\gamma_{n}\right)$ too, and a sequence $\mu_{n} \in[0,1]$ such that if $\left(x_{n}\right)$ is a solution of $\left(\mathcal{P}_{\mu_{n}}\right)$, one has max $x_{n}^{\prime}=\gamma_{n}$. Therefore, by (2.9), for $\varepsilon>0$ small enough and large n, we can write

$$
\frac{2 G\left(\gamma_{n}\right)}{\gamma_{n}^{2}}>m^{2}+\varepsilon,
$$

that is,

$$
\begin{equation*}
\frac{2 G\left(\gamma_{n}\right)-m^{2} \gamma_{n}^{2}}{\left\|x_{n}^{\prime}\right\|_{\infty}^{2}}>\varepsilon \frac{\gamma_{n}^{2}}{\left\|x_{n}^{\prime}\right\|_{\infty}^{2}}>0 \tag{2.10}
\end{equation*}
$$

Due to the first part of Claim 3, there exist $t_{n_{0}}, t_{n_{1}} \in[0,2 \pi]$ such that

$$
\gamma_{n}=\max \left(x_{n}^{\prime}(t)\right)=x_{n}^{\prime}\left(t_{n_{1}}\right) \quad \text { and } \quad x_{n}^{\prime}\left(t_{n_{0}}\right)=0 .
$$

Then

$$
\begin{aligned}
G\left(\gamma_{n}\right)-\frac{m^{2}}{2} \gamma_{n}^{2} & =G\left(x_{n}^{\prime}\left(t_{n_{1}}\right)\right)-G\left(x_{n}^{\prime}\left(t_{n_{0}}\right)\right)-\frac{m^{2}}{2}\left[x_{n}^{\prime 2}\left(t_{n_{1}}\right)-x_{n}^{\prime 2}\left(t_{n_{0}}\right)\right] \\
& =\int_{t_{n_{0}}}^{t_{n_{1}}}\left[g\left(x_{n}^{\prime}(t)\right)-m^{2} x_{n}^{\prime}(t)\right] x_{n}^{\prime \prime}(t) d t \\
& \leq \int_{0}^{2 \pi}\left|g\left(x_{n}^{\prime}(t)\right)-m^{2} x_{n}^{\prime}(t)\right|\left|x_{n}^{\prime \prime}(t)\right| d t
\end{aligned}
$$

By Claim 2 and the continuous imbedding of $\mathbb{W}_{2 \pi}^{3,1}(0,2 \pi)$ into $\mathcal{C}^{2}([0,2 \pi])$, one has

$$
\begin{aligned}
\frac{2 G\left(\gamma_{n}\right)-m^{2} \gamma_{n}^{2}}{\left\|x_{n}^{\prime}\right\|_{\infty}^{2}} & \leq \int_{0}^{2 \pi} \frac{\left|g\left(x_{n}^{\prime}(t)\right)-m^{2} x_{n}^{\prime}(t)\right|\left|x_{n}^{\prime \prime}(t)\right|}{\left\|x_{n}^{\prime}\right\|_{\infty}^{2}} d t \\
& \leq\left\|\frac{g\left(x_{n}^{\prime}(t)\right)-m^{2} x_{n}^{\prime}(t)}{\left\|x_{n}^{\prime}\right\|_{\infty}}\right\|_{1}\left\|v_{n}^{\prime \prime}(t)\right\|_{\infty} \rightarrow 0
\end{aligned}
$$

since $\left(v_{n}^{\prime \prime}\right)$ is bounded in \mathbb{L}^{∞}.
This fact contradicts (2.10).

Proof of Theorem 1: Let $\left(\gamma_{n}\right)$ be a sequence given by Claim 4 and let n_{0} be such that $\gamma_{n_{0}}>\max \left\{d_{0}, d_{1}\right\}$, where d_{0} and d_{1} are referred in Claims 1 and 3 , respectively. Take also $K>0$ and $0<\eta_{1}<1$ as in Claims 1 and 3 and define the open set Ω in $\mathcal{C}^{1}([0,2 \pi])$, containing the origin:

$$
\Omega=\left\{x \in \mathcal{C}^{1}([0,2 \pi]):-\frac{\gamma_{n_{0}}}{\eta_{1}}<x^{\prime}(t)<\gamma_{n_{0}} \wedge\|x\|_{\infty}<K \frac{\gamma_{n_{0}}}{\eta_{1}}, \quad \forall t \in[0,2 \pi]\right\}
$$

Let x be a solution of $\left(\mathcal{P}_{\mu}\right)$, for some $\mu \in[0,1]$, such that $x \in \bar{\Omega}$. From Claims 3,4 and 1 we deduce that $x \in \Omega$. So, the degree is well defined and it is nonzero for every $\mu \in[0,1]$. Then, the homotopy invariance of the degree guarantees the existence of a solution of $\left(\mathcal{P}_{\mu}\right)$ for, say, $\mu=1$, that is, a solution of (\mathcal{P}).

Remark. The statement of Theorem 1 still holds if (G) is replaced by one of the following conditions

$$
\begin{equation*}
m^{2}<\limsup _{u \rightarrow-\infty} \frac{2 G(u)}{u^{2}}, \quad \liminf _{u \rightarrow+\infty} \frac{2 G(u)}{u^{2}}<(m+1)^{2} \tag{1}
\end{equation*}
$$

or

$$
\left(G_{2}\right) \quad m^{2}<\limsup _{u \rightarrow+\infty} \frac{2 G(u)}{u^{2}}, \quad \liminf _{u \rightarrow-\infty} \frac{2 G(u)}{u^{2}}<(m+1)^{2},
$$

or
(G3) $\quad m^{2}<\limsup _{u \rightarrow-\infty} \frac{2 G(u)}{u^{2}}, \quad \liminf _{u \rightarrow-\infty} \frac{2 G(u)}{u^{2}}<(m+1)^{2}$. \square
In fact, under condition $\left(G_{1}\right)$, we can prove as Claim 4 that solutions of $\left(\mathcal{P}_{\mu}\right)$ are bounded in \mathcal{C}^{1}, by following similar lines. If $\left(G_{2}\right)$ or $\left(G_{3}\right)$ is assumed, the result can be easily derived from the previous ones by the change of variable $v:=-u$.

ACKNOWLEDGEMENTS - The author is grateful to Professor P. Omari and Professor M.R. Grossinho for helpful suggestions and comments.

REFERENCES

[A] Adams, R.A. - Sobolev Spaces, Academic Press, New York, 1975.
[AOZ] Afuwape, A., Omari, P. and Zanolin, F. - Nonlinear perturbations of differential operators with nontrivial kernel and applications to third-order periodic boundary value problems, J. of Math. Anal. Appl., 143(1) (1989), 35-56.
[EO] Ezeilo, J.O.C. and Omari, P. - Nonresonant oscillations for some third order differential equations, J. Nigerian Math. Soc., 8 (1989), 25-48.
[GO] Grossinho, M.R. and Omari, P. - Solvability of the Dirichlet-periodic problem for a nonlinear parabolic equation under conditions on the potential, Centro de Matemática e Aplicações Fundamentais, Preprint 12/95.
[HOZ] Habets, P., Omari, P. and Zanolin, F. - Nonresonance conditions on the potential with respect to the Fuc̆ik spectrum for the periodic value problem, Rocky Mountain J. Math. (In press).
[OZ] Omari, P. and Zanolin, F. - Nonresonance conditions on the potential for a second-order periodic boundary value problem, Proceedings of the Mathematical Society, 117 (1993), 125-135.
[SO] Santo, D. Del and Omari, P. - Nonresonance conditions on the potential for a semilinear elliptic problem, J. Differential Equations, 108 (1994), 120-138.

Feliz M. Minhós,
Departamento de Matemática, Universidade de Évora,
Colégio Luís António Verney, 7000 Évora - PORTUGAL
E-mail: fminhos@dmat.uevora.pt

[^0]: Received: December 6, 1996; Revised: October 31, 1997.
 Mathematics Subject Classification: 34B15.

