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PERIODIC SOLUTIONS FOR
A THIRD ORDER DIFFERENTIAL EQUATION
UNDER CONDITIONS ON THE POTENTIAL

Feliz Minhós

Abstract: We prove an existence result to the nonlinear periodic problem
{

x′′′ + a x′′ + g(x′) + c x = p(t) ,

x(0) = x(2π) , x′(0) = x′(2π) , x′′(0) = x′′(2π) ,

where g : R 7→ R is continuous, p : [0, 2π] 7→ R belongs to L1(0, 2π), a ∈ R, c ∈ R\{0},
under conditions on the asymptotic behaviour of the primitive of the nonlinearity g. This

work uses the Leray–Schauder degree theory and improves a result contained in [EO],

weakening the condition on the oscillation of g. The arguments used were suggested by

[GO], [HOZ] and [SO].

1 – Introduction and statements

Consider the third order differential equation

(1.1) x′′′ + a x′′ + g(x′) + c x = p(t)

for t ∈ [0, 2π], with periodic boundary conditions

(1.2) x(0) = x(2π), x′(0) = x′(2π), x′′(0) = x′′(2π) ,

where g : R 7→ R is continuous, p : [0, 2π] 7→ R belongs to L1(0, 2π), a, c ∈ R and

c 6= 0. In [EO] Ezeilo and Omari studied problem (1.1)–(1.2) assuming that g

satisfies the following condition

(1.3) m2 + h−(|s|) ≤ g(s)

s
≤ (m+ 1)2 − h+(|s|)
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for |s| ≥ r > 0, where m ∈ N and h± : [0,+∞[ 7→ R are two functions such that

(1.4) lim
|s|→+∞

|s|h±(|s|) = +∞ .

We observe that conditions (1.3) and (1.4) imply, for |s| big enough, that
g(s)

s
lies strictly between m2 and (m+ 1)2.

Moreover lim inf
|s|→+∞

g(s)

s
or lim sup

|s|→+∞

g(s)

s
may attain either m2 or (m + 1)2 but

“slowly” on account of condition (1.4).

In our work
g(s)

s
is not obliged to stay in the interval [m2, (m+1)2], although

there is some “density” control given by a condition about the asymptotic be-

haviour of the potential of g, as used in [GO], [SO] and [OZ] (see conditions (g)

and (G)).

We prove the existence of a periodic solution to the problem (1.1)–(1.2),

using degree theory, spaces Lp(0, 2π), with norms ‖ ‖p (1≤ p ≤+∞), Ck(0, 2π),
of k-times continuously differentiable functions, whose norms are denoted by ‖ ‖Ck

(k = 0, 1, 2, ...) and the Sobolev spaces W3,p
2π (0, 2π), that consist of functions u in

W3,p(0, 2π) such that u(0) = u(2π), u′(0) = u′(2π), u′′(0) = u′′(2π).

Consider the eigenvalue problem

(1.5) x′′′ + a x′′ + c x = −λx′

with conditions (1.2), a ∈ R, c ∈ R\{0} and λ a real parameter.

We recall [EO] that:

(a) Any λ 6= m2 is not an eigenvalue, for each m = 1, 2, ... ;

(b) λ = m2 is an eigenvalue, for some m = 1, 2, ..., if and only if c = am2.

Note that, from (a) and (b), the eigenvalue, when exists, is unique and the

corresponding eigenspace, which we denote by Em, consists of elements x that

can be written as

x =
1√
2π

(

Am eimt +A−m e−imt
)

with m ∈ N1, Am ∈ C and A−m = Am. For more details see [AOZ].
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2 – Existence result

Let us consider the problem

(P)







x′′′ + a x′′ + g(x′) + c x = p(t) ,

x(0) = x(2π) , x′(0) = x′(2π) , x′′(0) = x′′(2π) ,

with a, c ∈ R, c 6= 0, g : R 7→ R continuous and p ∈ L1(0, 2π), a real function.

Denote by G the primitive of the nonlinear function g, that is, G(u)=

∫ u

0

g(τ) dτ .

Theorem 1. For m ∈ N, assume that g satisfies

m2 ≤ lim inf
|u|→±∞

g(u)

u
≤ lim sup
|u|→±∞

g(u)

u
≤ (m+ 1)2(g)

and

m2 < lim sup
u→+∞

2G(u)

u2
, lim inf

u→+∞

2G(u)

u2
< (m+ 1)2 .(G)

Then problem (P) has, at least, one solution for every p ∈ L1(0, 2π).

To prove Theorem 1 we need some preliminar results.

Let us define an operator A : W3,1
2π (0, 2π) 7→ L1(0, 2π) by

Ax = x′′′ + a x′′ + c x

and denote the inner product in L2(0, 2π) as 〈·, ·〉.

Lemma 1. For every x ∈ W3,2
2π (0, 2π), we have

〈

Ax+m2 x′, Ax+ (m+ 1)2 x′
〉

≥ 0 ,

and the equality holds if and only if x=0 or either m2 or (m+1)2 is an eigenvalue

of (1.5) and x ∈ Em or x ∈ Em+1, respectively.

Proof. Using the Fourier expansion of x, we can write

x(t) =
1√
2π

∑

k∈Z
ck e

ikt

and obtain
〈

Ax+m2 x′, Ax+ (m+ 1)2 x′
〉

≥

≥
∑

k∈Z

[

k2 (m2 − k2)
(

(m+ 1)2 − k2
)

+ (c− a k2)2
]

|ck|2 ≥ 0 .
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Furthermore, the equality holds if and only if ck = 0 unless

k2 = m2 or k2 = (m+ 1)2 and c = a k2 ,

that means, if and only if x = 0 or either m2 or (m+1)2 is an eigenvalue of (1.5)

and x ∈ Em or x ∈ Em+1, respectively.

For the sequel, let us fix a number θ such that m2 < θ < (m+ 1)2 and define

an operator Lθ : W3,1
2π (0, 2π) 7→ L1(0, 2π), by setting

Lθ x = x′′′ + a x′′ + c x+ θ x′ .

So, Lθ is invertible with the inverse Kθ : L1(0, 2π) 7→ W3,1
2π (0, 2π). By the com-

pact imbedding of W3,1
2π (0, 2π) into C1(0, 2π), problem (P) can be reformulated

as a compact fixed point problem in the form

(2.1) x = Kθ

[

θ x′ − g(x′) + p(t)
]

in, say, C1(0, 2π).

We consider the homotopy

(2.2) x = µKθ

[

θ x′ − g(x′) + p(t)
]

,

with µ ∈ [0, 1] and the corresponding problem

(Pµ)







x′′′ + a x′′ + c x = (µ−1) θ x′ + µ [p(t)− g(x′)] ,

x(0) = x(2π) , x′(0) = x′(2π) , x′′(0) = x′′(2π) .

In order to apply Leray–Schauder degree theory we prove the existence of a

bounded set Ω in C1([0, 2π]), containing the origin, such that no solution of (Pµ),
or equivalently of (2.2), for any µ ∈ [0, 1], belongs to the boundary of Ω.

Next steps will guarantee the tools for building such set Ω.

Claim 1. Let x be a solution of (Pµ). Then there are constants d0 > 0 and

K > 0, independent of x, such that when ‖x‖C1 > d0 we have ‖x‖∞ ≤ K‖x′‖∞.

Proof: Integrating the equation of (Pµ) one obtains

c

∫ 2π

0

x(t) dt = µ

∫ 2π

0

[

p(t)− g(x′)
]

dt .

By (g) there exist a1, a2 ∈ R+ such that |g(x′)| ≤ a1|x′| + a2. So, using the

Mean Value Theorem, for some t0 ∈ [0, 2π],

|x(t0)| ≤
1

2π |c|

∫ 2π

0

∣

∣

∣p(t)− g(x′)
∣

∣

∣ dt ≤ κ1 ‖x′‖∞ + κ2 .
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By the Fundamental Theorem of Calculus and Hölder’s inequality,

|x(t)| ≤
∫ t

t0

|x′(t)| dt+ |x(t0)| ≤ κ3 ‖x′‖∞ + κ4 ,

where the constants κ1, κ2, κ3 and κ4 are independent of x. But this inequality

implies that if ‖x‖C1 → +∞ then ‖x′‖∞ → +∞ and so the thesis follows easily.

The above estimate on the solutions of (Pµ) will be very useful in several steps

of the proof of Theorem 1 and will play an important role in the construction of

a set Ω, where the degree is well defined.

Claim 2. Let (xn) be a sequence of solutions of

(Pn)







x′′′n + a x′′n + c xn = (µn − 1) θ x′n + µn

[

p(t)− g(x′n)
]

,

xn(0) = xn(2π) , x′n(0) = x′n(2π) , x′′n(0) = x′′n(2π) ,

with µn ∈ [0, 1], m2 < θ < (m+ 1)2, such that ‖x′n‖∞ → +∞.

Then, for a subsequence,
xn

‖x′n‖∞
converges in W3,1

2π (0, 2π) to some function

v 6≡ 0, when µn → 1.

Moreover, either

m2 is an eigenvalue of A , v ∈ Em and

∥

∥

∥g(x′n)−m2 x′n

∥

∥

∥

1

‖x′n‖∞
−→ 0 ,

or

(m+1)2 is an eigenvalue of A , v∈Em+1 and

∥

∥

∥g(x′n)− (m+1)2 x′n

∥

∥

∥

1

‖x′n‖∞
−→ 0 .

Proof: Consider, as in [HOZ] (Prop. 2.1), g(u) = q(u)u+ r(u) with q and r

continuous functions such that

m2 ≤ q(u) ≤ (m+ 1)2 , ∀u ∈ R ,(2.3)

and

lim
|u|→+∞

r(u)

u
= 0 .

Applying this decomposition and setting vn =
xn

‖x′n‖∞
, then vn satisfies















v′′′n + a v′′n + c vn = (µn − 1) θ v′n − µn q(x′n) v
′
n + µn

p(t)− r(x′n)

‖x′n‖∞
,

vn(0) = vn(2π) , v′n(0) = v′n(2π) , v′′n(0) = v′′n(2π) .
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The second member of the equation is bounded in L∞(0, 2π) and so, for a sub-

sequence, it converges weakly in L1(0, 2π). By the continuity of the inverse

operator, it follows that vn converges weakly in W3,1
2π (0, 2π) and then strongly in

C1(0, 2π) to a function v 6≡ 0, since ‖v′‖∞ = 1. Furthermore, we can suppose

that, for a subsequence, µn → µ0 ∈ [0, 1] and q(x′n) converges in L∞(0, 2π), with

respect to the weak* topology, to a function q0(t) ∈ L∞(0, 2π), where

m2 ≤ q0(t) ≤ (m+ 1)2 .

If we set

(2.4) q̃(t) = (µ0 − 1) θ − µ0 q0(t) ,

the weak continuity of Lθ implies that v verifies

(2.5)







v′′′ + a v′′ + c v = q̃(t) v′

v(0) = v(2π) , v′(0) = v′(2π) , v′′(0) = v′′(2π) ,

with

(2.6) −(m+ 1)2 ≤ q̃ ≤ −m2 .

Using Lemma 1, (2.5) and (2.6) we obtain

0 ≤
〈

A v +m2 v′, A v + (m+ 1)2 v′
〉

=

=

∫ 2π

0

(q̃ +m2)
(

q̃ + (m+ 1)2
)

(v′)2 dt ≤ 0 ,

which implies 〈A v +m2 v′, A v + (m+ 1)2 v′〉 = 0. Since v 6= 0, if c 6= am2 and

c 6= a (m+ 1)2, by Lemma 1, the above equality can not hold and then Claim 2

is trivially satisfied. So suppose that either c = am2 or c = a (m + 1)2. Then

either

m2 is an eigenvalue of A , v ∈ Em and q̃ = −m2 ,(2.7)

or

(m+ 1)2 is an eigenvalue of A , v ∈ Em+1 and q̃ = −(m+ 1)2 .(2.8)

From (2.4), we also conclude that µ0 = 1 and q(x′n) → −q̃ in L∞(0, 2π), with

respect to the weak* topology. Therefore if (2.7) holds, using (2.3) we have

∥

∥

∥q(x′n)−m2
∥

∥

∥

1
=

∫ 2π

0

∣

∣

∣q(x′n)−m2
∣

∣

∣ dt =

∫ 2π

0

(

q(x′n)−m2
)

dt −→ 0 .
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Hence
∥

∥

∥

∥

∥

g(x′n)

‖x′n‖∞
−m2 v′

∥

∥

∥

∥

∥

1

=

∥

∥

∥

∥

∥

q(x′n) v
′
n +

r(x′n)

‖x′n‖∞
−m2 v′

∥

∥

∥

∥

∥

1

≤

≤ ‖q(x′n)‖∞ ‖v′n − v′‖1 + ‖q(x′n)−m2‖1 ‖v′‖∞ +

∥

∥

∥

∥

∥

r(x′n)

‖x′n‖∞

∥

∥

∥

∥

∥

1

−→ 0 .

If (2.8) holds the proof is similar.

Claim 3. There are constants d1 > 0 and 0 < η1 < 1 < η2 such that if x is

a solution of (Pµ), for some µ ∈ [0, 1] and satisfying ‖x′‖∞ ≥ d1, then

maxx′n ·minx′n < 0 and η1 <
maxx′

−minx′
< η2 .

Proof: Assume, by contradiction, that the first part of the thesis does not

hold. So, there is a sequence (xn) of solutions of (Pn) such that ‖x′n‖∞ → +∞
and maxx′n ·minx′n ≥ 0.

By Claim 2,
xn

‖x′n‖∞
→ v in W3,1

2π (0, 2π) and, therefore,
x′n

‖x′n‖∞
→ v′ in

C0(0, 2π) with either v ∈ Em or v ∈ Em+1. Moreover, we can write

v′(t) = Am cosmt+Bm sinmt

or

v′(t) = Am+1 cos(m+1) t+Bm+1 sin(m+1) t

and, on both cases,

max
x′n

‖x′n‖∞
·min

x′n
‖x′n‖∞

−→ max v′ ·min v′ < 0 .

For proving the second part, we suppose, again by contradiction, that, for

every n ∈ N there is a (xn) solution of some (Pn), with ‖x′n‖∞ ≥ d1, such that
maxx′n
−minx′n

≤ 1

n
. Then

maxx′n
−minx′n

→ 0, which contradicts

max
x′n

‖x′n‖∞
−min

x′n
‖x′n‖∞

−→ max v′

−min v′
> 0 .

The proof for η2 is similar.
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In the proof of next claim we shall use the condition on the potential.

Claim 4. Suppose that conditions (g) and (G) hold. Then there is a sequence

(γn), with γn → +∞, such that, if x is a solution of (Pµ), for some µ ∈ [0, 1], we

have maxx′ 6= γn, for every n.

Proof: By condition (G) we can take a sequence of real numbers (γn), with

γn → +∞, such that

(2.9) lim
γn→+∞

2G(γn)

γ2
n

= λ ∈ ]m2, (m+ 1)2[ .

Assume, by contradiction, that there is a subsequence of (γn), which we shall

note by (γn) too, and a sequence µn ∈ [0, 1] such that if (xn) is a solution of

(Pµn), one has maxx′n = γn. Therefore, by (2.9), for ε > 0 small enough and

large n, we can write
2G(γn)

γ2
n

> m2 + ε ,

that is,

(2.10)
2G(γn)−m2 γ2

n

‖x′n‖2∞
> ε

γ2
n

‖x′n‖2∞
> 0 .

Due to the first part of Claim 3, there exist tn0
, tn1

∈ [0, 2π] such that

γn = max(x′n(t)) = x′n(tn1
) and x′n(tn0

) = 0 .

Then

G(γn)−
m2

2
γ2
n = G(x′n(tn1

))−G(x′n(tn0
))− m2

2

[

x′n
2(tn1

)− x′n
2(tn0

)
]

=

∫ tn1

tn0

[

g(x′n(t))−m2 x′n(t)
]

x′′n(t) dt

≤
∫ 2π

0

∣

∣

∣g(x′n(t))−m2 x′n(t)
∣

∣

∣ |x′′n(t)| dt .

By Claim 2 and the continuous imbedding of W3,1
2π (0, 2π) into C2([0, 2π]), one

has

2G(γn)−m2 γ2
n

‖x′n‖2∞
≤
∫ 2π

0

∣

∣

∣g(x′n(t))−m2 x′n(t)
∣

∣

∣ |x′′n(t)|
‖x′n‖2∞

dt

≤
∥

∥

∥

∥

∥

g(x′n(t))−m2 x′n(t)

‖x′n‖∞

∥

∥

∥

∥

∥

1

‖v′′n(t)‖∞ → 0 ,

since (v′′n) is bounded in L∞.

This fact contradicts (2.10).



A THIRD ORDER DIFFERENTIAL EQUATION 483

Proof of Theorem 1: Let (γn) be a sequence given by Claim 4 and let n0

be such that γn0
> max{d0, d1}, where d0 and d1 are referred in Claims 1 and 3,

respectively. Take also K > 0 and 0 < η1 < 1 as in Claims 1 and 3 and define

the open set Ω in C1([0, 2π]), containing the origin:

Ω =

{

x ∈ C1([0, 2π]) : −γn0

η1

< x′(t) < γn0
∧ ‖x‖∞ < K

γn0

η1

, ∀ t ∈ [0, 2π]

}

.

Let x be a solution of (Pµ), for some µ ∈ [0, 1], such that x ∈ Ω̄. From Claims

3, 4 and 1 we deduce that x ∈ Ω. So, the degree is well defined and it is nonzero

for every µ ∈ [0, 1]. Then, the homotopy invariance of the degree guarantees the

existence of a solution of (Pµ) for, say, µ = 1, that is, a solution of (P).

Remark. The statement of Theorem 1 still holds if (G) is replaced by one

of the following conditions

m2 < lim sup
u→−∞

2G(u)

u2
, lim inf

u→+∞

2G(u)

u2
< (m+ 1)2 ,(G1)

or

m2 < lim sup
u→+∞

2G(u)

u2
, lim inf

u→−∞

2G(u)

u2
< (m+ 1)2 ,(G2)

or

m2 < lim sup
u→−∞

2G(u)

u2
, lim inf

u→−∞

2G(u)

u2
< (m+ 1)2 .(G3)

In fact, under condition (G1), we can prove as Claim 4 that solutions of (Pµ)
are bounded in C1, by following similar lines. If (G2) or (G3) is assumed, the

result can be easily derived from the previous ones by the change of variable

v :=−u.
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