EXPONENTIAL STABILITY OF POSITIVE SOLUTIONS TO SOME NONLINEAR HEAT EQUATIONS

M.A. Jendoubi

Presented by J.P. Dias

Abstract

Following a recent work of A. Haraux in which he proves exponential stability of positive solutions of a heat equation with strictly convex nonlinearity, the same property is shown for a suitable perturbation of the nonlinearity which can, in particular, be non convex.

1 - Introduction and main results

Let Ω be a bounded and connected open subset of \mathbb{R}^{N} with a Lipschitz continuous boundary and let us consider the semilinear heat equation

$$
\begin{align*}
u_{t}-\Delta u+f(u) & =k(t, x) \quad \text { in } \quad \mathbb{R}^{+} \times \Omega \\
u(t, \cdot) & =0 \quad \text { on } \quad \mathbb{R}^{+} \times \partial \Omega \tag{1.1}\\
u(0, \cdot) & =u_{0}(\cdot) \quad \text { in } \Omega
\end{align*}
$$

and the elliptic equation

$$
\begin{align*}
-\Delta u+f(u)=0 & \text { in } \Omega \tag{1.2}\\
u=0 & \text { on } \partial \Omega
\end{align*}
$$

where $f: \mathbb{R} \rightarrow \mathbb{R}$ is a locally Lipschitz continuous function such that

$$
\begin{equation*}
f(0)=0 \quad \text { and } \quad f(s) \rightarrow+\infty \quad \text { as } s \rightarrow+\infty \tag{1.3}
\end{equation*}
$$

[^0]and $k: \mathbb{R}^{+} \times \Omega \rightarrow \mathbb{R}$ satisfies the conditions
\[

$$
\begin{equation*}
k \in L^{\infty}\left(\mathbb{R}^{+} \times \Omega\right) \quad \text { and } \quad k(t, x) \geq 0 \quad \text { a.e. on } \mathbb{R}^{+} \times \Omega \tag{1.4}
\end{equation*}
$$

\]

By using standard techniques from the theory of evolution equations, cf. e.g. [5], we know that for all $u_{0} \in L^{\infty}(\Omega)$ with $u_{0}(x) \geq 0$ a.e. on Ω, there exists a unique solution $u \in C\left((0,+\infty) ; H_{0}^{1}(\Omega) \cap L^{\infty}(\Omega)\right) \cap C\left([0,+\infty) ; L^{2}(\Omega)\right)$ of (1.1) such that $u(0, \cdot)=u_{0}(\cdot)$. In addition we have

$$
u(t, x) \geq 0 \quad \text { a.e. on } \mathbb{R}^{+} \times \Omega
$$

As a consequence of (1.3) and the maximum principle, u is uniformly bounded on $\Omega \times \mathbb{R}^{+}$. Then by the method of [11], it follows easily that

$$
\bigcup_{t \geq 1}\{u(t, \cdot)\} \quad \text { is bounded in } C^{1+\alpha}(\bar{\Omega}) \text { for every } \alpha \in[0,1)
$$

In particular the curve $t \mapsto u(t, \cdot)$ has a precompact range in $H_{0}^{1}(\Omega) \cap L^{\infty}(\Omega)$ for $t \geq 1$ and it is natural to ask about the asymptotic behavior of $u(t, \cdot)$ as $t \rightarrow \infty$.
A. Haraux [8] has proved exponential convergence of nonnegative solutions of (1.1) when f satisfies the additional hypotheses

$$
\begin{equation*}
f \quad \text { strictly convex on }[0,+\infty) \text { and } \quad f_{d}^{\prime}(0)<-\lambda_{1}(-\Delta) \tag{1.5}
\end{equation*}
$$

where $\lambda_{1}(-\Delta)$ is the smallest eigenvalue of $(-\Delta)$ in $H_{0}^{1}(\Omega)$. The proof of this result is based on the uniqueness of positive solution of the equation (1.2) and the fact that $\lambda_{1}\left(-\Delta+f^{\prime}(\varphi)\right)>0(\varphi$ is the unique positive solution of (1.2)).

The typical example of nonlinearities which verifies these hypotheses is the following

$$
\begin{equation*}
f(s)=s^{p}-\lambda s, \quad \lambda>\lambda_{1}(-\Delta), \quad p>1 \tag{1.6}
\end{equation*}
$$

The question which we study in this paper is the following: What happens if we perturb the nonlinearity in such a way that convexity of f is lost? In the special case of example (1.6) a question of interest is the following: Can we find $\varepsilon>0$ such that the result of [8] persists for the new nonlinearity

$$
h(s)=s^{p}-\lambda s-\varepsilon s^{q}
$$

with p, λ as in (1.6) and $1<q<p$?
We are able to give a positive answer to this question. We use the same method as in [8]: At first we prove the uniqueness of positive solution of (1.2)
with this new type of nonlinearity. We assume the following hypotheses: Let f satisfying (1.3), (1.5), and let $g: \mathbb{R}^{+} \rightarrow \mathbb{R}$ be a function of class C^{1} such that

$$
\begin{align*}
& g^{\prime}(0) \geq 0, \quad \lim _{s \rightarrow \infty} f(s)-C g(s)=\infty \\
& g(0)=0, \quad g(s) \geq 0 \quad \forall s \geq 0 \tag{1.7}
\end{align*}
$$

with $C>0$ and we consider the nonlinear heat equation

$$
\begin{align*}
u_{t}-\Delta u+f(u) & =\varepsilon g(u)+k(t, x) \quad \text { in } \mathbb{R}^{+} \times \Omega \\
u(t, \cdot) & =0 \quad \text { on } \mathbb{R}^{+} \times \partial \Omega \tag{1.8}\\
u(0, \cdot) & =u_{0}(\cdot) \quad \text { in } \Omega
\end{align*}
$$

The main results of this paper are the following
Theorem 1.1. Let f, g satisfy the hypotheses (1.3), (1.5), (1.7). Then there exists $\varepsilon_{1}>0$ such that for all $\varepsilon \in\left[0, \varepsilon_{1}\right)$ the equation

$$
\begin{equation*}
\Psi \in H_{0}^{1}(\Omega), \quad-\Delta \Psi+f(\Psi)=\varepsilon g(\Psi) \tag{1.9}
\end{equation*}
$$

has one and only one solution $\Psi \geq 0$ other than 0 . In addition we have $\Psi>0$ everywhere in Ω and

$$
\begin{equation*}
\lambda_{1}\left(-\Delta+f^{\prime}(\Psi)-\varepsilon g^{\prime}(\Psi)\right)>0 \quad \forall \varepsilon \in\left[0, \varepsilon_{1}\right) \tag{1.10}
\end{equation*}
$$

Theorem 1.2. Let f, g and k satisfy the hypotheses (1.3), (1.4), (1.5), (1.7). Then if $u_{0}, v_{0} \in L^{\infty}$ with $u_{0}(x) \geq 0$ and $v_{0}(x) \geq 0$ a.e. on Ω, consider the solution u, v of (1.1) with respective initial data $u(0, x)=u_{0}(x)$ and $v(0, x)=v_{0}(x)$. Assuming either that both u_{0}, v_{0} are not identically 0 or that $k(t, x)>0$ on a subset of positive measure of $\mathbb{R}^{+} \times \Omega$. Then there exists $\varepsilon_{2}>0$ such that for all $\varepsilon \in\left[0, \varepsilon_{2}\right)$, there is $\gamma>0$ independent of k and $\left(u_{0}, v_{0}\right):$

$$
\begin{equation*}
\forall t \geq 0 \quad\|u(t, \cdot)-v(t, \cdot)\|_{\infty} \leq C\left(u_{0}, v_{0}, \varepsilon\right) \exp (-\gamma t) \tag{1.11}
\end{equation*}
$$

The paper is organized as follows: in Section 2 we prove Theorem 1.1, in Section 3 we establish Theorem 1.2 when $k=0$. In Section 4, we establish Theorem 1.2 in the general case. In each section some remarks are presented.

2 - The stationnary problem

The object of this section is to prove Theorem 1.1.
Proof of Theorem 1.1. First we prove the existence of a positive solution for the equation (1.9). In fact, if $\varepsilon=0$ then by a theorem of Berestycki [1] (Theorem 4, page 14, cf. also [2], [3]), there exists a unique positive solution φ of (1.2) which verifies

$$
\begin{equation*}
\lambda_{1}\left(-\Delta+f^{\prime}(\varphi) i d\right)>0 . \tag{2.1}
\end{equation*}
$$

Since $g \geq 0$ then φ is a subsolution of (1.9).
Now we assume that $\varepsilon<C$, then by (1.7) there exists $M>0$ such that

$$
\begin{equation*}
f(M)-\varepsilon g(M)>0 . \tag{2.2}
\end{equation*}
$$

So M is a supersolution of (1.9). We claim that $\|\varphi\|_{\infty}<M$. Indeed, let $x_{0} \in \Omega$ such that $\varphi\left(x_{0}\right)=\|\varphi\|_{\infty}$, we have $\Delta \varphi\left(x_{0}\right) \leq 0$. Now if $\|\varphi\|_{\infty} \geq M$ then we have $f(M) \leq 0$. Hence $f(M)-\varepsilon g(M) \leq 0$, and this contradicts (2.2). Then there exist a solution Ψ for (1.9) which verifies $\varphi \leq \Psi \leq M$. By using again the maximum principle, we have for all ξ positive solution of (1.9) $\xi<M$. Then the problem (1.9) has a "maximal" solution Ψ in the sense: any solution $\xi \neq \Psi$ of (1.9) is less than Ψ. (This solution can be constructed by a standard iterative scheme.)

Now we have to use the following lemma due to Haraux [9, 10].
Lemma 2.1. Let f satisfy the hypotheses (1.3), (1.5) and let φ be the positive solution of the equation

$$
\varphi \in C(\Omega) \cap H_{0}^{1}(\Omega), \quad-\Delta \varphi+f(\varphi)=0
$$

Let on the other hand $\xi \geq 0$ be a solution of

$$
\xi \in C(\Omega) \cap H_{0}^{1}(\Omega), \quad-\Delta \xi+f(\xi) \geq_{0}
$$

Then either $\xi=0$ or $\xi \geq \varphi$.
Proof of Theorem 1.1 (continued). Let ξ be a positive solution of (1.9), then by using Lemma 2.1 we have

$$
\varphi \leq \xi<M
$$

Now we prove uniqueness. In fact we assume that we have a solution ξ of (1.9) other than the "maximal" solution Ψ. Then we have:

$$
\begin{equation*}
-\Delta(\Psi-\xi)+f(\Psi)-f(\xi)=\varepsilon[g(\Psi)-g(\xi)] \tag{2.3}
\end{equation*}
$$

Multiplying (2.3) by $(\Psi-\xi)$ and integrating over Ω we find

$$
\begin{align*}
\int_{\Omega}|\nabla(\Psi-\xi)|^{2}+[f(\Psi)-f(\xi)](\Psi-\xi) & d x= \tag{2.4}\\
= & \varepsilon \int_{\Omega}[g(\Psi)-g(\xi)](\Psi-\xi) d x
\end{align*}
$$

Since $\varphi \leq \xi \leq \Psi<M$, then by using (1.5), (1.7) and (2.4) we find

$$
\begin{equation*}
\int_{\Omega}|\nabla(\Psi-\xi)|^{2}+f^{\prime}(\varphi)|\Psi-\xi|^{2} d x \leq \varepsilon \int_{\Omega} C_{1}|\Psi-\xi|^{2} d x \tag{2.5}
\end{equation*}
$$

with $C_{1}=\sup \left\{\left|g^{\prime}(s)\right|, s \in[0, M]\right\}>0$. So

$$
\begin{equation*}
\left[\lambda_{1}\left(-\Delta+f^{\prime}(\varphi)\right)-\varepsilon C_{1}\right] \int_{\Omega}|\Psi-\xi|^{2} d x \leq 0 \tag{2.6}
\end{equation*}
$$

Thank's to $(2.1) \lambda_{1}\left(-\Delta+f^{\prime}(\varphi) i d\right)>0$. Now let ε^{\prime} such that $\lambda_{1}\left(-\Delta+f^{\prime}(\varphi) i d\right)=$ $\varepsilon^{\prime} C_{1}$ and $\varepsilon_{1}=\inf \left(\varepsilon^{\prime}, C\right)$, with C as in (1.7). Then for all $\varepsilon \in\left[0, \varepsilon_{1}\right)$, we have

$$
\begin{equation*}
\lambda_{1}\left(-\Delta+f^{\prime}(\varphi)\right)-\varepsilon C_{1}>0 \tag{2.7}
\end{equation*}
$$

The uniqueness follows from (2.7), we note this solution by Ψ. By using (1.5), (1.7) and (2.7) we deduce

$$
\begin{equation*}
\lambda_{1}\left(-\Delta+\left[f^{\prime}(\Psi)-\varepsilon g^{\prime}(\Psi)\right] i d\right)>0 \quad \forall \varepsilon \in\left[0, \varepsilon_{1}\right) \tag{2.8}
\end{equation*}
$$

3 - The autonomous case

The object of this section is to prove Theorem 1.2 in the case $k=0$. We use the method of [8].

Proof of Theorem 1.2. Let $Z=\left\{z \in C(\bar{\Omega}) \cap H_{0}^{1}(\Omega) / z \geq 0\right\}$. Subsequently $h=f-\varepsilon g$ with $\varepsilon \in\left[0, \varepsilon_{1}\right)$ and ε_{1} is as in Theorem 1.1.

The equation (1.1) generates a dynamical system $\{S(t)\}_{t \geq 0}$ which assigns to each element $z \in Z$ the value $v(t)=S(t) z$ where v is the solution of (1.8) such that $v(0)=z$. Now let E be the functional defined by
$\forall \varphi \in Z \quad E(\varphi)=\frac{1}{2} \int_{\Omega}|\nabla \varphi|^{2} d x+\int_{\Omega} H(\varphi) d x \quad$ where $H(u):=\int_{0}^{u} h(s) d s$.
E is a strict Liapunov functional on Z relative to $S(t)$ and we refer to [9] for a simple proof.

Let $u_{0} \in L^{\infty}(\Omega), u_{0} \geq 0$, then by using the maximum principle (cf. for example [5]) we have $u(t, x) \geq 0$ a.e. $(t, x) \in \mathbb{R}^{+} \times \Omega$. By the standard invariance principle (cf. [9]), we conclude that the solution $u(t, \cdot)$ asymptotes the set of nonnegative solutions of (1.9) as $t \rightarrow \infty$. We now show that if $u_{0} \neq 0, u(t, \cdot)$ cannot tend to 0 as $t \rightarrow \infty$.

In fact assuming that $\lim _{t \rightarrow \infty}\|u(t, \cdot)\|_{\infty}=0$, then for each $\alpha>0$, there is $T(\alpha)$ such that

$$
\forall t \geq T(\alpha) \quad h(u(t, x)) \leq\left\{h_{d}^{\prime}(0)+\alpha\right\} u(t, x) \quad \text { on } \Omega
$$

Choosing $\alpha>0$ small enough such that $-h_{d}^{\prime}(0)-\alpha-\lambda_{1}(\Omega)>0$, multiplying the equation by the positive eigenfunction φ_{1} corresponding to the first eigenvalue $\lambda_{1}(-\Delta)$ of $-\Delta$ in $H_{0}^{1}(\Omega)$ and integrating over Ω we find

$$
\frac{d}{d t} \int_{\Omega} u(t, x) \varphi_{1} d x \geq 0 \quad \forall t \geq T(\alpha)
$$

Since the function $t \mapsto \int_{\Omega} u(t, x) \varphi_{1} d x$ is nondecreasing on $[T(\alpha), \infty]$ and tends to 0 as $t \rightarrow \infty$, it must vanish identically on $[T(\alpha), \infty]$. Because φ_{1} is positive in Ω, this imply that $u(t, \cdot)=0 \forall t \geq T(\alpha)$. Then a classical connectedness argument shows that $u_{0}=0$. Therefore if $u_{0} \neq 0$, the ω-limit set of u_{0} under $S(t)$ is reduced to a single point: $\omega\left(u_{0}\right)=\{\Psi\}$. Since $u(t, \cdot)$ remain bounded in $C^{1}(\Omega)$ for all $t \geq 1$ we deduce that

$$
\lim _{t \rightarrow \infty}\|u(t, \cdot)-\Psi(\cdot)\|_{1, \infty}=0
$$

For the end of the proof, we just need to use (2.8).
Remark 3.1. It is clear that $\lim _{t \rightarrow \infty}\|u(t, \cdot)-\Psi(\cdot)\|_{1, \infty} \exp (c t)=0$, $\forall c<\lambda_{1}\left(-\Delta+h^{\prime}(\psi) i d\right)$. In [19], Wiegner has proved that in such a case the difference of two solutions tend to 0 as $\exp \left(-c_{1} t\right)$ with $c_{1}=\lambda_{1}\left(-\Delta+h^{\prime}(\psi) i d\right)$. For related works in the asymptotic of autonomous parabolic equation we refer to $[7-9,12-19]$.

4 - The nonautonomous case

The object of this section is to prove Theorem 1.2 in the general case. Subsequently $\varepsilon \in\left[0, \varepsilon_{1}\right)$ and ε_{1} as in Theorem 1.1. In the proof we can use the following lemmas from [8] which are also valid for the modified equation (1.8):

Lemma 4.1. Let ψ be the unique positive solution of (1.9) and let us consider the solution z of (1.8) with initial condition $z(0)=\psi$. Then we have:

$$
\forall t \geq 0 \quad z(t, x) \geq \psi(x) \quad \text { on } \Omega .
$$

Lemma 4.2. Let $u_{0} \in L^{\infty}(\Omega)$ with $u_{0}(x) \geq 0$ a.e. on Ω and consider the solution u of (1.8) with initial datum $u(0, x)=u_{0}(x)$. Assuming either that u_{0} is not identically 0 or that $k(t, x)>0$ on a subset of positive measure of $\mathbb{R}^{+} \times \Omega$, we have

$$
\begin{equation*}
\lim _{t \rightarrow \infty}\left\|(u(t, \cdot)-\psi(\cdot))^{-}\right\|_{\infty}=0 . \tag{3.1}
\end{equation*}
$$

Proof of Theorem 1.2: Obviously, it is sufficient to prove the result when $v_{0}=\psi$. Then $v(t)=z(t)$ and

$$
\begin{aligned}
& \forall t>0 \quad \frac{1}{2} \frac{d}{d t}\left(\int_{\Omega}|u(t, x)-z(t, x)|^{2} d x\right)= \\
& =-\int_{\Omega}|\nabla(u-z)|^{2} d x-\int_{\Omega}[f(u)-f(z)](u-z) d x+\varepsilon \int_{\Omega}[g(u)-g(z)](u-z) d x .
\end{aligned}
$$

By convexity of f, since $z(t) \geq \psi$ for all t, we have $f(z) / z \geq f(\psi) / \psi$. Moreover from (3.1) it follows in particular that fixing some nonempty open set ω contained in a compact subset of Ω, we have for $t \geq T$ depending on the solution u that

$$
\begin{equation*}
\forall t \geq T \quad u(t, x) \geq \frac{1}{2} \psi(x) \text { on } \omega . \tag{3.2}
\end{equation*}
$$

Now from (3.2) we deduce easily the inequality

$$
\begin{aligned}
\forall t \geq T & \frac{1}{2} \frac{d}{d t}\left(\int_{\Omega}|u(t, x)-z(t, x)|^{2} d x\right)= \\
& =-\int_{\Omega}|\nabla(u-z)|^{2} d x-\int_{\Omega} c(x)|u-z|^{2} d x+\varepsilon \int_{\Omega}[g(u)-g(z)](u-z) d x
\end{aligned}
$$

with

$$
c(x)= \begin{cases}\frac{f(\psi)}{\psi} & \text { outside } \omega, \\ 2 \frac{f(\psi)-f(\psi / 2)}{\psi} & \text { in } \omega .\end{cases}
$$

Let

$$
\delta=\inf \left\{\int_{\Omega}\left(|\nabla w|^{2}+c(x) w^{2}\right) d x, w \in H_{0}^{1}(\Omega), \int_{\Omega} w^{2} d x=1\right\} .
$$

We can prove as in [8] that $\delta>0$. In the other hand, there exists $C_{1}>0$ such that

$$
\int_{\Omega}[g(u)-g(z)](u-z) d x \leq C_{1} \int_{\Omega}|u-z|^{2} d x .
$$

Set $\varepsilon^{\prime \prime}=\frac{\delta}{C_{1}}$ and let $\varepsilon_{2}=\inf \left(\varepsilon_{1}, \varepsilon^{\prime \prime}\right)$, then we obtain for all $t \geq T$

$$
\frac{d}{d t}\left(\int_{\Omega}|u(t, x)-z(t, x)|^{2} d x\right) \leq-\left(\delta-\varepsilon C_{1}\right) \int_{\Omega}|u-z|^{2} d x
$$

The end of the proof is the same as in [8].
Remark 4.3. It is instructive to compare the result of Theorem 1.2 with the result of Chen and Matano [6], recently completed with a simple proof by Brunovsky et al. [4]. The result of $[4,6]$ are proved for any nonlinearity but only in one space dimension and for time-periodic forcing terms. On the other hand Theorem 1.2 is valid for any space dimension, but it is restricted to positive solution and a special type of nonlinearities.

Remark 4.4. This result can be viewed as a "structural stability" property for the result of [8]. However our method of proof is constructive since given $\lambda_{1}\left(-\Delta+f^{\prime}(\psi) i d\right)=\gamma>0$, we can specify explicitely ε_{1} and ε_{2} in terms of the function g.

ACKNOWLEDGEMENTS - The author wish to thank Professor A. Haraux for having introduced him to this problem.

REFERENCES

[1] Berestycki, H. - Le nombre de solutions de certain problèmes semi-linéaires elliptiques, J. of Funct. Anal., 40 (1981), 1-29.
[2] Brezis, H. and Kamin, S. - Sublinear elliptic equations in \mathbb{R}^{N}, Manuscripta Math., 74 (1992), 87-106.
[3] Brezis, H. and Oswald, L. - Remarks on sublinear elliptic equations, Nonlinear Ana. TMA, 10 (1986), 55-64.
[4] Brunovsky, P., Polacik, P. and Sandsteade, B. - Convergence in general periodic parabolic equations in one space dimension, Nonlinear Anal. TMA, 18 (1992), 209-215.
[5] Cazenave, Th. and Haraux, A. - Introduction aux problèmes d'évolution semilinéaire, Mathématiques \& Applications, Vol. 1 (Ellipses, Paris, 1990).
[6] Chen, X.Y. and Matano, H. - Convergence asymptotic periodicity and finitepoint blowup in one-dimensional semilinear heat equation, J. Diff. Equa., 78 (1989), 160-190.
[7] Hale, J.K. and Raugel, G. - Convergence in gradient-like systems with applications to PDE, Z. Angew. Math. Phys., 43 (1992), 63-124.
[8] Haraux, A. - Exponentially stable positive solutions to a forced semilinear parabolic equation, Asymptotic Analysis, 7 (1993), 3-13.
[9] Haraux, A. - Systèmes Dynamiques Dissipatifs et Applications, R.M.A., vol. 17 (Masson, Paris, 1991).
[10] Haraux, A. - Asymptotics of positive solutions to a forced semilinear parabolic equation, Pub. Lab. Ana. Num. 91028.
[11] Haraux, A. and Kirane, M. - Estimations C^{1} pour des problèmes paraboliques semi-linéaires, Ann. Fac. Sci. Toulouse, 5 (1983), 265-280.
[12] Haraux, A. and Polacik, P. - Convergence to a positive equilibrium for some nonlinear evolution equations in a ball, Acta Math. Univ. Comeniane, 2 (1992), 129-141.
[13] Lions, P.L. - Structure of the set of steady-state solutions and asymptotic behavior of semilinear heat equations, J. Diff. Equ., 53 (1984), 362-386.
[14] Lions, P.L. - Asymptotic behavior of some nonlinear heat equations, Physica 5D nonlinear phenomena (1982), 293-306.
[15] Matano, H. - Convergence of solutions of one-dimensional semilinear heat equation, J. Math. Kyoto Univ., 18 (1978), 221-227.
[16] Polacik, P. and Rybakowski, K.P. - Nonconvergent bounded trajectories in semilinear heat equations, J. Diff. Equ., 124 (1996), 472-494.
[17] Simon, L. - Asymptotics for a class of non-linear evolution equations, with applications to geometric problems, Annals of Mathematics, 118 (1983), 525-571.
[18] Zelenyak, T.J. - Stabilization of solutions of boundary value problems for a second-order parabolic equation with one space variable, Differentsial'nye Uravneniya, 4 (1968), 17-22.
[19] WIEGNER - On the asymptotic behavior of solutions of nonlinear parabolic equations, Math. Zei., 188 (1984), 3-22.

Mohamed Ali Jendoubi,
Département de Mathématiques, Bat. Fermat, Université de Versailles, 45 Av. des États Unies, 78035 Versailles - FRANCE
E-mail: jendoubi@math.uvsq.fr

[^0]: Received: March 26, 1997.
 Keywords: Exponential stability, nonautonomous parabolic equation, elliptic equation.

