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EXPONENTIAL STABILITY OF POSITIVE SOLUTIONS
TO SOME NONLINEAR HEAT EQUATIONS
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Abstract: Following a recent work of A. Haraux in which he proves exponential

stability of positive solutions of a heat equation with strictly convex nonlinearity, the

same property is shown for a suitable perturbation of the nonlinearity which can, in

particular, be non convex.

1 – Introduction and main results

Let Ω be a bounded and connected open subset of RN with a Lipschitz con-

tinuous boundary and let us consider the semilinear heat equation

(1.1)

ut −∆u+ f(u) = k(t, x) in R+ × Ω ,

u(t, ·) = 0 on R+ × ∂Ω ,

u(0, ·) = u0(·) in Ω ,

and the elliptic equation

(1.2)
−∆u+ f(u) = 0 in Ω ,

u = 0 on ∂Ω ,

where f : R → R is a locally Lipschitz continuous function such that

(1.3) f(0) = 0 and f(s)→ +∞ as s→ +∞
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and k : R+ × Ω→ R satisfies the conditions

(1.4) k ∈ L∞(R+ × Ω) and k(t, x) ≥ 0 a.e. on R+ × Ω .

By using standard techniques from the theory of evolution equations, cf. e.g. [5],

we know that for all u0 ∈ L
∞(Ω) with u0(x) ≥ 0 a.e. on Ω, there exists a unique

solution u ∈ C((0,+∞);H1
0 (Ω) ∩ L

∞(Ω)) ∩ C([0,+∞);L2(Ω)) of (1.1) such that

u(0, ·) = u0(·). In addition we have

u(t, x) ≥ 0 a.e. on R+ × Ω .

As a consequence of (1.3) and the maximum principle, u is uniformly bounded

on Ω× R+. Then by the method of [11], it follows easily that
⋃

t≥1

{u(t, ·)} is bounded in C1+α(Ω) for every α ∈ [0, 1) .

In particular the curve t 7→ u(t, ·) has a precompact range in H1
0 (Ω)∩L

∞(Ω) for

t ≥ 1 and it is natural to ask about the asymptotic behavior of u(t, ·) as t→∞.

A. Haraux [8] has proved exponential convergence of nonnegative solutions of

(1.1) when f satisfies the additional hypotheses

(1.5) f strictly convex on [0,+∞) and f ′d(0) < −λ1(−∆)

where λ1(−∆) is the smallest eigenvalue of (−∆) in H
1
0 (Ω). The proof of this

result is based on the uniqueness of positive solution of the equation (1.2) and

the fact that λ1(−∆+ f
′(ϕ)) > 0 (ϕ is the unique positive solution of (1.2)).

The typical example of nonlinearities which verifies these hypotheses is the

following

(1.6) f(s) = sp − λ s , λ > λ1(−∆), p > 1 .

The question which we study in this paper is the following: What happens if we

perturb the nonlinearity in such a way that convexity of f is lost? In the special

case of example (1.6) a question of interest is the following: Can we find ε > 0

such that the result of [8] persists for the new nonlinearity

h(s) = sp − λ s− ε sq

with p, λ as in (1.6) and 1 < q < p?

We are able to give a positive answer to this question. We use the same

method as in [8]: At first we prove the uniqueness of positive solution of (1.2)
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with this new type of nonlinearity. We assume the following hypotheses: Let f

satisfying (1.3), (1.5), and let g : R+ → R be a function of class C1 such that

(1.7)
g′(0) ≥ 0 , lim

s→∞
f(s)− C g(s) =∞ ,

g(0) = 0 , g(s) ≥ 0 ∀ s ≥ 0 ,

with C > 0 and we consider the nonlinear heat equation

(1.8)

ut −∆u+ f(u) = ε g(u) + k(t, x) in R+ × Ω ,

u(t, ·) = 0 on R+ × ∂Ω ,

u(0, ·) = u0(·) in Ω

The main results of this paper are the following

Theorem 1.1. Let f , g satisfy the hypotheses (1.3), (1.5), (1.7). Then there

exists ε1 > 0 such that for all ε ∈ [0, ε1) the equation

(1.9) Ψ ∈ H1
0 (Ω) , −∆Ψ+ f(Ψ) = ε g(Ψ) ,

has one and only one solution Ψ ≥ 0 other than 0. In addition we have Ψ > 0

everywhere in Ω and

(1.10) λ1
(

−∆+ f ′(Ψ)− ε g′(Ψ)
)

> 0 ∀ ε ∈ [0, ε1) .

Theorem 1.2. Let f , g and k satisfy the hypotheses (1.3), (1.4), (1.5), (1.7).

Then if u0, v0 ∈ L
∞ with u0(x) ≥ 0 and v0(x) ≥ 0 a.e. on Ω, consider the solution

u, v of (1.1) with respective initial data u(0, x) = u0(x) and v(0, x) = v0(x).

Assuming either that both u0, v0 are not identically 0 or that k(t, x) > 0 on a

subset of positive measure of R+ × Ω. Then there exists ε2 > 0 such that for all

ε ∈ [0, ε2), there is γ > 0 independent of k and (u0, v0):

(1.11) ∀ t ≥ 0 ‖u(t, ·)− v(t, ·)‖∞ ≤ C(u0, v0, ε) exp(−γ t) .

The paper is organized as follows: in Section 2 we prove Theorem 1.1, in

Section 3 we establish Theorem 1.2 when k = 0. In Section 4, we establish

Theorem 1.2 in the general case. In each section some remarks are presented.
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2 – The stationnary problem

The object of this section is to prove Theorem 1.1.

Proof of Theorem 1.1. First we prove the existence of a positive solution

for the equation (1.9). In fact, if ε = 0 then by a theorem of Berestycki [1]

(Theorem 4, page 14, cf. also [2], [3]), there exists a unique positive solution ϕ of

(1.2) which verifies

(2.1) λ1(−∆+ f
′(ϕ) id) > 0 .

Since g ≥ 0 then ϕ is a subsolution of (1.9).

Now we assume that ε < C, then by (1.7) there exists M > 0 such that

(2.2) f(M)− ε g(M) > 0 .

So M is a supersolution of (1.9). We claim that ‖ϕ‖∞ < M . Indeed, let x0 ∈ Ω

such that ϕ(x0) = ‖ϕ‖∞, we have ∆ϕ(x0) ≤ 0. Now if ‖ϕ‖∞ ≥ M then we

have f(M) ≤ 0. Hence f(M) − ε g(M) ≤ 0, and this contradicts (2.2). Then

there exist a solution Ψ for (1.9) which verifies ϕ ≤ Ψ ≤M . By using again the

maximum principle, we have for all ξ positive solution of (1.9) ξ < M . Then the

problem (1.9) has a “maximal” solution Ψ in the sense: any solution ξ 6= Ψ of

(1.9) is less than Ψ. (This solution can be constructed by a standard iterative

scheme.)

Now we have to use the following lemma due to Haraux [9, 10].

Lemma 2.1. Let f satisfy the hypotheses (1.3), (1.5) and let ϕ be the

positive solution of the equation

ϕ ∈ C(Ω) ∩H1
0 (Ω) , −∆ϕ+ f(ϕ) = 0 .

Let on the other hand ξ ≥ 0 be a solution of

ξ ∈ C(Ω) ∩H1
0 (Ω) , −∆ξ + f(ξ) ≥0 .

Then either ξ = 0 or ξ ≥ ϕ.

Proof of Theorem 1.1 (continued). Let ξ be a positive solution of (1.9),

then by using Lemma 2.1 we have

ϕ ≤ ξ < M .
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Now we prove uniqueness. In fact we assume that we have a solution ξ of (1.9)

other than the “maximal” solution Ψ. Then we have:

(2.3) −∆(Ψ− ξ) + f(Ψ)− f(ξ) = ε[g(Ψ)− g(ξ)] .

Multiplying (2.3) by (Ψ− ξ) and integrating over Ω we find

(2.4)

∫

Ω
|∇(Ψ− ξ)|2 + [f(Ψ)− f(ξ)] (Ψ− ξ) dx =

= ε

∫

Ω
[g(Ψ)− g(ξ)] (Ψ− ξ) dx .

Since ϕ ≤ ξ ≤ Ψ < M , then by using (1.5), (1.7) and (2.4) we find

(2.5)

∫

Ω
|∇(Ψ− ξ)|2 + f ′(ϕ) |Ψ− ξ|2 dx ≤ ε

∫

Ω
C1 |Ψ− ξ|

2 dx

with C1 = sup{|g
′(s)|, s ∈ [0,M ]} > 0. So

(2.6)
[

λ1(−∆+ f
′(ϕ))− εC1

]

∫

Ω
|Ψ− ξ|2 dx ≤ 0 .

Thank’s to (2.1) λ1(−∆+f
′(ϕ) id) > 0. Now let ε′ such that λ1(−∆+f

′(ϕ) id) =

ε′C1 and ε1 = inf(ε
′, C), with C as in (1.7). Then for all ε ∈ [0, ε1), we have

(2.7) λ1(−∆+ f
′(ϕ))− εC1 > 0 .

The uniqueness follows from (2.7), we note this solution by Ψ. By using (1.5),

(1.7) and (2.7) we deduce

(2.8) λ1
(

−∆+ [f ′(Ψ)− ε g′(Ψ)] id
)

> 0 ∀ ε ∈ [0, ε1) .

3 – The autonomous case

The object of this section is to prove Theorem 1.2 in the case k = 0. We use

the method of [8].

Proof of Theorem 1.2. Let Z = {z ∈ C(Ω)∩H1
0 (Ω) / z ≥ 0}. Subsequently

h = f − ε g with ε ∈ [0, ε1) and ε1 is as in Theorem 1.1.

The equation (1.1) generates a dynamical system {S(t)}t≥0 which assigns to

each element z ∈ Z the value v(t) = S(t) z where v is the solution of (1.8) such

that v(0) = z. Now let E be the functional defined by

∀ϕ ∈ Z E(ϕ) =
1

2

∫

Ω
|∇ϕ|2 dx+

∫

Ω
H(ϕ) dx where H(u) :=

∫ u

0
h(s) ds .
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E is a strict Liapunov functional on Z relative to S(t) and we refer to [9] for a

simple proof.

Let u0 ∈ L
∞(Ω), u0 ≥ 0, then by using the maximum principle (cf. for example

[5]) we have u(t, x) ≥ 0 a.e. (t, x) ∈ R+×Ω. By the standard invariance principle
(cf. [9]), we conclude that the solution u(t, ·) asymptotes the set of nonnegative

solutions of (1.9) as t → ∞. We now show that if u0 6= 0, u(t, ·) cannot tend to

0 as t→∞.

In fact assuming that limt→∞ ‖u(t, ·)‖∞ = 0, then for each α > 0, there is

T (α) such that

∀ t ≥ T (α) h(u(t, x)) ≤ {h′d(0) + α}u(t, x) on Ω .

Choosing α > 0 small enough such that −h′d(0)−α−λ1(Ω) > 0, multiplying the

equation by the positive eigenfunction ϕ1 corresponding to the first eigenvalue

λ1(−∆) of −∆ in H
1
0 (Ω) and integrating over Ω we find

d

dt

∫

Ω
u(t, x)ϕ1 dx ≥ 0 ∀ t ≥ T (α) .

Since the function t 7→
∫

Ω u(t, x)ϕ1 dx is nondecreasing on [T (α),∞] and tends to

0 as t→∞, it must vanish identically on [T (α),∞]. Because ϕ1 is positive in Ω,

this imply that u(t, ·) = 0 ∀ t ≥ T (α). Then a classical connectedness argument

shows that u0 = 0. Therefore if u0 6= 0, the ω-limit set of u0 under S(t) is reduced

to a single point: ω(u0) = {Ψ}. Since u(t, ·) remain bounded in C
1(Ω) for all

t ≥ 1 we deduce that

lim
t→∞

‖u(t, ·)−Ψ(·)‖1,∞ = 0 .

For the end of the proof, we just need to use (2.8).

Remark 3.1. It is clear that limt→∞ ‖u(t, ·) − Ψ(·)‖1,∞ exp(c t) = 0,

∀ c < λ1(−∆ + h′(ψ) id). In [19], Wiegner has proved that in such a case the

difference of two solutions tend to 0 as exp(−c1 t) with c1 = λ1(−∆+ h
′(ψ) id).

For related works in the asymptotic of autonomous parabolic equation we refer

to [7–9, 12–19].

4 – The nonautonomous case

The object of this section is to prove Theorem 1.2 in the general case. Subse-

quently ε ∈ [0, ε1) and ε1 as in Theorem 1.1. In the proof we can use the following

lemmas from [8] which are also valid for the modified equation (1.8):
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Lemma 4.1. Let ψ be the unique positive solution of (1.9) and let us consider

the solution z of (1.8) with initial condition z(0) = ψ. Then we have:

∀ t ≥ 0 z(t, x) ≥ ψ(x) on Ω .

Lemma 4.2. Let u0 ∈ L∞(Ω) with u0(x) ≥ 0 a.e. on Ω and consider the

solution u of (1.8) with initial datum u(0, x) = u0(x). Assuming either that u0
is not identically 0 or that k(t, x) > 0 on a subset of positive measure of R+×Ω,

we have

(3.1) lim
t→∞

∥

∥

∥

(

u(t, ·)− ψ(·)
)−∥
∥

∥

∞
= 0 .

Proof of Theorem 1.2: Obviously, it is sufficient to prove the result when

v0 = ψ. Then v(t) = z(t) and

∀ t > 0
1

2

d

dt

(

∫

Ω
|u(t, x)− z(t, x)|2 dx

)

=

= −

∫

Ω
|∇(u− z)|2 dx−

∫

Ω
[f(u)− f(z)] (u− z) dx+ ε

∫

Ω
[g(u)− g(z)] (u− z) dx .

By convexity of f , since z(t) ≥ ψ for all t, we have f(z)/z ≥ f(ψ)/ψ. Moreover

from (3.1) it follows in particular that fixing some nonempty open set ω contained

in a compact subset of Ω, we have for t ≥ T depending on the solution u that

(3.2) ∀ t ≥ T u(t, x) ≥
1

2
ψ(x) on ω .

Now from (3.2) we deduce easily the inequality

∀ t ≥ T
1

2

d

dt

(

∫

Ω
|u(t, x)− z(t, x)|2 dx

)

=

= −

∫

Ω
|∇(u− z)|2 dx−

∫

Ω
c(x) |u− z|2 dx+ ε

∫

Ω
[g(u)− g(z)] (u− z) dx

with

c(x) =



















f(ψ)

ψ
outside ω,

2
f(ψ)− f(ψ/2)

ψ
in ω .

Let

δ = inf

{
∫

Ω

(

|∇w|2 + c(x)w2
)

dx, w ∈ H1
0 (Ω),

∫

Ω
w2 dx = 1

}

.
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We can prove as in [8] that δ > 0. In the other hand, there exists C1 > 0 such

that
∫

Ω
[g(u)− g(z)] (u− z) dx ≤ C1

∫

Ω
|u− z|2 dx .

Set ε′′ = δ
C1
and let ε2 = inf(ε1, ε

′′), then we obtain for all t ≥ T

d

dt

(

∫

Ω
|u(t, x)− z(t, x)|2 dx

)

≤ −(δ − εC1)

∫

Ω
|u− z|2 dx .

The end of the proof is the same as in [8].

Remark 4.3. It is instructive to compare the result of Theorem 1.2 with

the result of Chen and Matano [6], recently completed with a simple proof by

Brunovsky et al. [4]. The result of [4, 6] are proved for any nonlinearity but

only in one space dimension and for time-periodic forcing terms. On the other

hand Theorem 1.2 is valid for any space dimension, but it is restricted to positive

solution and a special type of nonlinearities.

Remark 4.4. This result can be viewed as a “structural stability” property

for the result of [8]. However our method of proof is constructive since given

λ1(−∆+ f
′(ψ) id) = γ > 0, we can specify explicitely ε1 and ε2 in terms of the

function g.
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