COMPLEMENTS IN MODULAR AND SEMIMODULAR LATTICES

G.H. Bordalo and E. Rodrigues

Abstract

We study the relations between the complements of a and b when a is covered by b on finite upper-semimodular lattices and when $a<b$ on modular lattices. We give some results that generalize the well known properties of complements in distibutive lattices. From there, we derive a property of semisimple R-modules.

1 - Introduction

In this paper we will only consider lattices that have a least element, denoted by 0 , and a greatest element, denoted by 1 . Given a lattice L and $a \in L$ we say that $a^{\prime} \in L$ is a complement of a if $a \wedge a^{\prime}=0$ and $a \vee a^{\prime}=1$, and we denote the set of complements of a by C_{a}.

We write $a \prec b$ when b covers a. We recall that a lattice is upper-semimodular if $a \wedge b \prec a \Rightarrow b \prec a \vee b, \forall a, b \in L$. Following M. Stern [4] we refer to these lattices as semimodular.

Let L be a lattice. Consider a pair $(a, b) \in L^{2}$ such that $a<b, C_{a} \neq \emptyset$ and $C_{b} \neq \emptyset$. If L is distributive then $C_{a}=\left\{a^{\prime}\right\}, C_{b}=\left\{b^{\prime}\right\}$ and $a<b \Leftrightarrow b^{\prime}<a^{\prime}$. This property can be generalized in a number of ways:

$$
\begin{array}{lll}
P_{1}: \exists\left(a^{\prime}, b^{\prime}\right) \in C_{a} \times C_{b}: b^{\prime}<a^{\prime} & Q_{1}: \exists\left(a^{\prime}, b^{\prime}\right) \in C_{a} \times C_{b}: b^{\prime} \leq a^{\prime} \\
P_{2}: \forall b^{\prime} \in C_{b}, \exists a^{\prime} \in C_{a}: b^{\prime}<a^{\prime} & Q_{2}: \forall b^{\prime} \in C_{b}, \exists a^{\prime} \in C_{a}: b^{\prime} \leq a^{\prime} \\
P_{3}: \forall a^{\prime} \in C_{a}, \exists b^{\prime} \in C_{b}: b^{\prime}<a^{\prime} & Q_{3}: \forall a^{\prime} \in C_{a}, \exists b^{\prime} \in C_{b}: b^{\prime} \leq a^{\prime}
\end{array}
$$

We say that a lattice L satisfies P_{i}, respectively Q_{i} if every pair $(a, b) \in L^{2}$ with $a<b, \mathrm{C}_{a} \neq \emptyset$ and $\mathrm{C}_{b} \neq \emptyset$ satisfies P_{i}, respectively Q_{i}.

[^0]If L is a finite modular lattice, we note that Q_{2} is a restriction of the well known order between the ideals of a finite poset (see also P. Ribenboim [2]).

Given a pair $(a, b) \in L^{2}$ such that $a<b, C_{a} \neq \emptyset$ and $C_{b} \neq \emptyset$, the implications $P_{2} \Rightarrow P_{1}, P_{3} \Rightarrow P_{1}, Q_{2} \Rightarrow Q_{1}, Q_{3} \Rightarrow Q_{1}$ and $P_{i} \Rightarrow Q_{i}, i=1,2,3$ are valid, for this pair. As they are valid for every pair, they are also valid for lattices. These implications are ilustrated in the next picture.

Fig. 1

There are finite complemented lattices where not even Q_{1} is satisfied. Here is an example:

Fig. 2
L_{1} is a complemented finite lattice and satisfies the Jordan-Dedekind chain condition. We note that L_{1} is not semimodular.

Let us now consider the following lattice:

Fig. 3
L_{2} is a finite, complemented lattice which is also semimodular. The pair (a, b) satisfies neither Q_{3} nor P_{2}. However, every pair satisfies Q_{2}. We will prove that finite semimodular complemented lattices, in particular partition lattices, satisfy Q_{2}, and that all modular lattices satisfy P_{2} and P_{3}. We will also prove that modular complemented lattices satisfy the following property:

$$
P: \quad \forall a \neq b \in L, \quad \text { if } C_{a} \neq \emptyset \quad \text { and } \quad C_{b} \neq \emptyset \quad \text { then } C_{a} \neq C_{b}
$$

The lattice L_{2} does not satisfy P. In fact $i \neq h$ and $C_{i}=C_{h}=\{e, c, a, b\}$.
It is easy to see that the properties $P_{i}, Q_{i}, i=1,2,3$, and P are preserved under direct products, that is, if, $\forall i \in I, L_{i}$ satisfies one of these properties, then $\prod_{i \in I} L_{i}$ also satisfies that property.

2 - Finite semimodular lattices

We start with more general results concerning semimodular lattices.
Lemma 1. Let L be a finite semimodular lattice, $a, b \in L, a \prec b, b^{\prime} \in C_{b} \backslash C_{a}$.
i) $\left(a \vee b^{\prime}\right) \wedge b=a$ and $a \vee b^{\prime}$ is a co-atom.
ii) If there exists $c \in L$ such that $b^{\prime} \prec c$ and $a \vee c=1$ then $c \in C_{a}$.
iii) If there exists an atom $a_{1} \in L$ such that $a_{1} \vee\left(a \vee b^{\prime}\right)=1$ then, $a_{1} \vee b^{\prime}$ is a complement of a and $b^{\prime} \prec a_{1} \vee b^{\prime}$.

Proof: Let L be a finite semimodular lattice and $a, b \in L, a \prec b$, and let $b^{\prime} \in C_{b} \backslash C_{a}$.
i) We have $a \wedge b^{\prime}=0$ and $b^{\prime} \notin C_{a}$ therefore $a \vee b^{\prime}<1$. Since $\left(a \vee b^{\prime}\right) \vee b=1$ we have $\left(a \vee b^{\prime}\right) \wedge b<b$. From $a \leq\left(a \vee b^{\prime}\right) \wedge b<b$ and $a \prec b$ we conclude $a=\left(a \vee b^{\prime}\right) \wedge b$. As L is semimodular $a=\left(a \vee b^{\prime}\right) \wedge b \prec b$ implies $a \vee b^{\prime} \prec a \vee b^{\prime} \vee b=1$.
ii) If $a \wedge c>0$ then there is a_{1} such that $0 \prec a_{1} \leq a \wedge c$. Also $a_{1} \leq a<b$ so $a_{1} \wedge b^{\prime}=0$ and as $0 \prec a_{1}$ then $b^{\prime} \prec a_{1} \vee b^{\prime}$. On the other hand $a_{1}<c$ and $b^{\prime} \prec c$ imply $a_{1} \vee b^{\prime} \leq c$ so $c=a_{1} \vee b^{\prime}$. We conclude $a \vee b^{\prime}=\left(a \vee a_{1}\right) \vee b^{\prime}=a \vee\left(a_{1} \vee b^{\prime}\right)=$ $a \vee c=1$. But from $a<b$ and $b \wedge b^{\prime}=0$ we get $a \wedge b^{\prime}=0$ so $b^{\prime} \in C_{a}$, which is a contradiction.
iii) We have $a \wedge b^{\prime}=0$ and $b^{\prime} \notin C_{a}$ so $a \vee b^{\prime}<1$. From $a_{1} \vee\left(a \vee b^{\prime}\right)=1$ we have $a_{1} \not \leq a \vee b^{\prime}$, and so $a_{1} \wedge\left(a \vee b^{\prime}\right)=0$. This implies $a_{1} \wedge b^{\prime}=0$ so, by the semimodular property, $b^{\prime} \prec a_{1} \vee b^{\prime}$. Now by using ii) we conclude $a_{1} \vee b^{\prime} \in C_{a}$.

Theorem 2. Let L be a finite semimodular lattice, $a, b \in L$ such that $a \prec b$ and $C_{b} \neq \emptyset$. If $C_{a} \nsubseteq C_{b}$ then $\forall b^{\prime} \in C_{b} \backslash C_{a}, \exists c \in C_{a}: b^{\prime} \prec c$.

Proof: Let L be as stated, and let $a, b \in L, a \prec b$ and $a^{\prime} \in C_{a} \backslash C_{b}$. Let $b^{\prime} \in C_{b} \backslash C_{a}$. We have $a^{\prime} \vee b=1$ and $a^{\prime} \notin C_{b}$ so $0<a^{\prime} \wedge b$. Let a_{1} be an atom such that $a_{1} \leq a^{\prime} \wedge b$. From $a \wedge a^{\prime}=0$ and $a_{1} \leq a^{\prime}$ we have $a \wedge a_{1}=0$, and, as $0 \prec a_{1}$ and L is semimodular we conclude $a \prec a \vee a_{1}$. Since $a<b$ and $a_{1} \leq b$ we get $a \vee a_{1} \leq b$, and, as $a \prec b$, we have $a \vee a_{1}=b$.

Let $c:=a_{1} \vee b^{\prime}$. Then $a \vee c=a \vee\left(a_{1} \vee b^{\prime}\right)=\left(a \vee a_{1}\right) \vee b^{\prime}=b \vee b^{\prime}=1$. By the third part of Lemma 1, we conclude $c \in C_{a}$.

Corollary 3. Let L be a finite semimodular lattice. If $a, b \in L$ are such that $a \prec b, C_{b} \neq \emptyset$ and $C_{a} \nsubseteq C_{b}$ then (a, b) satisfies Q_{2}.

Proof: Let $L, a, b \in L$ be as stated. Let $b^{\prime} \in C_{b}$. If $b^{\prime} \in C_{b} \backslash C_{a}$ then by the theorem $\exists a^{\prime} \in C_{a}: b^{\prime} \prec a^{\prime}$ in particular $b^{\prime} \leq a^{\prime}$. If $b^{\prime} \in C_{a}$ then take $a^{\prime}=b^{\prime}$.

Corollary 4.

i) Finite complemented semimodular lattices satisfy Q_{2}.
ii) Let L be a finite semimodular lattice, $a, b \in L$ such that $C_{a} \neq \emptyset, C_{b} \neq \emptyset$ and $a \prec b$. Then (a, b) satisfies Q_{1}.

Proof: i) Let L be a finite complemented semimodular lattice and $(a, b) \in L^{2}$. First we note that on a finite complemented lattice if we show that Q_{2} holds when $a \prec b$ then this property is also valid when $a<b$. Let $a \prec b$. The property holds when $b^{\prime} \in C_{a}$. Supose $b^{\prime} \in C_{b} \backslash C_{a}$. By the first part of Lemma 1, the element $a \vee b^{\prime}$ is a co-atom. It is easy to see that there is a complement, a_{1}, of $a \vee b^{\prime}$ which is an atom. So, by Lemma 1, iii), $b^{\prime} \prec b^{\prime} \vee a_{1}$ and Q_{2} is satisfied.
ii) Let L and $a, b \in L$ be as stated. If $C_{a} \nsubseteq C_{b}$ then, by Corollary $3,(a, b)$ satisfies Q_{2} and therefore satisfies Q_{1}. If $C_{a} \subseteq C_{b}$ then choose $a^{\prime} \in C_{a}$ and consider the pair $\left(a^{\prime}, a^{\prime}\right) \in C_{a} \times C_{b}$.

There are finite semimodular lattices which do not satisfy Q_{2}. Here is an example:

Fig. 4

3 - The case of modular lattices

Note that, given a modular lattice L, and $a, b \in L$, if $C_{a} \neq \emptyset$ and $C_{b} \neq \emptyset$ then C_{a} and C_{b} are antichains. The next theorem tells us how they are related.

Theorem 5. Modular lattices satisfy P_{2} and P_{3}.
Proof: It is enough to show P_{2} because this implies P_{3} by duality. Let L be a modular lattice. Consider $a, b \in L$ such that $a<b, C_{a} \neq \emptyset$ and $C_{b} \neq \emptyset$. For all $b^{\prime} \in C_{b}$ choose $a^{\prime} \in C_{a}$. We will prove that $a^{\prime \prime}:=\left(a^{\prime} \wedge b\right) \vee b^{\prime}$ is a complement of a greater than b^{\prime}. In fact, $a \vee a^{\prime \prime}=\left(a \vee\left(a^{\prime} \wedge b\right)\right) \vee b^{\prime}=\left(\left(a \vee a^{\prime}\right) \wedge b\right) \vee b^{\prime}=b \vee b^{\prime}=1$. Also, $a \wedge\left(\left(a^{\prime} \wedge b\right) \vee b^{\prime}\right)=a \wedge\left(\left(\left(a^{\prime} \wedge b\right) \vee b^{\prime}\right) \wedge b\right)=a \wedge\left(\left(a^{\prime} \wedge b\right) \vee\left(b^{\prime} \wedge b\right)\right)=a \wedge a^{\prime} \wedge b=0$. We have $b^{\prime} \leq a^{\prime \prime}$ and if $b^{\prime}=a^{\prime \prime}$ then we would have $a<b, a \wedge b^{\prime}=b \wedge b^{\prime}=0$ and $a \vee b^{\prime}=b \vee b^{\prime}=1$, which contradicts the modularity of L.

Corollary 6. In a complemented modular lattice, for each ascending chain

$$
0<a_{1}<\cdots<a_{n}<\cdots<1
$$

there exists a descending chain

$$
1>a_{1}^{\prime}>\cdots>a_{n}^{\prime}>\cdots>0
$$

such that a_{i}^{\prime} is a complement of a_{i} in L.

The following example shows that modular lattices do not have to satisfy P.

Fig. 5

In fact, we have $a \neq b$ and $C_{a}=C_{b} \neq \emptyset$. We note that $a \vee b$ does not have a complement. We will see that, in a modular lattice, if $a \vee b$ and $a \wedge b$ have complements, then P holds.

Theorem 7. In a modular lattice L, if the set of complemented elements forms a sublattice, then L satisfies P.

Proof: Let L be a modular lattice, and let $a \neq b \in L$. Supose a and b have complements. If $a<b$ then, let $b^{\prime} \in C_{b}$. We know, by Theorem 5 , that there is $a^{\prime} \in C_{a}$ such that $b^{\prime}<a^{\prime}$. Therefore $a^{\prime} \notin C_{b}$. Supose that $\{a, b\}$ is an antichain. We will show that, if $a \vee b$ and $a \wedge b$ have complements, then $C_{a} \neq C_{b}$.

Let c and d be complements of $a \vee b$ and $a \wedge b$, respectively, such that $c<d$. We have:

$$
c \wedge(a \vee b)=0 ; \quad c \vee(a \vee b)=1 ; \quad d \wedge(a \wedge b)=0 ; \quad d \vee(a \wedge b)=1 .
$$

We will show that $(b \wedge d) \vee c \in C_{a} \backslash C_{b}$:
$(b \wedge d) \vee c \vee a=((a \wedge b) \vee(b \wedge d)) \vee c \vee a=(((a \wedge b) \vee d) \wedge b) \vee c \vee a=b \vee c \vee a=1 ;$
$((b \wedge d) \vee c) \wedge a=(((b \wedge d) \vee c) \wedge(a \vee b)) \wedge a=((b \wedge d) \vee(c \wedge(a \vee b))) \wedge a=b \wedge d \wedge a=0 ;$
$(b \wedge d) \vee c \vee b=((a \wedge b) \vee(b \wedge d)) \vee c \vee b=(((a \wedge b) \vee d) \wedge b) \vee c \vee b=b \vee c<1$,
because L is modular.
As an immediate consequence we have the following theorem:
Corollary 8. Modular complemented lattices satisfy the property P.
Corollary 9. In a modular lattice, if two elements a and b are such that $a \vee b$ and $a \wedge b$ are complemented, then a and b also are complemented.

Proof: The case of a and b being comparable, is trivial. If a and b are not comparable, let c and d be complements of $a \vee b$ and $a \wedge b$, respectively, such that $c<d$. From the proof of Theorem 7 we get $(b \wedge d) \vee c \in C_{a} \backslash C_{b}$ and $(a \wedge d) \vee c \in C_{b} \backslash C_{a} . ■$

We conclude with an application of Corollary 6 to the theory of R-modules over a ring:

Corollary 10. In a semisimple R-module, M, there exists an infinite ascending chain

$$
\{0\} \subset M_{1} \subset \cdots \subset M_{n} \subset \cdots
$$

if and only if there exists an infinite descending chain

$$
M \supset M_{1}^{\prime} \supset \cdots \supset M_{n}^{\prime} \supset \cdots
$$

such that M is the direct sum of M_{i}^{\prime} and M_{i}.
Proof: Note that the lattice of submodules of a semisimple R-module is modular and complemented. If we have an infinite ascending chain $\{0\} \subset M_{1} \subset$ $M_{2} \subset \cdots \subset M_{n} \subset \cdots$ of submodules of M then, by Corollary 6 , we can build an infinite descending chain $M \supset M_{1}^{\prime} \supset M_{2}^{\prime} \supset \cdots \supset M_{n}^{\prime} \supset \cdots$, therefore M is not artinian.

The proof of the other implication is analogous, using the dual of Corollary 6.
From this corollary, it follows the well known result that a semisimple R-module, M, is noetherian if and only if it is artinian.

ACKNOWLEDGEMENT - We acknowledge with thanks useful comments by Joel Berman.

REFERENCES

[1] Crawley, P. and Dilworth, R. - Algebraic Theory of Lattices, Prentice-Hall, Englewood Clifs, New Jersey, 1973, ISBN 0-13-022269-0.
[2] Ribenboim, P. - Ordering the set of antichains of an ordered set, Collect. Math., 46(1-2) (1995), 159-170.
[3] Salii, V.N. - Lattices With Unique Complements, AMS, 1988, ISBN 0-8218-4522-5.
[4] Stern, M. - Semimodular Lattices, Teubner-Text zur Mathematik, StuttgartLeipzig, 1991, ISBN 3-8154-2018-0.

Gabriela Hauser Bordalo,
Centro de Álgebra da Universidade de Lisboa (C.A.U.L.),
Av. Professor Gama Pinto, 2, 1699 Lisboa Codex - PORTUGAL
E-mail: mchauser@ptmat.lmc.fc.ul.pt
and
Elias Rodrigues,
Univ. da Madeira, Departamento de Matemática,
Colégio dos Jesuitas, Largo do Município, 9000 Funchal - PORTUGAL
E-mail: elias@dragoeiro.uma.pt

[^0]: Received: March 4, 1997; Revised: July 20, 1997.
 Mathematics Subject Classifications (1991): 06B, 06C.
 Keywords: Modular lattices, Semimodular lattices, Complemented lattices.

