PERFECT SQUARES IN THE SEQUENCE 3, 5, 7, 11, ...

W.L. McDaniel

Abstract

We prove that the only square terms in the sequence $\left\{u_{n}\right\}$, defined by $u_{0}=1, u_{1}=3, u_{n+2}=u_{n+1}+u_{n}-1$ are u_{0} and $u_{12}=289$.

1 - Introduction

We trust that the reader did not assume that the sequence of the title is the sequence of odd primes! The sequence under consideration here is defined recursively by $u_{n+2}=u_{n+1}+u_{n}-1$, with initial terms (omitted above) $u_{0}=1$ and $u_{1}=3$. The recursive relationship is, of course, very close to that of the sequence $\left\{F_{n}\right\}$ of Fibonacci numbers $\left(F_{n+2}=F_{n+1}+F_{n}, F_{0}=0, F_{1}=1\right)$, and one can readily show, by induction, that $u_{n}=2 F_{n}+1$. Our purpose, here, is to show that $\left\{u_{n}\right\}$ has only two terms which are perfect squares: $u_{0}=1$ and $u_{12}=289$.

The character of the terms of $\left\{F_{n}\right\}$ has been the subject of a number of investigations. The values of n have been found for which F_{n} is a square [1], for which F_{n} has the form $m(m+1) / 2$ (i.e., is a triangular number) [5] or $m(3 m-1) / 2$ (a pentagonal number) [6], for which F_{n} is the product of consecutive integers [7] and [8], and for which $F_{n}=m(m+2)$ [9]. Among other results are the values of n for which F_{n} is of the form $m^{2}+1, m^{3}$ and $m^{3} \pm 1$ [2], [3], [4], [9]. It is remarkable that F_{n} has none of the above forms if $n>12$. Our result in this paper adds to this list the values of n such that F_{n} is of the form $2 m(m+1)$ (twice the product of consecutive integers). Our approach involves using the periodicity of the sequence modulo any integer to show that, for each integer $n \neq 0$ or 12 , there exists an integer $w(n)$ such that the Jacobi symbol $\left(u_{n} \mid w(n)\right)=\left(2 F_{n}+1 \mid w(n)\right)=-1$.

[^0]Main Theorem. The sequence $\left\{u_{n}\right\}$ contains exactly two terms which are perfect squares: $u_{0}=1$ and $u_{12}=289$.

Corollary. The only terms of $\left\{F_{n}\right\}$ of the form $2 m(m+1)$ are $F_{0}=0$ and $F_{12}=2 \cdot 8 \cdot 9$.

2 - Identities and preliminary lemmas

We will require the sequence of Lucas numbers $\left\{L_{n}\right\}$ which satisfies the same recursive relation as $\left\{F_{n}\right\}$, but with initial terms $L_{0}=2, L_{1}=1$. Let k, m and n be integers. Properties (1) through (6) are well-known.

$$
\begin{equation*}
L_{n}^{2}-5 F_{n}^{2}=(-1)^{n} \cdot 4 \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
F_{m+n}=F_{m} L_{n}-(-1)^{n} F_{m-n} \tag{4}
\end{equation*}
$$

$$
\begin{align*}
& F_{-n}=(-1)^{n+1} F_{n} \tag{1}\\
& F_{2 n}=F_{n} L_{n} \quad \text { and } \quad L_{2 n}=L_{n}^{2}-2(-1)^{n} \tag{2}
\end{align*}
$$

$$
L_{4 m} \equiv \begin{cases}-1(\bmod 8) & \text { if } 3 \nmid m \tag{5}\\ 2(\bmod 8) & \text { if } 3 \mid m\end{cases}
$$

$$
\begin{equation*}
F_{n} \text { and } L_{n} \text { are even iff } 3 \mid n \tag{6}
\end{equation*}
$$

(hence $u_{n}=2 F_{n}+1$ is a square only if $3 \mid n$),
$F_{2 k t} \equiv \pm F_{2 k}\left(\bmod L_{2 k}\right), \quad$ if $\quad t$ is odd.
Luo [5] has used (7). The proof readily follows from (4) - just notice that $F_{2 k t}=F_{2 k(t-1)} L_{2 k}-(-1)^{2 k} F_{2 k(t-2)} \equiv-F_{2 k(t-2)} \equiv \ldots \equiv(-1)^{\frac{t-1}{2}} F_{2 k}\left(\bmod L_{2 k}\right)$.

Lemma 1. If $k=2^{u}, u \geq 3$ and t is odd, then $\left(u_{2 k t} \mid L_{2 k}\right)=\left(u_{2 k} \mid L_{2 k}\right)$.
Proof: From (7), $\quad\left(u_{2 k t} \mid L_{2 k}\right)=\left(2 F_{2 k t}+1 \mid L_{2 k}\right)=\left(2 F_{2 k}+1 \mid L_{2 k}\right) \quad$ or $\left(-2 F_{2 k}+1 \mid L_{2 k}\right)$. We prove the lemma by showing that the product of the two Jacobi symbols on the right is +1 :

$$
\left(2 F_{2 k}+1 \mid L_{2 k}\right) \cdot\left(-2 F_{2 k}+1 \mid L_{2 k}\right)=\left(1-4 F_{2 k}^{2} \mid L_{2 k}\right)=\left(25-20 \cdot 5 F_{2 k}^{2} \mid L_{2 k}\right)
$$

which, by (3),

$$
=\left(25-20\left(L_{2 k}^{2}-4\right) \mid L_{2 k}\right)=\left(105 \mid L_{2 k}\right)=\left(L_{2 k} \mid 105\right) .
$$

Now, $L_{2^{4}}=2207 \equiv 2(\bmod 105)$, and by induction (using (2)), we have $L_{2 \cdot 2^{u}} \equiv$ $2^{2}-2 \equiv 2(\bmod 105)$ for $u \geq 3$. Hence $\left(L_{2 k} \mid 105\right)=(2 \mid 105)=+1$.

Lemma 2. If $k=2^{u}, u \geq 4$, then $\left(2 F_{2 k}+1 \mid L_{2 k}\right)=\left(4 F_{k}+L_{k} \mid 21\right)$.

Proof:

$$
\left(2 F_{2 k}+1 \mid L_{2 k}\right)=\left(2 \mid L_{2 k}\right)\left(4 F_{2 k}+2 \mid L_{2 k}\right)
$$

which, by (2),

$$
\begin{aligned}
& =\left(4 F_{2 k}+L_{k}^{2}-L_{2 k} \mid L_{2 k}\right)=\left(4 F_{2 k}+L_{k}^{2} \mid L_{2 k}\right)=\left(L_{2 k} \mid 4 F_{2 k}+L_{k}^{2}\right) \\
& =\left(L_{k}^{2}-2 \mid L_{k}\right)\left(L_{k}^{2}-2 \mid 4 F_{k}+L_{k}\right) \\
& =\left(-2 \mid L_{k}\right)\left(2 \mid 4 F_{k}+L_{k}\right)\left(2 L_{k}^{2}-4 \mid 4 F_{k}+L_{k}\right)
\end{aligned}
$$

using (3), this

$$
\begin{aligned}
& =\left(2 L_{k}^{2}-\left(L_{k}^{2}-5 F_{k}^{2}\right) \mid 4 F_{k}+L_{k}\right)=\left(L_{k}^{2}+5 F_{k}^{2} \mid 4 F_{k}+L_{k}\right) \\
& =\left(21 F_{k}^{2} \mid 4 F_{k}+L_{k}\right)=\left(4 F_{k}+L_{k} \mid 21\right)
\end{aligned}
$$

The proof of the main theorem requires the following known congruence:

$$
\begin{equation*}
F_{2 k t+m} \equiv(-1)^{t} F_{m}\left(\bmod L_{k}\right), \quad \text { for all integers } k, t \text { and } m \tag{8}
\end{equation*}
$$

3 - The Proof

Proof of the main theorem: It is readily seen that the sequence $\left\{u_{n}\right\}=$ $\left\{2 F_{n}+1\right\}$ is periodic with period 8 modulo 3 and period 16 modulo 7 . We find that $2 F_{n}+1$ is a quadratic residue modulo 3 only if $n \equiv 0,1,2,4 \operatorname{or} 7(\bmod 8)$ and a quadratic residue modulo 7 only if $n \equiv 0,4,5,8,11$, or $12(\bmod 16)$. It follows that $2 F_{n}+1$ is a square only if $n \equiv 0,4,8$ or $12(\bmod 16)$. Assume that $n \neq 0,-4$ or 12 and that u_{n} is a square.

Case 1. $n \not \equiv 0(\bmod 16)$. Then, $n \equiv \pm 4, \pm 8$ or $\pm 12(\bmod 32)$.
We write $n=2 k t+m$ and use (8) to obtain a contradiction in each subcase.

1) $m=-4$. We take $k=2^{u}, u \geq 4, t$ odd. Then (using (1)),

$$
2 F_{n}+1 \equiv-2 F_{-4}+1 \equiv 2 F_{4}+1 \equiv 7\left(\bmod L_{2^{u}}\right)
$$

Since $L_{8} \equiv-2(\bmod 7)$, it is easy to see, using (2) and induction, that $L_{2^{u}} \equiv 2$ $(\bmod 7)$; hence, $\left(7 \mid L_{2^{u}}\right)=-\left(L_{2^{u}} \mid 7\right)=-(2 \mid 7)=-1$, a contradiction.
2) $m=4$. Then $n \equiv 4$ or $36(\bmod 64)$. Taking $m=4, k=2^{4}$, and t even, we have

$$
2 F_{n}+1 \equiv 2 F_{4}+1 \equiv 7\left(\bmod L_{2^{4}}\right)
$$

so $n \equiv 4(\bmod 64)$ is eliminated as in 1$)$. If $n \equiv 36(\bmod 64)$, then, since $3 \mid n$ by (6), $n \equiv 36(\bmod 3 \cdot 64)$. Taking $m=36, k=3 \cdot 2^{4}$, and t even, we have

$$
2 F_{n}+1 \equiv 2 F_{36}+1\left(\bmod L_{3 \cdot 2^{4}}\right) ;
$$

the congruence holds modulo 769 , a divisor of L_{48}, and we find that

$$
\left(2 F_{36}+1 \mid 769\right)=(435 \mid 769)=-1
$$

3) $m=-8$. Again, $3 \mid n$ implies that $n \equiv 24(\bmod 3 \cdot 32)$. Take $k=3 \cdot 2^{3}$ and t even; using the factor 1103 of L_{24} yields $\left(2 F_{n}+1 \mid 1103\right)=(85 \mid 1103)=-1$.
4) $m=8$. Taking $k=2^{3}$ and t even eliminates this subcase, as in 2).
5) $m=-12$. In this subcase, $n \equiv-12(\bmod 64)$, or $n \equiv 20$ or $84(\bmod 128)$. Taking $m=-12, k=2^{4}$ and t even, we have $2 F_{n}+1 \equiv-2 F_{12}+1 \equiv-287$ $\left(\bmod L_{16}\right)$, but $\left(-287 \mid L_{16}\right)=-1$. Upon taking $m=20$ or $84, k=2^{5}, t$ even, and q a divisor of $L_{32}=1087 \cdot 4481,2 F_{n}+1 \equiv 2 F_{m}+1(\bmod q)$, and we find that $\left(2 F_{20}+1 \mid 4481\right)=-1$, and $\left(2 F_{84}+1 \mid 1087\right)=-1$.
6) $m=12$. Take $k=2^{u}, u \geq 4$ and t odd. Then

$$
2 F_{n}+1 \equiv-2 F_{12}+1 \equiv-287\left(\bmod L_{2^{u}}\right)
$$

and

$$
\left(-287 \mid L_{2^{u}}\right)=\left(L_{2^{u}} \mid 287\right)=\left(L_{2^{u}} \mid 7\right)\left(L_{2^{u}} \mid 41\right)=\left(L_{2^{u}} \mid 41\right)
$$

Now, using (2), it is easy to show that

$$
L_{2^{u}} \equiv \begin{cases}6(\bmod 41), & \text { if } u \text { is odd } \\ -7(\bmod 41), & \text { if } u \text { is even }\end{cases}
$$

and each of $(6 \mid 41)$ and $(-7 \mid 41)$ equals -1 .
Case 2. $n \equiv 0(\bmod 16)$. Let $n=2 \cdot 2^{u} t, u \geq 3, t$ odd. If $u=3$, then, since $3 \mid n, n=48(t / 3) ;$ by $(6), 2 F_{n}+1 \equiv \pm 2 F_{48}+1\left(\bmod L_{48}\right)$. Since $769 \cdot 3167 \mid L_{48}$, we have

$$
\left(2 F_{n}+1 \mid 769\right)=\left(2 F_{48}+1 \mid 769\right) \equiv(104 \mid 769)=-1
$$

or

$$
\left(2 F_{n}+1 \mid 3167\right)=\left(-2 F_{48}+1 \mid 3167\right) \equiv(-780 \mid 3167)=-1
$$

Assume $u \geq 4$. By Lemmas 1 and $2,\left(2 F_{n}+1 \mid L_{2 \cdot 2^{u}}\right)=\left(4 F_{k}+L_{k} \mid 21\right)$. Now, $F_{8}=21$ divides F_{k}, and from the proof of Lemma $1, L_{k} \equiv 2(\bmod 21)$; hence $\left(4 F_{k}+L_{k} \mid 21\right)=(2 \mid 21)=-1$.

Finally, since t may be 0 in each of the above cases except for 1), 6) and Case $2, u_{n}$ is not a square except possibly when $n=0,-4$ or 12 . Clearly, only $u_{0}=1$ and $u_{12}=289$ are squares; this completes the proof.

Proof of the corollary: The proof is immediate, since, if $u_{n}=2 F_{n}+1=$ $(2 m+1)^{2}$, then $F_{n}=2 m(m+1)$.

REFERENCES

[1] Cohn, J.H.E. - On square Fibonacci numbers, J. London Math. Soc., 39 (1964), 537-541.
[2] Finkelstein, R. - On Fibonacci numbers which are one more than a square, J. Reine Angew. Math., 262/263 (1973), 171-182.
[3] Lagarias, J.C. and Weisser, D.P. - Fibonacci and Lucas cubes, The Fibonacci Quart., 19 (1981), 39-43.
[4] London, H. and Finkelstein, R. - On Fibonacci and Lucas Numbers which are perfect powers, The Fibonacci Quart., 7 (1969), 476-481.
[5] Luo, M. - On triangular Fibonacci numbers, Fibonacci Quart., 27 (1989), 98-108.
[6] Luo, M. - Pentagonal numbers in the Fibonacci sequence, Applications of Fibonacci Numbers, 6, "Proceedings of the Sixth International Conference on Fibonacci Numbers and Their Applications", Washington State University, Pullman, Washington, USA, July, 1994, 349-354.
[7] Luo, M. - Nearly square numbers in the Fibonacci and Lucas Sequences, J. of Chongqing Teachers College, 12(4) (1996), 1-5.
[8] McDaniel, W. - Pronic Fibonacci numbers, The Fibonacci Quart., 36 (1998), 56-59.
[9] Robbins, N. - Fibonacci and Lucas numbers of the forms $w^{2}-1, w^{3} \pm 1$, The Fibonacci Quart., 19 (1981), 369-373.

Wayne L. McDaniel,
Department of Mathematics, University of Missouri-St. Louis, 8001 Natural Bridge Rd., St. Louis, MO 63121 - USA

[^0]: Received: February 26, 1997.

