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NORMAL SMASH PRODUCTS

S. Yang and D. Wang*

Abstract: Let H be a co-Frobenius Hopf algebra over a field k and A a right

H-comodule algebra. It is shown that A is H-faithful and AN #N∗ ∈ Φ iff A#H∗rat ∈ Φ,

where N is a subgroup of G(H) = {g ∈ H | ∆(g) = g ⊗ g} and AN is N -coinvariants,

Φ denotes a normal class. It is also shown that if A/A1 is right H-Galois and A1 is central

simple, then so is A#H∗rat. In particular, if A1 is a divisible ring, then A#H∗rat is

a dense ring of linear transformations of the vector space A over A1. Let H be a finite

dimensional Hopf algebra over the field k and A an H-module algebra, K is a unimodular

and normal subHopfalgebra and H = H/K+H, it is obtained that AK #H ∈ Φ and A

is H∗-faithful iff A#H ∈ Φ.

0 – Introduction

The notation of normal class was first defined by Nicholson and Watters.

There are many normal classes of rings. For example, the class of prime rings,

the class of (left) primitive rings, the class of primitive rings with non-zero socle,

the class of prime subdirectly irreducible rings and the class of prime left non-

singular rings, are all normal classes. Other examples and properties of normal

classes can be found in [NW1] and [NW2]. They can be applied to deduce some

interesting results of prime rings.

Throughout this paper, we work over a fixed field k. For example, H is finite

dimensional means H is a finite dimensional Hopf algebra over the field k, etc.

Let H be a finite dimensional Hopf algebra and A an H-module algebra, AH the

invariants of A under the H-action, and A#H the associated smash product.
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In [Y], the author discussed normal connections between AH and A#H. Let

H be a co-Frobenius Hopf algebra and A a right H-comodule algebra. In this

paper, we establish a generalized Morita context and apply it to give some normal

connections of smash products for induced Hopf actions and coactions.

In the second section, it is shown that A is H-faithful and AN #N∗ ∈ Φ iff

A # H∗rat ∈ Φ, where N is a subgroup of G = {g ∈ H | ∆(g) = g ⊗ g} and

AN is N -coinvariants, Φ denotes a normal class. Suppose H is finite dimensional

and A an H-module algebra, K is a unimodular and normal subHopfalgebra

and H = H/K+H, it is also shown that AK #H ∈ Φ and A is H∗-faithful iff

A#H ∈ Φ.

The main results of [CC2, Section 3] are straightforword to check that

H # H∗rat is central simple and it is a dense ring of finite-rank linear trans-

formations of H over k. Can we have the analogous statements about A#H∗rat?

In the third section, we discuss this problem generally. As a corollary, a simple

proof of [CC2, Theorems 3.7–3.9] is given.

1 – Preliminaries

It is always assumed that H is a co-Frobenius Hopf algebra with antipode S.

From [D, Theorem 2], dim
∫ l = 1 (dim

∫ r = 1), where
∫ l (

∫ r) is the left (right)

integral space of H∗. It is well-known that S is bijective and H∗rat is a dense ideal

of H∗. Sigma notations are used and [M] is our basic reference. Fix 0 6= t ∈
∫ l

and G = {g ∈ H | ∆(g) = g⊗ g}. Notice that G is the group of group-likes of H.

Lemma 1. Let H be a co-Frobenius Hopf algebra, then there exists an

α ∈ G such that t f = 〈f, α〉 t for all f ∈ H∗.

Proof: Choose 0 6= tr ∈
∫ r. Since the map H → H∗rat, x → (tr ↼ S(x))

is bijective, there exists some h ∈ H such that t = tr ↼ S(h). For all g∗ ∈ H∗,

tg∗ = ngt for some ng ∈ k. Since

tg∗ = (tr ↼ S(h)) g∗ =
∑

(h)

(tr(g
∗ ↼ h1)) ↼ S(h2)

=
∑

(h)

〈g∗, h1〉 tr ↼ S(h2) = tr ↼ S(h ↼ g∗) ,

h ↼ g∗ = ngh for all g∗∈H∗. Now ng ε(h) = 〈ε, h ↼ g∗〉 = 〈g∗, h〉 and 〈g∗0, h〉 6=0

for some g∗0 ∈ H∗ , so ε(h) 6= 0. Set α = ε(h)−1h, then α ∈ H and h = ε(h)α.

One has ng = 〈g∗, α〉 and α ↼ g∗ = 〈g∗, α〉α, hence
∑

(α)〈g
∗, α1〉α2 = 〈g∗, α〉α
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for all g∗ ∈ H∗. Thus ∆(α) = α⊗ α and the result follows.

Denote f g = g ⇀ f for all g ∈ G and f ∈ H∗.

Lemma 2. With the notations as above, then S(t) = tα.

Proof: For all h ∈ H and h∗ ∈ H∗, it is easy to see that

〈tαh∗, h〉 =
∑

(h)

〈tα, h1〉 〈h
∗, h2〉 =

∑

(h)

〈t, h1α〉 〈h
∗α−1

, h2α〉

= 〈th∗α
−1

, hα〉 =
〈

〈h∗, 1〉 tα, h
〉

and tαh∗ = 〈h∗, 1〉 tα. Thus S−1(tα) ∈
∫ l. Applying

∑

(h)〈t
′, h2〉h1 = 〈t′, h〉 1H

for t′ ∈
∫ l, one has

(t ↼ h) t =
∑

(h)

(t ↼ h1) (t ↼ S−1(h3)h2) =
∑

(h)

t (t ↼ S−1(h2)) ↼ h1

=
∑

(h)

〈t ↼ S−1(h2), α〉 t ↼ h1 =
∑

(h)

〈t, S−1(h2)α〉 t ↼ h1

=
∑

(h)

〈S−1(tα), h2〉 t ↼ h1 =
∑

(h)

t ↼ 〈S−1(tα), h2〉h1

= 〈S−1(tα), h〉 t .

On the other hand, (t ↼ h) t = 〈t, h〉 t hence 〈t, h〉 = 〈S−1(tα), h〉, it follows that

S(t) = tα.

Suppose that A is a right H-comodule algebra with the structure map ρ.

Define

Ag =
{

a ∈ A | ρ(a) = a⊗ g
}

for all g ∈ G .

If N is a subgroup of G, AN =
∑

g∈N Ag which is called the N -coinvariants of

A, is an N -graded algebra. AG is the semicoinvariants and A1 ⊆ AN is the

H-coinvariants of A. A#H∗rat is a ring, which is A ⊗k H
∗rat as a vector space,

the multiplication is

(a#h∗) (b#g∗) =
∑

(b)

a b0#(h∗ ↼ b1) g
∗, for a, b ∈ A, h∗, g∗ ∈ H∗rat .

A is a left A#H∗rat-module via (a#h∗)·b = a(h∗·b) and a right A#H∗rat-module

via b · (a#h∗) =
∑

(b),(a)〈h
∗, S−1(b1a1)α〉 b0 a0 for h∗ ∈ H∗rat, a, b ∈ A.

Proposition 1. µ1 = (A1, A, A, A#H∗rat) is a Morita context.
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Proof: Obviously, A is a left and right A1-module via ring multiplications.

One sees that A is an (A#H∗rat, A1)- and an (A1, A#H∗rat)-bimodule. Define

[ , ] : A⊗A1
A −→ A#H∗rat, [a, b] =

∑

(b)

(a b0)#(t ↼ b1) ,

( , ) : A⊗A#H∗rat A −→ A1, (a, b) = t · (a b) .

Applying Lemma 1 and Lemma 2, the result follows in the similar way as [CC1,

Theorem 2.4].

Remark. If
∫ l =

∫ r 6= 0, µ1 coincides with [CC1, Theorem 2.4]; if A is a

G-graded algebra for any group G, µ1 coincides with [B, Theorem 1.2]; if H is

a finite dimensional Hopf algebra and A an H-module algebra, µ1 also coincides

with [CFM, Theorem 2.10].

In the sequel we apply the Morita context µ1 to study normal smash products.

All notations as noted above unless otherwise specified.

2 – Normal connections

A Morita context u = (R, V,W, T ) is called T -faithful, if (V, t · W ) =

(V · t,W ) = 0 with t ∈ T 6= 0, then t = 0. Similarly, one can define R-faithful.

A class Φ of prime rings is said to be normal if u is a T -faithful context withR ∈ Φ,

then necessarily T ∈ Φ. Note that the Morita context µ1 = (A1, A,A,A#H∗rat)

is always A1-faithful. Let A be a right H-comodule algebra, A is called H-faithful

if A is A#H∗rat-faithful as both a left and a right A#H∗rat-module.

Lemma 3. A is H-faithful iff µ1 is A#H∗rat-faithful.

Proof: Suppose A is H-faithful, r ∈ A#H∗rat and

(A, r ·A) = (A · r,A) = 0 ,

then

[A,A · r] ·A = A (A · r,A) = 0 ,

which implies that [A,A · r] = 0 and A · r = 0, hence r = 0. So µ1 is

A#H∗rat-faithful. It is easy to check the converse.

Let N ≤ G, we may form AN #N∗(usually unrelated to A#H∗rat) and have

µ2 =
(

A1, A1
ANAN#N∗ , AN#N∗ANA1

, AN #N∗
)

.
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For the definition of graded nondegenerate (resp. graded faithfully), the reader is

referred to [CM].

Suppose H is a finite dimensional Hopf algebra and A an H-module algebra.

From [CFM, Theorem 2.14], one knows that AH is prime and A is H∗-faithful

iff A#H is prime. Applying [Y, Theorem 3], one can deduce AH ∈ Φ and A is

H∗-faithful iff A#H ∈ Φ. In fact, we have the following result.

Theorem 1. Let H be a co-Frobenius Hopf algebra and A an H-comodule

algebra. Then A is H-faithful and AN #N∗ ∈ Φ iff A#H∗rat ∈ Φ.

Proof: µ1 is always A1-faithful, so if A#H∗rat ∈ Φ, then A1 ∈ Φ.

Suppose A#H∗rat ∈ Φ. It is easy to check that µ1 is A#H∗rat-faithful and

A is H-faithful by Lemma 3. First, Ag 6= 0 for any g ∈ N . Indeed, if 0 6= a ∈ A,

then (a# tg
−1

) · A 6= 0, that is a(tg
−1

· A) 6= 0, so tg
−1

· A 6= 0. Hence Ag 6= 0 for

all g ∈ N since tg
−1

·A ⊆ Ag. Next, AN is graded nondegenerate. Let ag ∈ Ag. If

agAτ = 0, then ag(t
τ−1

·A) = 0. So (ag# tτ
−1

) ·A = 0, ag# tτ
−1

= 0 and ag = 0.

Hence AN is a faithful left AN #N∗-module [cf. CM, Lemma 2.5] and agAg−1 6= 0

for 0 6= ag ∈ Ag. Note that y ∈ Ag, Ay is an H-subcomodule left ideal of A,

if 0 6= ag ∈ Ag, Ag−1ag ⊇ (tg · A) ag = t · (Aag) = A · (ag # t) 6= 0 and AN is

graded nondegenerate. In fact, AN is N -graded faithfully. Let r ∈ AN #N∗ and

AN · r = 0, then (AN , r ·AN ) = (AN · r,AN ) = 0 and r ·AN = 0, so r = 0. Hence

AN is right AN #N∗-faithful. It follows that µ2 is A1- and AN #N∗-faithful.

If A#H∗rat∈Φ, then A1∈Φ and µ2 is AN #N∗-faithful, hence AN #N∗∈Φ.

Conversely, if AN # N∗ ∈ Φ and A is H-faithful, then A1 ∈ Φ and µ1 is

A#H∗rat-faithful by Lemma 3, A#H∗rat ∈ Φ.

Example 1. Group-graded rings: Let A =
⊕

g∈GAg be a G-graded algebra,

N ≤ G, then AN =
∑

n∈N An is N -graded algebra. By Theorem 1, A#G∗ ∈ Φ

iff A is G-graded faithfully and AN #N∗ ∈ Φ.

Corollary 1. Suppose that A#H∗rat is semiprime. Then A is a faithful left

A#H∗rat-module and AN #N∗ ∈ Φ iff A#H∗rat ∈ Φ.

Proof: It suffices to show that if A#H∗rat is semiprime and A is a faithful

left A#H∗rat-module, then A is H-faithful. If x ∈ A#H∗rat and A · x = 0, then

[A,A]x[A,A] = 0, x[A,A] = 0 since A#H∗rat is semiprime. So [x ·A,A] = 0 and

x ·A = 0, that is x = 0. Hence A is H-faithful.

Now, we focus on the factor Hopf actions. Let H be a finite dimensional

Hopf algebra and A an H-module algebra. K is a normal subHopfalgebra of H.
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It is well-known that H = H/K+H is a Hopf algebra, where K+ = Ker ε ∩K.

HtK (tK ∈
∫ l
K) and AK areH-modules, tKH is a rightH-module and (AK)

H
=AH

[YC]. The normal connection between AK#H and A#H is stated as following.

Theorem 2. Let H be a finite dimensional Hopf algebra, K a unimodu-

lar and normal subHopfalgebra of H and A an H-module algebra. Then A is

H∗-faithful and AK#H ∈ Φ iff A#H ∈ Φ.

Proof: By Remark, Lemma 3 and Theorem 1, it suffices to check that if A

is H∗-faithful, then AK is H
∗
-faithful.

Let 0 6= tK be a left integral element of K. It is easy to see that htK 6= 0 if

h 6= 0. Similarly, if h 6= 0 and K is unimodular, tKh 6= 0.

Let 0 6=
∑

ah # h ∈ AK #H, then 0 6=
∑

ah # htK =
∑

ah # htK ∈ A#H.

Since A is H∗-faithful, there exists 0 6= x ∈ A such that
(

∑

ah#h
)

· (tK · x) =
(

∑

ah#htK
)

· x 6= 0 .

So A is a faithful left AK#H-module. 0 6= tK(
∑

ah#h) =
∑

ah# tKh =
∑

ah#

tKh ∈ A#H since K is unimodular. One can choose x ∈ A such that

(tK · x) ·
(

∑

ah#h
)

= x ·
(

∑

ah# tKh
)

6= 0 .

Hence AK is a faithful right AK#H-module. The result follows.

Example 2. Skew group rings: Let G be a finite group of automorphisms

of A. N a normal subgroup of G and G = G/N , AN = {a ∈ A | n · a = a for

all n ∈ N}. Note that A is a faithful right A ∗G-module then A is a faithful left

A ∗ G-module [CFM]. Thus, if A is a faithful right A ∗ G-module, the following

statements are equivalent:

1) AN ∗G ∈ Φ.

2) AG ∈ Φ.

3) A ∗G ∈ Φ.

Noting that it is independent on the field k.

3 – Central simplicity

In this section, we give an application of normal classes. The readers can see

the paper [NW3] for the definition of the extended centroid, we make a sketch of
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it. Suppose that R is any ring, F (R) = {I | 0 6= I is an ideal of R and Ir = 0

implies r = 0} 6= ∅. Let I
α
→ R and J

β
→ R be two homomorphisms of left

R-modules where I, J ∈ F (R), α and β are called equivalent if they agree on an

ideal C ∈ F (R), C ⊆ I ∩ J . This is an equivalence relation and the equivalence

class of a map I
α
→ R is denoted by [I

α
→ R]. The set Q(R) of all equivalence

classes becomes a unitary ring with the following definitions:

[I
α
→ R] + [J

β
→ R] = [I ∩ J

α+β
−→ R] ,

[I
α
→ R] [J

β
→ R] = [JI

α◦β
−→ R] .

The map r 7→ [R
·r
→ R] embeds R as a subring of Q(R). The centre of Q(R)

will be called the extended centroid of the ring R, which is denoted by C(R).

If R is simple, C(R) is a field and it is the usual terminology. If R is simple with

an identity, C(R) concides with its centre Z(R). If R is a simple ring (maybe

without identity) and its centroid is the field k, we call R a central simple algebra.

The following lemma is needed.

Lemma 4. End(A#H∗ratA) ∼= A1
◦ as an algebra, where A1

◦ is the opposite

algebra of A1.

Proof: Suppose φ ∈ End(A#H∗ratA), Since H∗rat is dense in H∗, there exists

a g ∈ H∗rat such that g · 1A = 1A, g · φ(1) = φ(1). For any f ∈ H∗, also there

exists a g0 ∈ H∗ratsuch that g0 · 1A = f · 1A, g0 · φ(1) = f · φ(1). Then the proof

is similar to [CFM, Lemma 0.3].

Recall that A/A1 is said to be right H-Galois if the map

γ : A⊗A1
A −→ A⊗k H, a⊗ b 7→

∑

(b)

a b0 ⊗ b1

is bijective.

Theorem 3. Suppose H is a co-Frobenius Hopf algebra and A an

H-comodule algebra. If A/A1 is right H-Galois, then

1) C(A1) ∼= C(A#H∗rat).

2) If A1 is central simple, then so is A#H∗rat.

3) If A1 is a divisible ring, then A#H∗rat is a dense ring of linear transfor-

mations of the vector space A over A1.
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Proof: Note that

β : H −→ H∗rat , h 7→ (t ↼ h)

is bijective. Since A/A1 is right H-Galois, γ is bijective. So

[ , ] : A⊗A1
A

γ
−→ A⊗k H

i⊗β
−→ A⊗H∗rat

is surjective, that is [A,A] = A # H∗rat. µ1 is A # H∗rat-faithful. Indeed, let

x ∈ A#H∗rat, there exist f, g ∈ H∗rat such that fx = xg = x. If (A · x,A) = 0,

then [A,A]x[A,A] = 0. Hence (A # H∗rat)x(A # H∗rat) = 0. In particular,

x = fxg = 0. It follows that C(A1) ∼= C(A#H∗rat) [NW3, Theorem 1].

2) Let H(R) denote the heart of a subdirectly irreducible ring R. If A1 is cen-

tral simple, then H(A1) = A1 and A#H∗rat is prime and subdirectly irreducible.

Note that

H(A#H∗rat) = [AH(A1), A] = [AA1, A] = [A,A] = A#H∗rat .

On the other hand, C(A#H∗rat) ∼= C(A1) by 1). Hence A#H∗rat is central

simple.

3) Let S(R) denote the socle of a ring R. If A1 is a divisible ring, then

A#H∗rat = S(A#H∗rat) is primitive. Let 0 6= I be a left A#H∗rat-submodule

of A, I is a left H∗-stable ideal. Since A#H∗rat is prime, 0 6= t · I and t · I = A1.

It is easy to check that A = I and A is an irreducible left A # H∗rat-module.

A is also a faithful left A#H∗rat-module by Lemma 3. Hence A#H∗rat is a

dense ring of linear transformations of A over A1 by Lemma 4.

Corollary 2 [CC2, Theorems 3.7–3.9]. H#H∗rat is central simple and it is

a dense ring of finite-rank linear transformations of H over k.

Proof: H is a right H-comodule algebra (the structure map is ∆)

B = HCoH =
{

h ∈ H | ∆(h) = h⊗ 1
}

= k · 1H .

Since

γ : H ⊗B H → H ⊗k H , g ⊗ h→
∑

(h)

gh1 ⊗ h2 ,

is bijective (its inverse is τ : g ⊗ h →
∑

(h) g S(h1) ⊗ h2), H/B is H-Galois. By

Theorem 3, H#H∗rat is central simple and it is a dense ring of linear transfor-

mations of H over k. It is easy to see that any element in H#H∗rat acts on H

is finite-rank. This completes the proof.
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Note added in proof. From the referee’s report, the authors know that

Proposition 1 and Lemma 4 are developed by Beattie, Dăscălescu and Raianu in

[BDR] independently. The authors wish to thank the referee for some valuable

comments and helps.
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