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ON A CONJECTURE RELATIVE TO
THE MAXIMUM OF HARMONIC FUNCTIONS

ON CONVEX DOMAINS: UNBOUNDED DOMAINS *

L.R. Berrone

Abstract: Let u be a harmonic function on a bounded domain Ω which satisfies

the mixed boundary conditions u
∣∣
Γ0

= 0, ∂u
∂n

∣∣
Γ1

= 1, where Γ1 is composed by a finite

number of subarcs of ∂Ω, Γ0 = ∂Ω ∼ Γ1 and n indicates the outward unit normal. In [2]

has been conjectured that if Ω is convex and the subset Γ1 is made to vary on ∂Ω while

its measure is maintained equal to a constant C > 0, then supx∈Ω u attains its maximum

value when Γ1 is a certain connected subarc of measure C. In the present paper, the case

of unbounded domains is discussed.

1 – Introduction

Let Ω 6= R2 be a plane domain and let Γ1 denote a relatively open part of the

boundary ∂Ω. We denote by Γ0 the remaining portion of Ω0; i.e., Γ0 = ∂Ω ∼ Γ1.

Throughout this paper we will be concerned with the mixed boundary value

problem

(1.1)





∆u(x) = 0, x ∈ Ω ,

u(x) = 0, x ∈ Γ0 ,

∂u

∂n
(x) = 1, x ∈ Γ1 .
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We shall assume the boundary ∂Ω is sufficiently regular; in general, boundaries

C2 or piecewise C1 are to be considered below. Some minor modifications in the

statement of (1.1) are needed when Ω is an unbounded domain, which shall be

opportunely indicated. Under these assumptions, problem (1.1) has a unique

classical solution u ∈ C2(Ω) ∪ C0(Ω) which, as it is well-known, admits several

physical interpretations (see, for example, [8]). To our present purpose it will be

illustrative, however, to consider the solution u to problem (1.1) as giving the

equilibrium position of an elastic membrane Ω which is submitted to a unitary

normal force on Γ1, while is fixed at zero along the portion Γ0 of the boundary.

To emphasize the dependence on Γ1 of the solution u to problem (1.1), we will

frequently write it in the form u[Γ1] and so, u[Γ1](x) will denote the value of

u[Γ1] at a point x ∈ Ω.

We are interested in the behaviour of the functional Γ1 7→ supx∈Ω u[Γ1](x)

when the relatively open set Γ1 varies on ∂Ω in such a way that its measure

|Γ1| is preserved. So, for C > 0 we define F(C) to be the family of relatively

open subsets Γ1 of ∂Ω with a finite number of components and constant measure

|Γ1| = C. The following conjecture has been posed in the thesis [2]:

Conjecture 1.1. If Ω is a convex bounded domain with boundary piecewise

C1, then supΓ1∈F(C)(supx∈Ω u[Γ1](x)) is realized for a certain connected subset

Γ1 ∈ F(C).

Recalling the above suggested mechanical interpretation for (1.1), Conjec-

ture 1.1 can be stated by saying that if a membrane initially fixed at zero is lifted

by an unitary force on portions Γ1 of its boundary which have a constant total

measure C > 0; then, the membrane reaches a maximum height when Γ1 is a

certain arc of measure C.

Conjecture 1.1 arose from attempts to estimate the solution to mixed bound-

ary problems through the calculation of sub and supersolutions. Think, for ex-

ample, on the problem

(1.2)





∆u(x) = 0, x ∈ Ω ,

u(x) = φ(x), x ∈ Γ0 ,

∂u

∂n
(x) = ψ(x), x ∈ Γ1 ,

where φ and ψ are bounded continuous functions and supΓ1
ψ > 0. It is often

useful in practice to find estimates for supΩ u or infΩ u and a simple resource to

obtain such estimates is the computation of sub or supersolutions to (1.2). When

Γ1 is not connected, the explicit computation of sub or supersolutions to (1.2)



UNBOUNDED DOMAINS 309

usually becomes less simpler (cf. [3]). Now, the general validity of Conjecture 1.1

would facilitate such calculations in some cases. In fact, by the maximum prin-

ciples ([7], [5]), we have supΩ u ≤ supΩ v, where v solves the following problem

(1.3)





∆v(x) = 0, x ∈ Ω ,

v(x) = sup
Γ0

φ, x ∈ Γ0

∂u

∂n
(x) = sup

Γ1

ψ, x ∈ Γ1 .

If Ω is convex, then Conjecture 1.1 applies to (1.3) providing supΩ v ≤ supΩw,

where w satisfies a problem like (1.3) but now with Γ1 being a connected subset

of the boundary. For w we can easily find supersolutions belonging to simple

classes of functions ([2], [3]). By denoting with U a supersolution, we deduce

supΩ u ≤ supΩ v ≤ supΩw ≤ supΩ U .

In this paper we will investigate what occurs when the condition of bound-

edness is suppressed in Conjecture 1.1. Two of the most simple instances of

unbounded domains, the half-plane and the strip, are respectively studied in sec-

tions 2 and 3. Concretely, Conjecture 1 is shown to be true for the half-plane

and false for the strip. The insight gained by analyzing these simple cases will

enable us to discuss additional assumptions which could make a statement like

Conjecture 1.1 generally true for unbounded domains. Such discussion and other

comments also related to Conjecture 1.1 are informally presented in section 3.

2 – The half-plane

When Ω = R2+, problem (1.1) has to be formulated as follows

(2.1)





∆u(x, y) = 0, (x, y) ∈ R2+ ,

u(x, 0) = 0, x ∈ Γ0 ,

∂u

∂y
(x, 0) = −1, x ∈ Γ1 ,

limu(x, y) = 0 as |(x, y)| → ∞ ;

where Γ1 is an open subset of the real axis and Γ0 = R ∼ Γ1. As a consequence

of Phragmèn–Lindelöf like theorems which generalize the maximum principle to

unbounded domains ([7]), the solution u[Γ1] to problem (2.1) is positive every-

where and reaches its maximum value at a point of Γ1. Furthermore, if f denotes

the boundary value of u[Γ1], then f is a Hölder-continuous function on R which

is C∞ on Γ1 ∪ (Γ0)
0 (see [6], [5]).
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We shall consider, for 2A > C > 0 and n ∈ N, the family of open sets

(2.2) F(A,C, n) =

{
Γ1 : Γ1 =

n⋃

k=1

(ak, bk), −A ≤ ak ≤ bk < ak+1 ≤ A,

n∑

k=1

(bk − ak) = C

}
,

and we shall attend to the solutions u[Γ1] to problem (2.1) with Γ1 ∈ F(A,C, n).

It should be noted that the inequalities bk < ak+1 in (2.2) mean that the com-

ponents of a Γ1 ∈ F(A,C, n) are separated. This restriction is due to the fact

that the Dirichlet condition u(x, 0) = 0 is meaningless when imposed on a single

point. We also define

F(C) =
∞⋃

n=1

F(n,C, n) ;

i.e., the family open subset of R with a finite number of separated components

and constant measure C.

The main result of this section can be stated as follows.

Theorem 2.1. supΓ1∈F(C)(sup(x,y)∈R2
+
u[Γ1](x, y)) is attained when Γ1 is an

open interval of length C.

The argument below presented to prove Theorem 2.1 follows rather classical

and concrete steps. In fact, we begin by proving that there exists a function

in the family {u[Γ1] : Γ1 ∈ F(A,C, n)} (n ≥ A), which actually realizes the

optimum value of supΓ1∈F(C)(sup(x,y)∈R2
+
u[Γ1](x, y)) and then, we show that the

Γ1 corresponding to that optimum must necessarily be connected; that is, an

open interval. Later, the case in which the supremum is taken over the family

F(C) is easily reduced to that one.

To begin with we recall that if f(x), x ∈ R, gives the continuous boundary

value of a function u(x, y) which is harmonic in the upper half-plane and goes to

zero when |(x, y)| → ∞, then the representation formula (see, for example, [1])

(2.3) u(x, y) = (Py ∗ f)(x) =
1

π

∫ +∞

−∞

y

(x− ξ)2 + y2
f(ξ) dξ ,

holds for (x, y) ∈ R2+. In (2.3), Py(x) = y/[π(x2+y2)], y > 0, is the Poisson kernel

for the upper half-plane. This fact is often expressed in a somewhat imprecise

way by saying that (2.3) provides the solution to the Dirichlet problem

(2.4)





∆u(x, y) = 0, (x, y) ∈ R2+ ,

u(x, 0) = f(x), x ∈ R ,

limu(x, y) = 0 as |(x, y)| → ∞ .
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As a first result in order to prove Theorem 2.1, we have the following one which

gives, for a harmonic function with continuous boundary values, useful expres-

sions for its normal derivative at boundary points.

Lemma 2.2. Let u be the solution to problem (2.3) with f continuous.

Then:

i) By assuming that

(2.5)

∫ +∞

−∞

∣∣∣∣
f(x0 + ξ) + f(x0 − ξ)− 2 f(x0)

ξ2

∣∣∣∣ dξ < +∞ ;

then, there exists the normal derivative of u at (x0, 0) and it is given by

(2.6) −
∂u

∂y
(x0, 0) =

1

2π

∫ +∞

−∞

2 f(x0)−
(
f(x0 + ξ) + f(x0 − ξ)

)

ξ2
dξ .

ii) If supp(f) is compact and x0 denotes a point of maximum of f where f ′′

is supposed to exist then, the following expression holds for the normal

derivative at (x0, 0)

(2.7) −
∂u

∂y
(x0, 0) =

1

π

∫ +∞

−∞

f(x0)− f(ξ)

(x0 − ξ)2
dξ .

Condition (2.5) resembles a similar one for the circle given by Dini in [4] and

it is satisfied, for example, when supp(f) is compact and f ′′(x0) exists. Although

formula (2.7) for the normal derivative at a point of maximum holds in a more

general setting, that provided in Lemma 2.2 will suffices for our present purpose.

Proof of Lemma 2.2: i) By using elementary properties of the Poisson

kernel ([1], [5]), from (2.3) we deduce

(2.8) −
∂u

∂y
(x0, 0) = lim

y↓0

f(x0)− u(x0, y)

y
=

1

π
lim
y↓0

∫ +∞

−∞

f(x0)− f(ξ)

(x0 − ξ)2 + y2
dξ .

After appropriate changes of variable, the integral of (2.8) can be also expressed

as
∫ +∞

−∞

f(x0)−f(ξ)

(x0−ξ)2 + y2
dξ =

∫ +∞

−∞

f(x0)−f(x0−ξ)

ξ2 + y2
dξ =

∫ +∞

−∞

f(x0)−f(x0+ξ)

ξ2 + y2
dξ ;

hence,

(2.9)

lim
y↓0

∫ +∞

−∞

f(x0)− f(ξ)

(x0 − ξ)2 + y2
dξ =

1

2
lim
y↓0

∫ +∞

−∞

2 f(x0)−
(
f(x0 − ξ) + f(x0 + ξ)

)

ξ2 + y2
dξ .
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Now, for y > 0 we have

∣∣∣∣
2 f(x0)−

(
f(x0 − ξ) + f(x0 + ξ)

)

ξ2 + y2

∣∣∣∣ ≤
∣∣∣∣
2 f(x0)−

(
f(x0 − ξ) + f(x0 + ξ)

)

ξ2

∣∣∣∣ ,

and, taking into account (2.5), the proof of (2.6) follows from (2.8) and from an

application to (2.9) of the dominated convergence theorem.

ii) Since f ′′ exists at the point of maximum x0, Taylor’s formula allow us to

write, in a neighbourhood of such a point,

f(x) = f(x0) + f ′′(x0) (x− x0)
2/2 + o(|x− x0|

2) ;

and therefore, the dominated convergence theorem can be applied to the last

member of (2.8) to obtain (2.7).

As a consequence of the previous lemma, in the next one we show the uniform

boundedness of the functions of the family {u[Γ1] : Γ1 ∈ F(C)}.

Corollary 2.3. The functions of the family {u[Γ1] : Γ1 ∈ F(C)} are uni-

formly bounded on R2+.

Proof: Let us consider the boundary value f of a function u[Γ1], Γ ∈ F(C).

Function f is compactly supported and, as we claim above, it is C∞ on Γ1;

therefore, if x0 ∈ Γ1 is a point of maximum of f , Lemma 2.2 applies to give

(2.10) 1 = −
∂u[Γ1]

∂y
(x0, 0) =

1

π

∫ +∞

−∞

f(x0)− f(ξ)

(x0 − ξ)2
dξ .

The integral in (2.10) can be split as follows

(2.11)

1

π

∫ +∞

−∞

f(x0)−f(ξ)

(x0−ξ)2
dξ =

1

π

∫

Γ1

f(x0)−f(ξ)

(x0−ξ)2
dξ +

1

π

∫

Γ0

f(x0)−f(ξ)

(x0−ξ)2
dξ

=
1

π

∫

Γ1

f(x0)−f(ξ)

(x0−ξ)2
dξ +

1

π
f(x0)

∫

Γ0

1

(x0−ξ)2
dξ .

Since f(x0) ≥ f(x), x ∈ R, the first integral in the last member of (2.7) is

non-negative and so, from (2.10) and (2.11) we deduce

(2.12) f(x0) ≤ π

(∫

Γ0

1

(x0 − ξ)2
dξ

)−1
.
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Now, denote by (a, b) the component of Γ1 that contains x0. A glance to the

behaviour of the function ξ 7→ (x0 − ξ)
−2, ξ ∈ Γ0, (x0 ∈ Γ1), shows that

∫

Γ0

1

(x0 − ξ)2
dξ ≥

∫ a

−∞

1

(x0 − ξ)2
dξ +

∫ +∞

a+|Γ1|

1

(x0 − ξ)2
dξ

=
1

x0 − a
+

1

|Γ1|+ a− x0
>

2

|Γ1|
,

which together with (2.12), gives

(2.13) f(x0) <
π

2
|Γ1| =

π

2
C .

Finally we note that by the maximum principle, the maximum value M of u[Γ1]

on R2+ coincides with the maximum of f on Γ1, so that (2.11) providesM < πC.

Let Γ1 belong to F(A,C, n). A particular way of denoting supu[Γ1] will be

useful in the sequel. Namely, in view of the structure of Γ1, to emphasize the

dependence on the endpoints a1, b1, ..., an, bn of supu[Γ1] we write

Fn(a1, b1, ..., an, bn) = sup
(x,y)∈R2

+

u[Γ1](x, y) .

For each n ∈ N, functions Fn are naturally defined on the set

Xn =
{
(a1, b1, ..., an, bn) ∈ R2n : a1 ≤ b1 ≤ ... ≤ an ≤ bn

}
.

Since the application Γ1 7→ u[Γ1] is continuous in the sense that given ε > 0 there

exists a δ > 0 such that ‖u[Γ∗1]− u[Γ1]‖∞ < ε whenever |Γ∗1∆Γ1| < δ, we realize

that functions Fn are continuous on Xn. Moreover, the set defined by

Kn(A,C) =
{
(a1, b1, ..., an, bn) ∈ Xn : −A ≤ a1, bn ≤ A,

n∑

k=1

(bk − ak) = C
}
,

is obviously a compact subset of Xn and therefore, the function Fn attains its

maximum value on Kn. Then we have proved the following lemma.

Lemma 2.4. For each n ∈ N, supΓ1∈F(A,C,n)(sup(x,y)∈R2
+
u[Γ1](x, y)) is real-

ized by a certain Γ1 that belongs to F(A,C, n).

Proof: See the previous discussion.

Next, let us choose a function u[Γ1] with Γ1 belonging to F(A,C, n), n > 1.

In what follows, we will show that when Γ1 is not connected, then there exists
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another function u[Γ∗1] with Γ∗1 also belonging to F(A,C, n) such that

sup
(x,y)∈R2

+

u[Γ∗1](x, y) > sup
(x,y)∈R2

+

u[Γ1](x, y) .

With this purpose in mind, let us denote by f the boundary values of u[Γ1] and

define, for each k = 1, 2, ..., n,

fk(x) =

{
f(x), x ∈ (ak, bk) ,

0, x ∈ R ∼ (ak, bk) .

Taking into account the properties already stated for f , we realize that fk is a

Hölder-continuous and positive function on R which is C∞ on (−∞, ak)∪(ak, bk)∪

(bk,+∞). The function f can be now written through the fk’s:

(2.14) f(x) =
n∑

k=1

fk(x) , x ∈ R .

For 0 < δ < min1≤k≤n−1(ak+1 − bk), let us consider the solution ũ(x, y) to the

Dirichlet problem (2.4) with the function

(2.15) f̃(x) = f1(x) +
n∑

k=2

fk(x+ δ) , x ∈ R ,

as boundary data. From a graphical viewpoint, the function fk looks like a

“bump” supported by the interval (ak, bk) and so, the function f̃ corresponds

to an approaching of the bumps fk, k = 2, ..., n, to the leftmost bump f1. By

making

(2.16) Γ̃1 = (a1, b1) ∪
n⋃

k=2

(ak − δ, bk − δ) ,

the following lemma shows that the normal derivative of ũ is less than 1 at every

point of Γ̃1.

Lemma 2.5. −∂ũ
∂y
(x, 0) < 1 for x ∈ Γ̃1.

Proof: First of all we observe that ∂ũ
∂y
(x, 0) there exists in every point of Γ̃1.

Indeed, f̃ is a compactly supported function that is C∞ on Γ̃1 and therefore, the

existence of ∂ũ
∂y
(x, 0), x ∈ Γ̃1, follows from Lemma 2.2 i). Now, by using expression

(2.8) we will compare the normal derivatives of u[Γ1] and ũ in corresponding
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points of Γ1 and Γ̃1. In this way, if x ∈ (a1, b1); then f(x) = f̃(x) and we can

write

(2.17)

1 +
∂ũ

∂y
(x, 0) = −

∂u[Γ1]

∂y
(x, 0) +

∂ũ

∂y
(x, 0)

=
1

π
lim
y↓0

{∫ +∞

−∞

f(x)− f(ξ)

(x− ξ)2 + y2
dξ +

∫ +∞

−∞

f̃(ξ)− f̃(x)

(x− ξ)2 + y2
dξ

}

=
1

π
lim
y↓0

∫ +∞

−∞

f̃(ξ)− f(ξ)

(x− ξ)2 + y2
dξ .

If the expressions for f and f̃ , respectively given by (2.14) and (2.15), are replaced

in the last integral of (2.17), then we obtain

(2.18)

∫ +∞

−∞

f̃(ξ)−f(ξ)

(x−ξ)2+y2
dξ =

n∑

k=2

∫ +∞

−∞

fk(ξ+δ)−fk(ξ)

(x−ξ)2+y2
dξ

=
n∑

k=2

∫ +∞

−∞
fk(ξ)

(
1

(x−ξ+δ)2+y2
−

1

(x−ξ)2+y2

)
dξ

=
n∑

k=2

∫ bk

ak

fk(ξ)
2 δ (ξ−x−δ/2)(

(x−ξ+δ)2+y2
) (

(x−ξ)2+y2
) dξ .

But for x ∈ (a1, b1), ξ ∈ (ak, bk), k = 2, ..., n, and 0 < y ≤ 1, we have

2 δ (ξ − x− δ/2)(
(x− ξ + δ)2 + y2

) (
(x− ξ)2 + y2

) ≥
δ2

(4A2 + 1)2
,

which together with (2.18) provides

(2.19)

∫ +∞

−∞

f̃(ξ)− f(ξ)

(x− ξ)2 + y2
dξ ≥

δ2

(4A2 + 1)2

n∑

k=2

∫ bk

ak

fk(ξ) dξ , 0 < y ≤ 1 .

The remaining case in which x ∈ (aj − δ, bj − δ) for 2 ≤ j ≤ n can be treated in

a similar way. In fact, in this case we have f(x+ δ) = f̃(x) and then

1 +
∂ũ

∂y
(x, 0) = −

∂u[Γ1]

∂y
(x+ δ, 0) +

∂ũ

∂y
(x, 0)

=
1

π
lim
y↓0

{∫ +∞

−∞

f(x+ δ)− f(ξ)

(x+ δ − ξ)2 + y2
dξ +

∫ +∞

−∞

f̃(ξ)− f̃(x)

(x− ξ)2 + y2
dξ

}

=
1

π
lim
y↓0

{∫ +∞

−∞

f(x+ δ)− f(ξ + δ)

(x− ξ)2 + y2
dξ +

∫ +∞

−∞

f̃(ξ)− f̃(x)

(x− ξ)2 + y2
dξ

}
=(2.20)
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=
1

π
lim
y↓0

∫ +∞

−∞

f̃(ξ)− f(ξ + δ)

(x− ξ)2 + y2
dξ =

1

π
lim
y↓0

∫ +∞

−∞

f1(ξ)− f1(ξ + δ)

(x− ξ)2 + y2
dξ

=
1

π
lim
y↓0

∫ b1

a1

f1(ξ)

(
1

(x− ξ)2 + y2
−

1

(x− ξ + δ)2 + y2

)
dξ

=
1

π
lim
y↓0

∫ b1

a1

f1(ξ)
2 δ (x− ξ + δ/2)(

(x− ξ + δ)2 + y2
) (

(x− ξ)2 + y2
) dξ .

Since x ∈ (aj − δ, bj − δ), 2 ≤ j ≤ n, and ξ ∈ (a1, b1), and 0 < y ≤ 1, we can

write

(2.21)

∫ b1

a1

f1(ξ)
2 δ (x− ξ + δ/2)(

(x−ξ+δ)2+y2
) (

(x−ξ)2+y2
) dξ ≥

3 δ2

(4A2 + 1)2

∫ b1

a1

f1(ξ) dξ .

Finally, from (2.17)–(2.21) we deduce 1 + ∂ũ
∂y
(x, 0) > 0 for every point x ∈ Γ̃1 as

we have claimed.

From Lemma 2.5 we derive the following one.

Lemma 2.6. Let u[Γ1] be a solution to problem (2.1) with Γ1 ∈ F(A,C, n),

n > 1. If Γ1 is not connected, then there exists another Γ∗1 ∈ F(A,C, n) such

that the solution to (2.1) corresponding to Γ∗1 satisfies

(2.22) sup
(x,y)∈R2

+

u[Γ∗1](x, y) > sup
(x,y)∈R2

+

u[Γ1](x, y) .

Proof: Assume Γ1 ∈ F(A,C, n) and define Γ∗1 = Γ̃1, where Γ̃1 is given

by (2.16). We will see that (2.22) is satisfied by u[Γ∗1]. In fact, by Lemma 2.5

we have −
∂u[Γ∗

1
]

∂y
(x, 0) = 1 > −∂ũ

∂y
(x, 0), x ∈ Γ∗1, and u[Γ∗1](x, 0) = 0 = ũ(x, 0),

x ∈ R ∼ Γ∗1. Since both u[Γ∗1], ũ are harmonic and bounded functions on R2+,
the maximum principle and the theorem on the sign of the normal derivative in

a point of maximum ([7], [5]) imply that

u[Γ∗1](x, y) > ũ(x, y) , (x, y) ∈ R2+ ∪ {(x, 0) : x ∈ Γ∗1} ,

whence

sup
(x,y)∈R2

+

u[Γ∗1](x, y) > sup
(x,y)∈R2

+

ũ(x, y) = sup
(x,y)∈R2

+

u[Γ1](x, y) ,

which finishes the proof.
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Now, we are in condition to prove a restricted version of Theorem 2.1. Namely,

we will show that supΓ1∈F(A,C,n)(sup(x,y)∈R2
+
u[Γ1](x, y)) occurs when Γ1 is con-

nected.

Theorem 2.7. supΓ1∈F(A,C,n)(sup(x,y)∈R2
+
u[Γ1](x, y)) is attained when Γ1 is

an open interval of length C.

Proof: From Lemma 2.5 we deduce

(2.23) sup
Γ1∈F(A,C,n)

(
sup

(x,y)∈R2
+

u[Γ1](x, y)
)
= sup
(x,y)∈R2

+

u[Γ∗1](x, y) ,

for certain u[Γ∗1] ∈ F(A,C, n). If we suppose that Γ∗1 is not connected, then

Lemma 2.6 applies furnishing another function u[Γ∗∗1 ] ∈ F(A,C, n) such that

sup
(x,y)∈R2

+

u[Γ∗∗1 ](x, y) > sup
(x,y)∈R2

+

u[Γ∗1](x, y) ,

thus contradicting (2.23). Therefore, Γ∗1 must be a connected open set of length

C.

In order to prove Theorem 2.1, we will momentarily return to the language

and notation introduced above. Concretely, we have a sequence of non nega-

tive continuous functions Fn, respectively defined on compact sets Kn(A,C). By

considering the natural inclusions Kn(n,C) ⊆ Kn+1(n + 1, C), n ∈ N, 2n > C,

we can look at the family {Kn(n,C)} as an expanding one and so, the equal-

ity Fn+1

∣∣∣
Kn(n,C)

= Fn, holds for every n ∈ N. Moreover, we obviously have

F(C) =
⋃
2n>C Kn(n,C). Let us consider the function F : F(C)→ R, such that

F
∣∣∣
Kn(n,C)

= Fn. It is a simple matter to prove that

sup
F(C)

F = sup
2n>C

sup
Kn(n,C)

Fn .

Furthermore, whatever be n ∈ N, Theorem 2.8 ensures that supKn(n,C) Fn =

F1(a, b), with (a, b) ⊆ [−A,A] and b − a = C. Thus, we can conclude that

supF(C) F = F1(a, b) or, by abuse of notation,

(2.24) sup
F(C)

F = F (a, b) .

Proof of Theorem 2.1: From definitions given above, equality (2.24) can

be rewritten as

sup
Γ1∈F(C)

(
sup

(x,y)∈R2
+

u[Γ1](x, y)
)
= sup
(x,y)∈R2

+

u[Γ∗1](x, y) ,

where Γ∗1 = (a, b), b− a = C. This finishes the proof.
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3 – The strip

Along this section we will explore what happens when the strip S = R×(−1, 1)
is taken as the domain Ω in Conjecture 1.1. Correspondingly, we shall consider

the mixed boundary value problem

(3.1)





∆u(x, y) = 0, (x, y) ∈ S ,

u(x, y) = 0, (x, y) ∈ Γ0 ,

∂u

∂n
(x, y) = 1, (x, y) ∈ Γ1 ,

limu(x, y) = 0 as |(x, y)| → ∞ ;

where Γ1 is a relatively open subset of the boundary ∂S = (R×{−1})∪(R×{1}).
We will show that a property like that stated in Conjecture 1.1 does not hold

for S. The procedure we will employ essentially consists of a comparison, via

the calculation of suitable sub and supersolutions, of the maximum values of two

solutions of (3.1), each one corresponding to an appropriate choice of Γ1. Let

us begin by introducing some useful notation. For a > 0 we define Γ1(a) =

[−2a, 2a]×{−1}, Γ∗1(a) = ([−a, a]×{−1})∪ ([−a, a]× {1}), and let u and u∗ be

the solutions to problem (3.1) for Γ1 = Γ1(a) and Γ1 = Γ∗1(a), respectively. Note

that |Γ1(a)| = |Γ∗1(a)| = 4 a. We also define two harmonic functions in R2, va

and wa, by

va(x, y) = 1− y , wa(x, y) = (y2 − x2 + a2 − 1)/2 .

Lemma 3.1. The following inequalities are satisfied by the functions u and

u∗

u(x, y) ≤ va(x, y) , (x, y) ∈ S ,(3.2)

wa(x, y) ≤ u∗(x, y) , (x, y) ∈ [−a, a]× [−1, 1] .(3.3)

Proof: We first show that va is a supersolution in S to problem (3.1) with

Γ1 = Γ1(a). In fact, we have

va(x, 1) = 0, va(x,−1) = 2 > 0 and −
∂va

∂y
(x,−1) = 1 , x ∈ R .

Now, we prove that wa is a subsolution in (−a, a)× (−1, 1) to problem (3.1) with

Γ1 = Γ∗1(a). To this end, it suffices to observe that

∂wa

∂y
(x, 1) = 1 = −

∂wa

∂y
(x,−1) , x ∈ R ,
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and

wa(±a, y) = (y2 − 1)/2 ≤ 0 , |y| ≤ 1 .

By the maximum principle, we have u∗(±a, y) > 0, |y| < 1, so that a comparison

between u∗ and wa in (−a, a)× (−1, 1) throws inequality (3.3).

Theorem 3.2. If a > 2, then sup(x,y)∈S u(x, y) < sup(x,y)∈S u
∗(x, y).

Proof: The maximum principle and simple considerations of symmetry show

that sup(x,y)∈S u(x, y) = u(0,−1) and sup(x,y)∈S u
∗(x, y) = u∗(0, 1) = u∗(0,−1).

But, from Lemma 3.1 we obtain

u(0,−1) ≤ va(0,−1) = 2 , u∗(0,−1) ≥ wa(0,−1) = a2/2 ;

and therefore, the inequality

u(0,−1) < u∗(0,−1) ,

holds for a2/2 > 2; that is, for a > 2.

In the following theorem, a scaled version of Theorem 3.2 is presented. We

denote with Sω the strip R × (0, ω) and define the subsets of its boundary

Γ1(ω, a) = [−2a, 2a] × {0} and Γ∗1(ω, a) = ([−a, a] × {0}) ∪ ([−a, a] × {ω}). We

consider a mixed boundary problem analogous to (3.1) for Sω and, as before,

we denote with u and u∗ the solutions to this problem for Γ1 = Γ1(a, ω) and

Γ1 = Γ∗1(a, ω), respectively.

Theorem 3.3 If a/ω > 1, then sup(x,y)∈Sω
u(x, y) < sup(x,y)∈Sω

u∗(x, y).

Proof: If the functions va,ω(x, y) = ω − y and wa,ω(x, y) = ((y − ω/2)2 −

x2 + a2 − ω2/4)/ω are respectively taken instead of va(x, y) and wa(x, y), the

arguments of Lemma 3.1 and Theorem 3.2 can be easily translated to prove this

one.

4 – Concluding remarks

The example of the strip, which has been developed in the previous section,

clearly shows the inadequacy of Conjecture 1.1 for general unbounded domains.

Now, two ways at least are suggested by the anterior analysis to modify the

conjecture so that it may be true for every unbounded domain. The first one arises

from further reflections on the differences existing among the half-plane and the
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strip. Presumably, the conjecture fails for the strip due to certain “strip effect”;

that is, due to the presence of parts of the boundary which are in front of other

parts. In the following conjecture, this “strip effect” is avoided by introducing

auxiliary assumptions on the structure of the boundary. We employ the same

notation as in the Introduction.

Conjecture 4.1. Let Ω ⊆ R2 be a convex unbounded domain such that ∂Ω =

J∪{∞}, where J is a piecewise C1Jordan curve. Then supΓ1∈F(C)(supx∈Ω u[Γ1](x))

is realized for a certain connected subset Γ1 ∈ F(C).

The second way to adapt Conjecture 1.1 has to do with a localization of the

condition |Γ1| = C and the resulting conjecture could hopefully be true for every

convex domain, bounded or not. This local version of Conjecture 1.1 can be

stated as follows.

Conjecture 4.2. If Ω ⊆ R2 is a convex domain with boundary piecewise C1,

then there exists δ = δ(Ω) > 0 such that supΓ1∈F(C) (supx∈Ω u[Γ1](x)) is realized

for a certain connected subset Γ1 ∈ F(C) provided that C < δ.

Unlike what happens with bounded domains, convexity can not be suppressed

from Conjecture 4.2 when Ω is unbounded. In fact, recalling Theorem 3.3 we can

convince ourselves that the “strip effect” appears at every scale in the domain

Ω = {(x, y) ∈ R2 : y + 1/|x| > 0}. Furthermore, it can be easily realized

that supΓ1∈F(C)(supx∈Ω u[Γ1](x)) = +∞ in this case. Convexity neither can be

eliminated of Conjecture 1.1. A counter-example showing this and a general proof

of Conjecture 4.1 based on perturbative techniques will be the subject matter of

a forthcoming paper.
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