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ON A VARIATIONAL INEQUALITY FOR
THE NONHOMOGENEOUS DEGENERATED

KIRCHHOFF EQUATION WITH A FRICTIONAL DAMPING
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Abstract: We study a unilateral problem for the nonhomogeneous degenerated

Kirchhoff equation with a frictional damping. Making use of the penalty method and

Galerkin’s approximations, we establish global existence and uniqueness theorems.

1 – Introduction

The one-dimensional nonlinear equation of motion of an elastic string
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was proposed by Kirchhoff [8]. Here h is the area of the cross section, L is the

length of the string, ρ is the mass density, P0 is the initial tension and E is

Young’s modulus of a material. Another model for the motion of an elastic string

was given in Carrier [2]. The mixed problem for (1) was studied by a number

of authors, see Bernstein [1], Pohozaev [16], Lions [11], Ebihara–Medeiros–Milla

Miranda [4], Menzala [14], D’ancona–Spagnolo [3] and their references.

Most authors considered homogeneous case, when ρ0, P0, h and E are con-

stants. These restrictions allowed to obtain an a priori estimate independent of

t. When the initial data are analytic functions, it is possible to prove a global

in t existence theorem, see Bernstein [1], Pohozaev [16], and D’ancona–Spagnolo

[3]. If the initial data are only from some Sobolev space, then the presence of a
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frictional damping allows to prove the global existence theorem for small initial

data, see Nishihara–Yamada [15].

In [11], Lions proposed to study the problem which modelled a nonhomoge-

neous material. In this case one does not have such a global estimate and, until

now, we know only local existence results, see Frota [5]. Our goal in this paper

is to consider a unilateral problem for equation (1), having a frictional damping,

in a case of a nonhomogeneous material; that is, ρ, P0, h and E are functions

of x, t; and the initial tension P0 can be zero. We study the case when ρ(x, t)

is only nonnegative. It means that the material is composite and in some places

the density of the material is much times smaller then in others, or the string has

holes inside.

We formulate our problem as follows: Let Ω be a bounded open set of Rn with

a sufficiently smooth boundary Γ, Q = Ω × (0, T ), and Σ = Γ × (0, T ), where T

is a finite positive number. We denote by K the closed convex set of W 2,2p+2
0 (Ω),

1 ≤ p <∞, defined by

(2) K =
{

σ ∈W 2,2p+2
0 (Ω) ; |∆σ(x)| ≤ 1 and σ(x) ≥ 0 a.e. on Ω

}

.

Given M : Ω × [0, T ] × [0,∞) → R, ρ : Ω × [0, T ] → R, f : Ω × (0, T ) → R,
φ0 : Ω→ R and φ1 : Ω→ R, find a function u = u(x, t) satisfying

(3)

∫

Q
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ρ utt −M
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∣
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)

∆u+ αut − f

)

(v − ut) dx dt ≥ 0 ,

∀ v ∈ K,

(4)
∂u

∂t
(x, t) ∈ K a.e. on [0, T ]

and taking the following initial and boundary values

(5) u = 0 on Σ = Γ× (0, T ) ,

(6) u(x, 0) = φ0(x) ,
∂u

∂t
(x, 0) = φ1(x) in Ω .

We observe that if ut ∈ int(K) = interior of K, then u is a solution of the
equation

ρ(x, t)
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∂t2
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)

∆u+α
∂u

∂t
= f, in Q = Ω× (0, T )

and from (4) the velocity ∂u
∂t
is positive. Moreover, one can note that the re-

striction |∆ut| ≤ 1, does not have an explicit physical meaning. Nevertheless, it
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implies boundedness of |ut| and |∇u| in Q. This, in turn, gives boundedness of

the internal energy of an elastic string whose motion is simulated by the above

equation.

When a functionM is strictly positive and does not depend on x and t, α = 0

and ρ = 1, the unilateral problem (3)–(6) for n = 1, was studied by Lar’kin [9],

where global existence and uniqueness theorems were proved. Later this results

were generalized in Lar’kin–Medeiros [10], where Ω was a square in R2, and in
Frota [6] for dimensions n ≥ 2. Local existence and uniqueness theorems for

(3)–(6) were proved in Medeiros–Milla Miranda [13].

In this paper we prove the existence and uniqueness of a global solution to

(3)–(6) without smallness conditions for the initial data and without geometrical

restrictions for Ω. We need a positive coefficient α in order to have a sufficient

regularity of solutions when ρ is degenerated. It is known that if α = 0 and ρ ≥ 0,

then the Cauchy problem even in a linear case is ill-posed. If ρ is strictly positive,

α can be equal to zero, see Frota–Lar’kin [7]. To prove a global existence theorem

without smallness restrictions for the initial data and f , we use properties of a

convex set to which belongs our solution. A choice of this set depends on growth

properties of a function M(x, t, ‖u(t)‖2).

Another problem for the degenerate Kirchhoff equation is to prove a global in

t uniqueness theorem. In Ebihara–Medeiros–Milla Miranda [4], the local unique-

ness theorem was proved. In order to establish a global uniqueness result, we

again use properties of a convex set to which belongs our solution.

2 – Penalized problem

Let β be an operator fromW
2,2p+2
0 (Ω) into the dual spaceW

−2, 2p+2

2p+1 (Ω) defined

by

〈β(u), v〉 = −

∫

Ω
u− v dx+

∫

Ω

(

1− |∆u|2p
)−
∆u∆v dx ,

where h−(x) = max{−h(x), 0}. We can verify that β is a monotone and hemi-

continuous operator,

(7) β(S) is bounded for each S bounded in W 2,2p+2
0 (Ω)

and

(8) β(u) = 0 ⇐⇒ u ∈ K .

Under this conditions, we have the following existence result for the penalized

problem.
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Theorem 1. Let ρ ∈ C1(Q), M ∈ C1(Q × [0,∞)) be real functions and α

be a positive real number such that:

(9) 0 ≤ ρ(x, t), ∀ (x, t) ∈ Q with 0 < ρ0 ≤ ρ(x, 0), ∀x ∈ Ω ,

(10) 0 ≤M(x, t, λ) , ∀ (x, t, λ) ∈ Q× [0,∞) ,

(11) M(x, t, λ) ≤ C(1 + λp) , ∀ (x, t, λ) ∈ Q× (0,∞) ,

(12)

∣

∣

∣

∣

∂M

∂xi
(x, t, λ)

∣

∣

∣

∣

≤ C(1 + λp) , ∀ (x, t, λ) ∈ Q× (0,∞), i = 1, ..., n ;

(13) 0 < a0 ≤ 2α− |ρt(x, t)| , ∀ (x, t) ∈ Q .

If f, f ′ ∈ L2(0, T ;L2(Ω)), φ0 ∈ H
1
0 (Ω)∩H

2(Ω), φ1 ∈ int(K), then there exists

ε0 ∈ (0, 1) such that for each ε ∈ (0, ε0) and ν ∈ N there is a function uνε:

(14)















uνε ∈ L
∞(0, T ;H1

0 (Ω) ∩H
2(Ω)),

u′νε ∈ L
∞(0, T ;H1

0 (Ω)) ∩ L
2p+2(0, T ;W 2,2p+2

0 (Ω)),

u′′νε ∈ L
∞(0, T ;L2(Ω)) ,

satisfying the following initial boundary value problem

(15)































(

ρν(t)u
′′
νε(t)−M(t, ‖uνε(t)‖

2)∆uνε(t) + αu
′
νε(t), v

)

+

+
1

ε
〈β(u′νε(t)), v〉 = (f(t), v) a.e. on [0, T ], ∀ v ∈W 2,2p+2

0 (Ω) ,

uνε(0) = φ0(x) , u′νε(0) = φ1(x) .

Here | · |,(·, ·) and ‖ ·‖,((·, ·)) denote the norm and the inner product in L2(Ω) and

H1
0 (Ω) respectively, ρν(x, t) =

1
ν
+ ρ(x, t) and ρ0, C, a0 are positive constants.

Proof: Let (wj)j∈N be a basis in W
2,2p+2
0 (Ω), orthonormal in L2(Ω). For

each m ∈ N we define approximate solutions

uνεm(x, t) =
m
∑

j=1

gνεjm(t)wj(x) ,
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where gνεjm are solutions to the Cauchy problem for the following system:

(16)































































(

ρν(t)u
′′
νεm(t), wj

)

−
(

M(t, ‖uνεm(t)‖
2)∆uνεm(t), wj

)

+

+ α(u′νεm(t), wj) +
1

ε
〈β(u′νεm(t)), wj〉 = (f(t), wj) , 1≤j≤m ,

uνεm(0) =
m
∑

j=1

(φ0, wj)wj = φ0m ,

u′νεm(0) =
m
∑

j=1

(φ1, wj)wj = φ1m .

For ν > 0, (16) can be reduced to a normal system of m ordinary differential

equations, which has solutions at some interval [0, Tm]. This ensures the existence

of approximate solutions uνεm.

Let Vm = [w1, ..., wm] be the m-dimensional subspace of W
2,2p+2
0 (Ω) spanned

by w1, ..., wm. Then we have the approximate equation

(17)
(

ρν(t)u
′′
νεm(t), v

)

−

(

M
(

t, ‖uνεm(t)‖
2
)

∆uνεm(t), v

)

+

+ α(u′νεm(t), v) +
1

ε
〈β(u′νεm(t)), v〉 = (f(t), v) , ∀ v ∈ Vm .

The next step is devoted to deriving a priori estimates of uνεm. From now on

Ci, for i ∈ N, denotes a positive constant independent of ν, ε, m and t.

A priori estimate 1. Taking v = 2u′νεm(t) in (17), we obtain

(18)
d

dt

(

ρν(t), (u
′
νεm(t))

2
)

+ 2α |u′νεm(t)|
2 +

2

ε

〈

β(u′νεm(t)), u
′
νεm(t)

〉

=

=
(

ρ′ν(t), (u
′
νεm(t))

2
)

+ 2

∫

Ω
M
(

x, t, ‖uνεm(t)‖
2
)

∆uνεm(x, t)u
′
νεm(x, t) dx

+ 2
(

f(t), u′νεm(t)
)

.

Using integration by parts, (11) and (12), we get

∣

∣

∣

∣

2
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x, t, ‖uνεm(t)‖
2
)

∆uνεm(x, t)u
′
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∣

∣

∣

∣

≤

≤ C1

[

‖uνεm(t)‖
2p+2 + ‖u′νεm(t)‖

2 + ‖uνεm(t)‖
2p ‖u′νεm(t)‖

2
]

.
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On the other hand, by Young’s inequality we have

‖uνεm(t)‖
2p ‖u′νεm(t)‖

2 ≤
p

p+ 1
‖uνεm(t)‖

2p+2 +
1

p+ 1
‖u′νεm(t)‖

2p+2 ,

‖uνεm(t)‖
2 ≤

p

p+ 1
+

1

p+ 1
‖uνεm(t)‖

2p+2 ,

‖u′νεm(t)‖
2 ≤

p

p+ 1
+

1

p+ 1
‖uνεm(t)‖

2p+2 .

Therefore,

(19)

∣

∣

∣

∣

2

∫

Ω
M
(

x, t, ‖uνεm(t)‖
2
)

∆uνεm(x, t)u
′
νεm(x, t) dx

∣

∣

∣

∣

≤

≤ C2 + C3 ‖uνεm(t)‖
2p+2 + C4 ‖u

′
νεm(t)‖

2p+2 .

Since ρ ∈ C1(Q), we conclude

(20)
∣

∣

∣

(

ρν(t), (u
′
νεm(t))

2
)∣

∣

∣ ≤ C5 + C6 ‖u
′
νεm(t)‖

2p+2

and

(21) 2
(

f(t), u′νεm(t)
)

≤ C7 + |f(t)|
2 + C8 ‖u

′
νεm(t)‖

2p+2 .

From (18)–(21) we have

d

dt

(

ρν(t), (uνεm(t))
2
)

+ α |u′νεm(t)|
2 +

2

ε

〈

β(u′νεm(t)), u
′
νεm(t)

〉

≤

≤ C9 + |f(t)|
2 + C10 |∆uνεm(t)|

2p+2 + C11 |∆u
′
νεm(t)|

2p+2

≤ C12 + |f(t)|
2 + C13 |∆u

′
νεm(t)|

2p+2 .

After integration over t, we obtain

(22)
(

ρν(t), (u
′
νεm(t))

2
)

+2α

∫ t

0
|u′νεm(s)|

2 ds+
2

ε

∫ t

0

〈

β(u′νεm(s)), u
′
νεm(s)

〉

ds ≤

≤ C14 + C13

∫ t

0
|∆u′νεm(s)|

2p+2 ds .

Using the identity h = h+ − h−, we can see that
(

|∆u′|2p+2 − 1
)

=
(

|∆u′|2 − 1
)

− |∆u′|2
(

1− |∆u′|2p
)

=
(

|∆u′|2 − 1
)

− |∆u′|2
[(

1− |∆u′|2p
)+
−
(

1− |∆u′|2p
)−]

≤
(

|∆u′|2 − 1
)

+
(

1− |∆u′|2p
)−
|∆u′|2

≤
(

1− |∆u′|2p
)−
+
(

1− |∆u′|2p
)−
|∆u′|2

≤ 2
(

1− |∆u′|2p
)−
|∆u′|2 .
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Then

(23) ‖∆u′νεm(t)‖
2p+2
L2p+2(Ω) − µ(Ω) ≤ 2

〈

β(u′νεm(t)), u
′
νεm(t)

〉

.

We can rewrite this as follows
[

1

2C
|∆u′νεm(t)|

2p+2 +
1

2
‖∆u′νεm(t)‖

2p+2
L2p+2(Ω)

]

− µ(Ω) ≤ 2
〈

β(u′νεm(t)), u
′
νεm(t)

〉

,

hence, after integration in time from 0 to t, we have

1

ε

{

C15

[

∫ t

0
|∆u′νεm(s)|

2p+2 ds+

∫ t

0
‖∆u′νεm(s)‖

2p+2
L2p+2(Ω) ds

]

− µ(Ω)

∫ t

0
ds

}

≤

≤
2

ε

∫ t

0

〈

β(u′νεm(s)), u
′
νεm(s)

〉

ds .

From this inequality and (22), one can see

(24)

∫ t

0
|∆u′νεm(s)|

2p+2 ds+

∫ t

0
‖∆u′νεm(s)‖

2p+2
L2p+2(Ω) ds ≤

≤ C16 + εC17

∫ t

0
|∆u′νεm(s)|

2p+2 ds ,

so it can be rewritten as follows

(1− εC17)

∫ t

0
|∆u′νεm(s)|

2p+2 ds+

∫ t

0
‖∆u′νεm(s)‖

2p+2
L2p+2(Ω) ds ≤ C16 .

If we choose ε0 =
1

C17
, then, for 0 < ε < ε0, we have (1 − εC17) > 0, and

consequently

(25)

∫ t

0
|∆u′νεm(s)|

2p+2 ds ≤ C18 and

∫ t

0
‖∆u′νεm(s)‖

2p+2
L2p+2(Ω) ds ≤ C19 .

We note that

|∆u(t)|2p+2 = |∆u(0)|2p+2 +

∫ t

0

d

ds

[

|∆u(s)|2
]p+1

ds

≤

[

|∆u(0)|2p+2 +

∫ T

0
|∆u′(t)|2p+2 dt

]

+ (2p+ 1)

∫ t

0
|∆u(s)|2p+2 ds

= C20 + (2p+ 1)

∫ t

0
|∆u(s)|2p+2 ds .

By Gronwall’s Lemma

|∆u(t)|2p+2 ≤ |∆u(0)|2p+2 e(2p+2)T + e(2p+2)T
∫ t

0
|∆u′(t)|2p+2 dt ,
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therefore, we have from (25)

(26) |∆uνεm(t)| ≤ C21 ,

(27)
(

ρν(t), (u
′
νεm(t))

2
)

+α

∫ t

0
|u′νεm(s)|

2 ds+
2

ε

∫ t

0

〈

β(u′νεm(s)), u
′
νεm(s)

〉

ds ≤ C22 ,

(28) ‖uνεm(t)‖
2 ≤ C23 and ‖u′νεm(t)‖

2 ≤ C24 ,

(29) ‖β(u′νεm)‖
L

2p+2
2p+1 (0,T ;W

−2,
2p+2
2p+1 (Ω))

≤ C25 .

A priori estimate 2. Differentiating (17) with respect to t, taking v =

2u′′νεm(t) and using monotonicity of β, we come to the inequality

(30)
(

ρν(t), (u
′′
νεm(t))

2
)

+

∫ t

0

∫

Ω
(2α+ ρ′(x, s)) (u′′νεm(x, s))

2 dx ds ≤

≤
(

ρν(0), (u
′′
νεm(0))

2
)

+ 2

∫ t

0

(

M ′(s, ‖uνεm(s)‖
2)∆uνεm(s), u

′′
νεm(s)

)

ds

+ 2

∫ t

0
(f ′(s), u′′νεm(s)) ds+ 2

∫ t

0

(

∂M

∂λ
(s, ‖uνεm(s)‖

2)∆uνεm(s), u
′′
νεm(s)

)

ds

+ 2

∫ t

0

(

M(s, ‖uνεm(s)‖
2)∆u′νεm(s), u

′′
νεm(s)

)

ds .

Now we choose a real number γ such that

(31) 0 < γ <
a0

4
,

where a0 is given by (13). Taking into account the first estimate, we can see

(32) 2

∫ t

0

(

M ′(s, ‖uνεm(s)‖
2)∆uνεm(s), u

′′
νεm(s)

)

ds ≤

≤

∫ t

0

∫

Ω

1

γ

[

M ′(x, s, ‖uνεm(s)‖
2)∆uνεm(x, s)

]2
dx ds+ γ

∫ t

0
|u′′νεm(s)|

2 ds

≤ C26 + γ

∫ t

0
|u′′νεm(s)|

2 ds ,

and similarly,

2

∫ t

0

(

∂M

∂λ
(s, ‖uνεm(s)‖

2)∆uνεm(s), u
′′
νεm(s)

)

ds ≤(33)

≤ C27 + γ

∫ t

0
|u′′νεm(s)|

2 ds ,
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2

∫ t

0

(

M(s, ‖uνεm(s)‖
2)∆u′νεm(s), u

′′
νεm(s)

)

ds ≤(34)

≤ C28 + γ

∫ t

0
|u′′νεm(s)|

2 ds ,

2

∫ t

0

(

f ′(s), u′′νεm(s)
)

ds ≤ C29 + γ

∫ t

0
|u′′νεm(s)|

2 ds .(35)

Since φ1 ∈ int(K), we have 〈β(φ1m), ϕ〉 = 0, ∀ϕ ∈ W
2,2p+2
0 (Ω) and for m

sufficiently large. Then taking t = 0 in (17), we get
(

ρν(0), (u
′′
νεm(0))

2
)

≤ C30 |u
′′
νεm(0)| .

From this and (9), we have

ρ0 |u
′′
νεm(0)|

2 ≤ C31 |u
′
νεm(0)| ,

and, consequently,

(36) |u′′νεm(0)| ≤ C32 .

From (30), (32)–(36), we obtain

(

ρν(t), (u
′′
νεm(t))

2
)

+

∫ t

0

∫

Ω

(

2α+ ρ′(x, s)
)

(u′′νεm(x, s))
2 dx ds ≤

≤ C33 + 4 γ

∫ t

0
|u′′νεm(s)|

2 ds .

This inequality and (13) give

(a0 − 4 γ)

∫ t

0
|u′′νεm(s)|

2 ds ≤ C34 ,

hence, from (38), we conclude

(37)

∫ t

0
|u′′νεm(s)|

2 ds ≤ C35 .

The a priori estimates obtained imply the existence of a subsequence of

(uνεm)m∈N, which we still denote in the same way, and functions uνε and χνε
such that











































uνεm
∗
⇀ uνε in L∞(0, T ;H1

0 (Ω) ∩H
2(Ω)) ,

u′νεm ⇀ u′νε in L2p+2(0, T ;W 2,2p+2
0 (Ω)) ,

u′νεm
∗
⇀ u′νε in L∞(0, T ;H1

0 (Ω)) ,

u′′νεm ⇀ u′′νε in L2(0, T ;L2(Ω)) ,

β(u′νεm)⇀ χνε in L
2p+2

2p+1 (0, T ;W
−2, 2p+2

2p+1 (Ω)) .
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Moreover,

uνεm → uνε in L2(0, T ;H1
0 (Ω)) ,

u′νεm → u′νεm in L2(0, T ;L2(Ω)) .

Letting m tend to ∞, we obtain

(

ρν(t)u
′′
νε(t)−M(t, ‖uνε(t)‖

2)∆uνε(t) + αu
′
νε(t), v

)

+ 〈χνε(t), v〉 = (f(t), v),

a.e. on [0, T ], ∀ v ∈W 2,2p+2
0 (Ω) .

Obviously, uνε(t) satisfies the initial data (15). Using monotonicity and hemi-

continuity of β, we can prove (see Lions [12]) that

χνε(t) = β(u′νε(t)) in L
2p+2

2p+1 (0, T ;W
−2, 2p+2

2p+1 (Ω)) .

This completes the proof of Theorem 1.

3 – The main result

Theorem 2. Under conditions of Theorem 1, there exists a function u:

(38)



























u ∈ L∞(0, T ;H1
0 (Ω) ∩H

2(Ω)) ,

u′ ∈ L∞(0, T ;H1
0 (Ω)) ∩ L

2p+2(0, T ;W 2,2p+2
0 (Ω)) ,

u′(t) ∈ K a.e. on [0, T ] ,

u′′ ∈ L2(0, T ;L2(Ω)) ,

which is a solution to the following problem

(39)















(

ρ(t)u′′(t)−M(t, ‖u(t)‖2)∆u(t) + αu′(t)− f(t), v − u′(t)
)

≥ 0 ,

∀ v ∈ K, a.e. on [0, T ] ,

u(0) = φ0 , u′(0) = φ1 .

Moreover, if

(40) φ0(x) ≥ 0 a.e. on Ω with ‖φ0‖ > 0 ,

(41) M(x, t, 0) = 0 and M(x, t, λ) > 0 , (x, t, λ) ∈ Ω× [0, T ]× (0,∞) ,

then this solution is uniquely defined.
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Proof: For each ν ∈ N and ε ∈ (0, ε0), we have a function uνε given by

Theorem 1. Therefore, uνε satisfies (14)–(15), which imply the following estimates

(42) |∆uνε(t)| ≤ κ1 ,

(43) ‖uνε(t)‖ ≤ κ2 ,

(44) ‖u′νε(t)‖ ≤ κ3 ,

(45)

∫ t

0
‖∆u′νε(s)‖

2p+2
L2p+2(Ω) ds ≤ κ4 ,

(46)

∫ t

0
|u′′νε|

2 ds ≤ κ5 ,

where κi, for i = 1, ..., 5, are positive constants independent of ν, ε and t.

If we fix ν < ∞, letting ε tend to zero, taking into account (42)–(46) and

the monotonicity of β, then we find a function uν , as a limit of a subsequence

(uνε)ε∈(0,ε0), such that















uν ∈L
∞(0, T ;H1

0 (Ω) ∩H
2(Ω)) ,

u′ν ∈L
∞(0, T ;H1

0 (Ω))∩L
2p+2(0, T ;W 2,2p+2

0 (Ω)) and u′ν(t)∈K a.e. on [0, T ] ,

u′′ν ∈L
2(0, T ;L2(Ω)) ,

and















(

ρν(t)u
′′
ν(t)−M(t, ‖uν(t)‖

2)∆uν(t) + αu
′
ν(t)− f(t), v − u

′
ν(t)

)

≥ 0

∀ v ∈ K, a.e. on [0, T ] .

u(0) = φ0 , u′(0) = φ1 .

The sequence (uν)ν∈N has the estimates (42)–(46). Thus, taking the limit

in a subsequence as ν tend to ∞, we find a function u which satisfies (38) and

(39). This completes the proof of the existence. To prove uniqueness, let u and

z be two distinct functions satisfying (38) and (39). Then ψ = u− z satisfies the

following inequality

(

ρ(t) (ψ′(t))2
)

− 2

∫ t

0

(

M(s, ‖u(s)‖2)∆ψ(s), ψ′(s)
)

ds+ 2α

∫ t

0
|ψ′(s)|2 ds ≤

≤

∫ t

0

(

ρ′(s), (ψ′(s))2
)

ds+2

∫ t

0

(

[

M(t, ‖u(s)‖2)−M(t, ‖z(s)‖2)
]

∆z(s), ψ′(s)

)

ds .
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On the other hand, using integration by parts, we have

−2

∫ t

0

(

M(s, ‖u(s)‖2)∆ψ(s), ψ′(s)
)

ds =

= 2

∫ t

0

n
∑

i=1

∫

Ω
M(x, s, ‖u(s)‖2)

∂ψ

∂xi
(x, s)

∂ψ′

∂xi
(x, s) dx ds

+ 2

∫ t

0

n
∑

i=1

∫

Ω

∂M

∂xi
(x, s, ‖u(s)‖2)

∂ψ

∂xi
(x, s)ψ(x, s) dx ds ,

and

2

∫ t

0

n
∑

i=1

∫

Ω
M(x, s, ‖u(s)‖2)

∂ψ

∂xi
(x, s)

∂ψ′

∂xi
(x, s) dx ds =

=
n
∑

i=1

∫

Ω

∫ t

0
M(x, s, ‖u(s)‖2)

∂

∂s

(

∂ψ

∂xi
(x, s)

)2

ds dx

=
n
∑

i=1

(

M(t, ‖u(t)‖2),

(

∂ψ

∂xi
(t)

)2 )

−
n
∑

i=1

∫ t

0

(

M ′(s, ‖u(s)‖2),

(

∂ψ

∂xi
(s)

)2 )

ds

−
n
∑

i=1

∫ t

0

(

∂M

∂λ
(s, ‖u(s)‖2),

(

∂ψ

∂xi
(s)

)2 )

2
((

u′(s), u(s)
))

ds .

Hence,

(

ρ(t), (ψ′(t))2
)

+
n
∑

i=1

(

M(t, ‖u(t)‖2),

(

∂ψ

∂xi
(t)

)2 )

+ 2α

∫ t

0
|ψ′(s)|2 ds ≤

≤ −2

∫ t

0

n
∑

i=1

∫

Ω

∂M

∂xi
(x, s, ‖u(s)‖2)

∂ψ

∂xi
(x, s)ψ′(x, s) dx ds

+ 2

∫ t

0

(

[

M(s, ‖u(s)‖2)−M(s, ‖z(s)‖2)
]

∆z(s), ψ′(s)

)

ds

+
n
∑

i=1

∫ t

0

(

M ′(s, ‖u(s)‖2),

(

∂ψ

∂xi
(s)

)2 )

ds+

∫ t

0

(

ρ′(s), (ψ′(s))2
)

ds

+
n
∑

i=1

∫ t

0

(

∂M

∂λ
(s, ‖u(s)‖2),

(

∂ψ

∂xi
(s)

)2 )

2
((

u′(s), u(s)
))

ds .
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Assumption (40) implies that all the solutions u of (38) and (39) have the

property

(47) ‖u(t)‖ > 0 , ∀ t ∈ [0, T ] ,

see Frota–Lar’kin [7]. By virtue of (47) and (41), we find

0 < m0 = min
{

M(x, t, ‖u(t)‖2); (x, t) ∈ Q
}

,

from which it follows

m0 ‖ψ(t)‖
2 ≤

n
∑

i=1

(

M(t, ‖u(t)‖2),

(

∂ψ

∂xi
(t)

)2 )

, ∀ t ∈ [0, T ] .

Then

(

ρ(t), (ψ′(t))2
)

+m0 ‖ψ(t)‖
2 +

∫ t

0

∫

Ω

[

2α− ρ′(x, s)
]

(ψ′(x, s))2 dx ds ≤

≤ 2

∫ t

0

(

[

M(s, ‖u(s)‖2)−M(s, ‖z(s)‖2)
]

∆z(s), ψ′(s)

)

ds

− 2

∫ t

0

n
∑

i=1

∫

Ω

∂M

∂xi
(x, s, ‖u(s)‖2)

∂ψ

∂xi
(x, s)ψ′(x, s) ds

+
n
∑

i=1

∫ t

0

(

M ′(s, ‖u(s)‖2),

(

∂ψ

∂xi
(s)

)2 )

ds

+
n
∑

i=1

∫ t

0
2
((

u′(s), u(s)
))

(

∂M

∂λ
(s, ‖u(s)‖2),

(

∂ψ

∂xi
(s)

)2 )

ds .

Let us analize the right-hand side of this inequality. We choose θ such that

(48) 0 < θ <
a0

2
.

Therefore,

2

∫ t

0

(

[

M(s, ‖u(s)‖2)−M(s, ‖z(s)‖2)
]

∆z(s), ψ′(s)

)

ds ≤(49)

≤
C

θ

∫ t

0
‖ψ(s)‖2 ds+ θ

∫ t

0
|ψ′(s)|2 ds ,
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2

∫ t

0

n
∑

i=1

∫

Ω

∂M

∂xi
(x, s, ‖u(s)‖2)

∂ψ

∂xi
(x, s)ψ′(x, s) dx ds ≤(50)

≤
C

θ

∫ t

0
‖ψ(s)‖2 ds+ θ

∫ t

0
|ψ′(s)|2 ds ,

n
∑

i=1

∫ t

0

(

M ′(s, ‖u(s)‖2),

(

∂ψ

∂xi
(s)

)2 )

ds ≤ C

∫ t

0
‖ψ(s)‖2 ds ,(51)

2
n
∑

i=1

∫ t

0

((

u′(s), u(s)
))

(

∂M

∂λ
(s, ‖u(s)‖2),

(

∂ψ

∂xi
(s)

)2 )

ds ≤(52)

≤ C

∫ t

0
‖ψ(s)‖2 ds ,

where C is a positive constant.

From (13) and (49)–(52), we obtain

(

ρ(t), (ψ′(t))2
)

+m0 ‖ψ(t)‖
2 + (a0 − 2 θ)

∫ t

0
|ψ′(s)|2 ds ≤ C

∫ t

0
‖ψ(s)‖2 ds .

This inequality, (48) and Gronwall’s Lemma give ‖ψ(t)‖ ≤ 0 that implies

u = z. This completes the proof of Theorem 2.
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