# CHEBYSHEV POLYNOMIALS AND SOME METHODS OF APPROXIMATION 

Gheorghe Udrea

1 - Chebyshev polynomials $\left(T_{n}(x)\right)_{n \geq 0}$ and $\left(U_{n}(x)\right)_{n \geq 0}$ of the first and the second kind, respectively, are defined by the recurrence relations:

$$
\begin{equation*}
T_{n+1}(x)=2 x \cdot T_{n}(x)-T_{n-1}(x), \quad x \in \mathbb{C}, \quad n \in \mathbb{N}^{*} \tag{1.1}
\end{equation*}
$$

with $T_{0}(x)=1, T_{1}(x)=x ;$

$$
\begin{equation*}
U_{n+1}(x)=2 x \cdot U_{n}(x)-U_{n-1}(x), \quad x \in \mathbb{C}, \quad n \in \mathbb{N}^{*} \tag{1.2}
\end{equation*}
$$

where $U_{0}(x)=1, U_{1}(x)=2 x$.
On the other hand there are the sequences $\left(\widetilde{T}_{n}(x)\right)_{n \geq 0}$ and $\left(\widetilde{U}_{n}(x)\right)_{n \geq 0}-$ "associated" of the Chebyshev polynomials $\left(T_{n}(x)\right)_{n \geq 0}$ and $\left(U_{n}(x)\right)_{n \geq 0}$, respectively - defined by

$$
\begin{equation*}
\widetilde{T}_{n+1}(x)=2 x \cdot \widetilde{T}_{n}(x)+\widetilde{T}_{n+1}(x), \quad x \in \mathbb{C}, \quad n \in \mathbb{N}^{*} \tag{1.3}
\end{equation*}
$$

with $\widetilde{T}_{0}(x)=1$ and $\widetilde{T}_{1}(x)=x ;$

$$
\begin{equation*}
\widetilde{U}_{n+1}(x)=2 x \cdot \widetilde{U}_{n}(x)+\widetilde{U}_{n-1}(x), \quad x \in \mathbb{C}, \quad n \in \mathbb{N}^{*} \tag{1.4}
\end{equation*}
$$

where $\widetilde{U}_{0}(x)=1, \widetilde{U}_{1}(x)=2 x$.
There is a simple connection between the sequences $\left(\widetilde{T}_{n}\right)_{n \geq 0},\left(\widetilde{U}_{n}\right)_{n \geq 0}$ and the sequences $\left(T_{n}\right)_{n \geq 0}$ and $\left(U_{n}\right)_{n \geq 0}$, respectively:

$$
\left\{\begin{array}{l}
\widetilde{T}_{k}(x)=\frac{T_{k}(i \cdot x)}{i^{k}},  \tag{1.5}\\
T_{k}(x)=\frac{\widetilde{T}_{k}(i \cdot x)}{i^{k}}, \quad x \in \mathbb{C}, \quad k \in \mathbb{N}
\end{array}\right.
$$

Received: November 12, 1996; Revised: April 29, 1997.

$$
\left\{\begin{array}{l}
\widetilde{U}_{k}(x)=\frac{U_{k}(i \cdot x)}{i^{k}},  \tag{1.6}\\
U_{k}(x)=\frac{\widetilde{U}_{k}(i \cdot x)}{i^{k}}, \quad x \in \mathbb{C}, \quad k \in \mathbb{N},
\end{array}\right.
$$

where $i^{2}=-1$.
Also, there is an interesting connection between the sequence $\left(F_{n}\right)_{n \geq 0}$ of Fibonacci numbers

$$
\begin{equation*}
F_{n+1}=F_{n}+F_{n-1}, \quad n \in \mathbb{N}^{*}, \quad F_{0}=0, \quad F_{1}=1, \tag{1.7}
\end{equation*}
$$

the sequence $\left(L_{n}\right)_{n \geq 0}$ of Lucas numbers

$$
\begin{equation*}
L_{n+1}=L_{n}+L_{n-1}, \quad n \in \mathbb{N}^{*}, \quad L_{0}=2, \quad L_{1}=1, \tag{1.8}
\end{equation*}
$$

and, on the other hand, the sequences $\left(T_{n}\right)_{n \geq 0},\left(\widetilde{T}_{n}\right)_{n \geq 0},\left(U_{n}\right)_{n \geq 0},\left(\widetilde{U}_{n}\right)_{n \geq 0}$ :

$$
\begin{align*}
& T_{n}\left(\frac{i}{2}\right)=\frac{1}{2} \cdot i^{n} \cdot L_{n}, \quad n \in \mathbb{N}  \tag{1.9}\\
& \widetilde{T}_{n}\left(\frac{1}{2}\right)=\frac{1}{2} \cdot L_{n}, \quad n \in \mathbb{N}, \\
& U_{n}\left(\frac{i}{2}\right)=i^{n} \cdot F_{n+1}, \quad n \in \mathbb{N},  \tag{1.10}\\
& \widetilde{U}_{n}\left(\frac{1}{2}\right)=F_{n+1}, \quad n \in \mathbb{N}, \quad i^{2}=-1 .
\end{align*}
$$

One has, also, the remarkable formulas:

$$
\begin{align*}
& T_{k}(\cos \varphi)=\cos k \varphi, \quad \varphi \in \mathbb{C}, \quad k \in \mathbb{N},  \tag{1.11}\\
& \widetilde{T}_{k}(i \cdot \cos \varphi)=i^{k} \cdot \cos k \varphi, \quad \varphi \in \mathbb{C}, \quad k \in \mathbb{N},
\end{align*}
$$

and
(1.12) $\quad U_{k-1}(\cos \varphi)=\frac{\sin k \varphi}{\sin \varphi}, \quad \varphi \in \mathbb{C}, \quad \sin \varphi \neq 0, \quad k \in \mathbb{N}^{*}$,
(1.12') $\quad \widetilde{U}_{k-1}(i \cdot \cos \varphi)=i^{k-1} \cdot \frac{\sin k \varphi}{\sin \varphi}, \quad \varphi \in \mathbb{C}, \quad \sin \varphi \neq 0, \quad k \in \mathbb{N}^{*}$,
(see (1.5)-(1.6)).

2 - Let us consider the sequence $\left(\tilde{\lambda}_{m}(a)\right)_{m \geq 1}$ defined by

$$
\begin{equation*}
\tilde{\lambda}_{m}(a)=\frac{\widetilde{U}_{p(m+1)-1}(a)}{\widetilde{U}_{p m-1}(a)}, \quad m \in \mathbb{N}^{*} \tag{2.1}
\end{equation*}
$$

where $a \in \mathbb{R}^{*}$ and $p \in \mathbb{N}^{*}$.
We wish now to find a quadratic equation to be satisfied by the limit of the sequence $\left(\tilde{\lambda}_{m}(a)\right)_{m \geq 1}$. In order to obtain this equation we need to prove the following

Lemma. If $\left(T_{n}(x)\right)_{n \geq 0}$ and $\left(U_{n}(x)\right)_{n \geq 0}$ are the sequences of Chebyshev polynomials of the first kind and the second kind, respectively, then one has

$$
\begin{equation*}
U_{m+p-1}(a)=2 \cdot T_{p}(a) \cdot U_{m-1}(a)-U_{m-p-1}(a) \tag{2.2}
\end{equation*}
$$

$\forall m \geq p+1, m, p \in \mathbb{N}^{*}, \forall a \in \mathbb{C}$.
Proof: Indeed, let $a$ be an element of $\mathbb{C}$; then $\exists \varphi \in \mathbb{C}$ such that $a=\cos \varphi$. We have

$$
\begin{aligned}
& U_{m+p-1}(a)+U_{m-p-1}(a)=U_{m+p-1}(\cos \varphi)+U_{m-p-1}(\cos \varphi)= \\
& \quad=\frac{\sin (m+p) \varphi}{\sin \varphi}+\frac{\sin (m-p) \varphi}{\sin \varphi}=\frac{\sin (m+p) \varphi+\sin (m-p) \varphi}{\sin \varphi} \\
& \quad=\frac{2 \cdot \sin m \varphi \cdot \cos p \varphi}{\sin \varphi}=2 \cdot \cos p \varphi \cdot \frac{\sin m \varphi}{\sin \varphi}=2 \cdot T_{p}(\cos \varphi) \cdot U_{m-1}(\cos \varphi) \\
& \quad=2 \cdot T_{p}(a) \cdot U_{m-1}(a), \quad \text { q.e.d. }
\end{aligned}
$$

Now, from (2.2) and (1.5)-(1.6) we obtain

$$
\begin{equation*}
\widetilde{U}_{m+p-1}(a)=2 \cdot \widetilde{T}_{p}(a) \cdot \tilde{U}_{m-1}(a)-(-1)^{p} \cdot \widetilde{U}_{m-p-1}(a) \tag{2.3}
\end{equation*}
$$

$\forall m \geq p+1, m, p \in \mathbb{N}^{*}, \forall a \in \mathbb{C}$.
Dividing equation (2.3) through by $\widetilde{U}_{m-1}(a)$ and replacing $m$ by $m p$, we find

$$
\begin{equation*}
\widetilde{\lambda}_{m}(a)=2 \cdot \widetilde{T}_{p}(a)-\frac{(-1)^{p}}{\widetilde{\lambda}_{m-1}(a)}, \quad m \geq 2 \tag{2.4}
\end{equation*}
$$

The limit $\widetilde{\lambda}_{\infty}(a)=\lim _{m \rightarrow \infty} \widetilde{\lambda}_{m}(a), a \in \mathbb{R}^{*}$, therefore satisfies the quadratic equation

$$
\begin{equation*}
\left(\widetilde{\lambda}_{\infty}(a)\right)^{2}-2 \cdot \widetilde{T}_{p}(a) \cdot \widetilde{\lambda}_{\infty}(a)+(-1)^{p}=0 \tag{2.5}
\end{equation*}
$$

## Remarks.

a) The limit $\widetilde{\lambda}_{\infty}(a)=\lim _{m \rightarrow \infty} \widetilde{\lambda}_{m}(a)$ can be obtained from (2.1) and

$$
\begin{equation*}
\widetilde{U}_{n}(a)=\frac{\left(a+\sqrt{a^{2}+1}\right)^{n}-\left(a-\sqrt{a^{2}+1}\right)^{n}}{2 \cdot \sqrt{a^{2}+1}}, \quad a \in \mathbb{R} . \tag{2.6}
\end{equation*}
$$

One obtains

$$
\tilde{\lambda}_{\infty}(a)= \begin{cases}\left(a-\sqrt{a^{2}+1}\right)^{p}, & a<0  \tag{2.7}\\ \left(a+\sqrt{a^{2}+1}\right)^{p}, & a>0\end{cases}
$$

b) From $(2.5),\left(1.11^{\prime}\right)$ and $\left(1.12^{\prime}\right)$, we have the same result:

$$
\begin{aligned}
& \widetilde{\lambda}_{\infty}(a)=\widetilde{T}_{p}(a) \pm \sqrt{a^{2}+1} \cdot \widetilde{U}_{p-1}(a)=\widetilde{T}_{p}(i \cdot b) \pm \sqrt{(i \cdot b)^{2}+1} \cdot \widetilde{U}_{p-1}(i \cdot b)= \\
& \quad=i^{p} \cdot T_{p}(b) \pm i \cdot \sqrt{b^{2}-1} \cdot i^{p-1} \cdot U_{p-1}(b)=i^{p} \cdot\left(T_{p}(b) \pm \sqrt{b^{2}-1} \cdot U_{p-1}(b)\right) \\
& \quad=i^{p} \cdot\left(T_{p}(\cos \varphi) \pm \sqrt{\cos ^{2} \varphi-1} \cdot U_{p-1}(\cos \varphi)\right)=i^{p} \cdot\left(\cos p \varphi \pm i \sin \varphi \frac{\sin p \varphi}{\sin \varphi}\right) \\
& \quad=i^{p} \cdot(\cos \varphi \pm i \sin \varphi)^{p}=\left(i \cdot\left(b \pm \sqrt{b^{2}-1}\right)\right)^{p}=\left(i \cdot b \pm \sqrt{(i \cdot b)^{2}+1}\right)^{p} \\
& \quad=\left(a \pm \sqrt{a^{2}+1}\right)^{p}, \quad \text { q.e.d. }
\end{aligned}
$$

Hence

$$
\tilde{\lambda}_{\infty}(a)= \begin{cases}\widetilde{T}_{p}(a)-\sqrt{a^{2}+1} \cdot \widetilde{U}_{p-1}(a), & a<0 \\ \widetilde{T}_{p}(a)+\sqrt{a^{2}+1} \cdot \widetilde{U}_{p-1}(a), & a>0\end{cases}
$$

Clearly we utilized, in b), the identity

$$
\begin{equation*}
\left(\widetilde{T}_{m}(x)\right)^{2}-\left(x^{2}+1\right) \cdot\left(\widetilde{U}_{m-1}(x)\right)^{2}=(-1)^{m}, \quad \forall x \in \mathbb{C}, \quad \forall m \in \mathbb{N}^{*} \tag{2.8}
\end{equation*}
$$

From (2.5), we obtain, for $a=\frac{1}{2}$, that the number $\theta^{p}=\frac{1}{2} \cdot\left(L_{p}+\sqrt{5} \cdot F_{p}\right)$ $\left(\theta=\frac{1+\sqrt{5}}{2}\right.$ - the "golden ratio") satisfies the quadratic equation

$$
\begin{equation*}
x^{2}-L_{p} \cdot x+(-1)^{p}=0, \tag{2.9}
\end{equation*}
$$

(see [1]).

3 - The Aitken sequence $\left(x_{n}^{*}\right)_{n \geq 2}$ is the sequence defined by

$$
\begin{equation*}
x_{n}^{*}=\frac{x_{n+1} \cdot x_{n-1}-x_{n}^{2}}{x_{n+1}-2 \cdot x_{n}+x_{n-1}}, \quad n \geq 2, \tag{3.1}
\end{equation*}
$$

where $\left(x_{n}\right)_{n \geq 1}$ is a convergent sequence.
In this section we establish the result

$$
\begin{equation*}
\frac{\widetilde{\lambda}_{n+r}(a) \cdot \tilde{\lambda}_{n-r}(a)-\left(\widetilde{\lambda}_{n}(a)\right)^{2}}{\widetilde{\lambda}_{n+r}(a)-2 \cdot \widetilde{\lambda}_{n}(a)+\widetilde{\lambda}_{n-r}(a)}=\tilde{\lambda}_{2 n}(a), \tag{3.2}
\end{equation*}
$$

$1 \leq r<n$, where $\left(\widetilde{\lambda}_{n}(a)\right)_{n \geq 1}$ is the sequence defined by (2.1) and $a \in \mathbb{R}^{*}$.
Proof: Let $a$ be an element of $\mathbb{C}$; then $\exists \varphi \in \mathbb{C}$ such that $a=i \cdot \cos \varphi$, $i^{2}=-1$. One has
a) $\quad \tilde{\lambda}_{n+r}(a) \cdot \tilde{\lambda}_{n-r}(a)-\left(\widetilde{\lambda}_{n}(a)\right)^{2}=\tilde{\lambda}_{n+r}(i \cdot \cos \varphi) \cdot \widetilde{\lambda}_{n-r}(i \cdot \cos \varphi)-\left(\widetilde{\lambda}_{n}(i \cdot \cos \varphi)\right)^{2}=$

$$
\begin{aligned}
& =\frac{\widetilde{U}_{p(n+r+1)-1}(i \cdot \cos \varphi)}{\widetilde{U}_{p(n+r)-1}(i \cdot \cos \varphi)} \cdot \frac{\widetilde{U}_{p(n-r+1)-1}(i \cdot \cos \varphi)}{\widetilde{U}_{p(n-r)-1}(i \cdot \cos \varphi)}-\left(\frac{\widetilde{U}_{p(n+1)-1}(i \cdot \cos \varphi)}{\widetilde{U}_{p n-1}(i \cdot \cos \varphi)}\right)^{2} \\
& =i^{p} \cdot \frac{\sin p(n+r+1) \varphi}{\sin p(n+r) \varphi} \cdot i^{p} \cdot \frac{\sin p(n-r+1) \varphi}{\sin p(n-r) \varphi}-\left(i^{p} \cdot \frac{\sin p(n+1) \varphi}{\sin p n \varphi}\right)^{2} \\
& =\ldots=(-1)^{p} \cdot \frac{\sin p \varphi \cdot \sin ^{2} p r \varphi \cdot \sin p(2 n+1) \varphi}{\sin ^{2} p n \varphi \cdot \sin p(n+1) \varphi \cdot \sin p(n-r) \varphi} ;
\end{aligned}
$$

b) $\quad \widetilde{\lambda}_{n+r}(a)-\widetilde{\lambda}_{n}(a)=\widetilde{\lambda}_{n+r}(i \cdot \cos \varphi)-\widetilde{\lambda}_{n}(i \cdot \cos \varphi)$

$$
=\ldots=i^{p+1} \cdot \frac{\sin p \varphi \cdot \sin p r \varphi}{\sin p n \varphi \cdot \sin p(n+r) \varphi}
$$

c) $\quad \tilde{\lambda}_{n+r}(a)-2 \cdot \tilde{\lambda}_{n}(a)+\tilde{\lambda}_{n-r}(a)=\left(\tilde{\lambda}_{n+r}(a)-\tilde{\lambda}_{n}(a)\right)-\left(\widetilde{\lambda}_{n}(a)-\tilde{\lambda}_{n-r}(a)\right)$

$$
=\ldots=i^{p} \cdot \frac{2 \cdot \sin p \varphi \cdot \sin ^{2} p r \varphi \cdot \cos p n \varphi}{\sin p n \varphi \cdot \sin p(n-r) \varphi \cdot \sin p(n+r) \varphi} .
$$

Finally, on combining a), b) and c), we derive the required result:

$$
\begin{equation*}
\frac{\widetilde{\lambda}_{n+r}(a) \cdot \tilde{\lambda}_{n-r}(a)-\left(\widetilde{\lambda}_{n}(a)\right)^{2}}{\tilde{\lambda}_{n+r}(a)-2 \cdot \widetilde{\lambda}_{n}(a)+\widetilde{\lambda}_{n-r}(a)}=\tilde{\lambda}_{2 n}(a), \quad 1 \leq r<n . \tag{*}
\end{equation*}
$$

For $r=1$ in $(*)$ one obtains that the Aitken sequence $\left(\widetilde{\lambda}_{n}^{*}(a)\right)_{n \geq 2}$ verifies the relation

$$
\begin{equation*}
\tilde{\lambda}_{n}^{*}(a)=\widetilde{\lambda}_{2 n}(a), \quad n \geq 2, \quad a \in \mathbb{R}^{*} . \tag{3.3}
\end{equation*}
$$

4 - We began with a sequence $\left(\widetilde{\lambda}_{n}(a)\right)_{n \geq 1}, a \in \mathbb{R}^{*}$, and applied Aitken acceleration to give a sequence $\left(\widetilde{\lambda}_{n}^{*}(a)\right)_{n \geq 2}$. We now investigate the application of Aitken acceleration to $\left(\widetilde{\lambda}_{n}^{*}(a)\right)_{n \geq 2}, a \in \mathbb{R}^{*}$, and so on, repeatedly. It is helpful to use a different notation. Let us write

$$
\begin{equation*}
\widetilde{\lambda}_{n}^{(k+1)}(a)=\frac{\widetilde{\lambda}_{n+1}^{(k)}(a) \cdot \widetilde{\lambda}_{n-1}^{(k)}(a)-\left(\widetilde{\lambda}_{n}^{(k)}(a)\right)^{2}}{\widetilde{\lambda}_{n+1}^{(k)}(a)-2 \cdot \widetilde{\lambda}_{n}^{(k)}(a)+\widetilde{\lambda}_{n-1}^{(k)}(a)}, \tag{4.1}
\end{equation*}
$$

for $k=0,1,2,3, \ldots$, where $\widetilde{\lambda}_{n}^{(0)}(a)=\widetilde{\lambda}_{n}(a), a \in \mathbb{R}^{*}, n \in \mathbb{N}^{*}$.
Thus $\left(\widetilde{\lambda}_{n}^{(0)}(a)\right)_{n \geq 1}$ is our original sequence and $\left(\widetilde{\lambda}_{n}^{(1)}(a)\right)_{n \geq 2}$ is the sequence which we have hitherto called $\left(\widetilde{\lambda}_{n}^{*}(a)\right)_{n \geq 2}$. For $k \geq 0$, the $(k+1)^{\text {th }}$ sequence $\left(\widetilde{\lambda}_{n}^{(k+1)}(a)\right)_{n \geq k+1}$ is obtained by using Aitken acceleration on the sequence $\left(\widetilde{\lambda}_{n}^{(k)}(a)\right)_{n \geq k}$.

We have already seen from (3.3) that

$$
\begin{equation*}
\tilde{\lambda}_{n}^{(1)}(a)=\widetilde{\lambda}_{2 n}(a), \quad n \geq 2, \quad a \in \mathbb{R}^{*} . \tag{4.2}
\end{equation*}
$$

It follows from this and (4.1) that

$$
\widetilde{\lambda}_{n}^{(2)}(a)=\frac{\lambda_{n+1}^{1}(a) \cdot \widetilde{\lambda}_{n-1}^{(1)}(a)-\left(\widetilde{\lambda}_{n}^{(1)}(a)\right)^{2}}{\widetilde{\lambda}_{n+1}^{(1)}(a)-2 \cdot \widetilde{\lambda}_{n}^{(1)}(a)+\widetilde{\lambda}_{n-1}^{1}(a)}=\frac{\widetilde{\lambda}_{2 n+1}(a) \cdot \widetilde{\lambda}_{2 n-1}(a)-\left(\widetilde{\lambda}_{2 n}(a)\right)^{2}}{\widetilde{\lambda}_{2 n+2}(a)-2 \widetilde{\lambda}_{2 n}(a)+\widetilde{\lambda}_{2 n-2}(a)} .
$$

Using (3.2) with $n$ replaced by $2 n$ and with $r=2$, we deduce that

$$
\begin{equation*}
\lambda_{n}^{(2)}(a)=\widetilde{\lambda}_{4 n}(a), \quad n \geq 3 . \tag{4.3}
\end{equation*}
$$

Finally, it follows by induction that

$$
\begin{equation*}
\widetilde{\lambda}_{n}^{(k)}(a)=\widetilde{\lambda}_{n \cdot 2^{k}}(a) \underset{k}{\longrightarrow} \widetilde{\lambda}_{\infty}(a), \tag{4.4}
\end{equation*}
$$

which holds for each $k \geq 0$ and all $n \geq k+1$.
$\mathbf{5}$ - Let us consider now Newton's method: given an initial approximation $a_{0}$ to the number $\widetilde{\lambda}_{\infty}(a)=\left(a+\sqrt{a^{2}+1}\right)^{p}, a \in \mathbb{R}^{*}$, we compute the Newton sequence $\left(a_{n}\right)_{n \geq 0}$ from

$$
\begin{align*}
a_{n+1} & =a_{n}-\frac{a_{n}^{2}-2 \cdot \widetilde{T}_{p}(a) \cdot a_{n}+(-1)^{p}}{2 \cdot\left(a_{n}-\widetilde{T}_{p}(a)\right)} \\
& =\frac{a_{n}^{2}-(-1)^{p}}{2 \cdot\left(a_{n}-\widetilde{T}_{p}(a)\right)}, \quad n \geq 0 . \tag{5.1}
\end{align*}
$$

If $a_{n}=\widetilde{\lambda}_{k}(a)$ for some values of $k \in \mathbb{N}^{*}$, we find that

$$
\begin{aligned}
a_{n+1} & =\frac{a_{n}^{2}-(-1)^{p}}{2 \cdot\left(a_{n}-\widetilde{T}_{p}(a)\right)}=\frac{\left(\widetilde{\lambda}_{k}(a)\right)^{2}-(-1)^{p}}{2 \cdot\left(\widetilde{\lambda}_{k}(a)-\widetilde{T}_{p}(a)\right)}=\ldots \\
& =\frac{\left(\widetilde{U}_{p(k+1)-1}(a)\right)^{2}-(-1)^{p} \cdot\left(\widetilde{U}_{p k-1}(a)\right)^{2}}{2 \cdot \widetilde{U}_{p k-1}(a) \cdot\left(\widetilde{U}_{p(k+1)-1}(a)-\widetilde{T}_{p}(a) \cdot \widetilde{U}_{p k-1}(a)\right)} \\
& =\frac{\widetilde{U}_{p \cdot(2 k+1)-1}(a)}{\widetilde{U}_{p \cdot 2 k-1}(a)}=\widetilde{\lambda}_{2 k}(a),
\end{aligned}
$$

i.e.,

$$
\begin{equation*}
a_{n+1}=\tilde{\lambda}_{2 k}(a), \quad a \in \mathbb{R}^{*} \tag{5.2}
\end{equation*}
$$

since:

1) $\left(\widetilde{U}_{p \cdot(k+1)-1}(a)\right)^{2}-(-1)^{p} \cdot\left(\widetilde{U}_{p k-1}(a)\right)^{2}=\widetilde{U}_{p-1}(a) \cdot \widetilde{U}_{p \cdot(2 k+1)-1}(a)$, $\forall a \in \mathbb{C}, \forall p \in \mathbb{N}^{*}, \forall k \in \mathbb{N}^{*} ;$
2) $\widetilde{U}_{p \cdot(2 k+1)-1}(a)-\widetilde{T}_{p}(a) \cdot \widetilde{U}_{p k-1}(a)=\widetilde{U}_{p-1}(a) \cdot \widetilde{T}_{p k}(a)$, $\forall a \in \mathbb{C}, \forall p \in \mathbb{N}^{*}, \forall k \in \mathbb{N}^{*} ;$
3) $\widetilde{U}_{2 m-1}(a)=2 \cdot \widetilde{T}_{m}(a) \cdot \widetilde{U}_{m-1}(a), \forall a \in \mathbb{C}, \forall m \in \mathbb{N}^{*}$.

Thus, if we choose as the initial approximant $a_{0}=\widetilde{\lambda}_{1}(a)=\frac{\widetilde{U}_{2 p-1}(a)}{\widetilde{U}_{p-1}(a)}=2 \cdot \widetilde{T}_{p}(a)$, $a \in \mathbb{R}^{*}$, we see by induction that

$$
\begin{align*}
a_{1}=a_{0+1} & =\widetilde{\lambda}_{2 \cdot 1}(a)=\widetilde{\lambda}_{2}(a), \\
a_{1} & =\widetilde{\lambda}_{2}(a) ; \\
a_{2}=a_{1+1} & =\widetilde{\lambda}_{2 \cdot 2}(a), \\
a_{2} & =\widetilde{\lambda}_{2^{2}}(a) ; \\
a_{3}=a_{2+1} & =\widetilde{\lambda}_{2 \cdot 2}(a), \\
a_{3} & =\widetilde{\lambda}_{2^{3}}(a) .
\end{align*}
$$

Hence

$$
\begin{equation*}
a_{n}=\tilde{\lambda}_{2^{n}}(a) \underset{n}{\longrightarrow} \tilde{\lambda}_{\infty}(a) . \tag{5.3}
\end{equation*}
$$

6 - Finally, we consider the secant method, in which we approximate to a root of the equation $f(x)=0$ as follows: we choose two initials approximants $a_{1}$ and $a_{2}$ and compute the sequence $\left(a_{n}\right)_{n \geq 2}$ from

$$
\begin{equation*}
a_{n+1}=a_{n}-\frac{f\left(a_{n}\right) \cdot\left(a_{n}-a_{n-1}\right)}{f\left(a_{n}\right)-f\left(a_{n-1}\right)}, \quad n \geq 2 \tag{6.1}
\end{equation*}
$$

In our case $f(x)=x^{2}-2 \cdot \widetilde{T}_{p}(a) \cdot x+(-1)^{p}$ and, if we choose $a_{1}=\widetilde{\lambda}_{k}(a)$ and $a_{2}=\widetilde{\lambda}_{m}(a), a \in \mathbb{R}^{*}$, for some $m, k \in \mathbb{N}^{*}, m \neq k$, we find that

$$
\begin{gathered}
a_{3}=\frac{a_{1} \cdot f\left(a_{2}\right)-a_{2} \cdot f\left(a_{1}\right)}{f\left(a_{2}\right)-f\left(a_{1}\right)}=\frac{a_{1} \cdot a_{2}-(-1)^{p}}{a_{1}+a_{2}-2 \cdot \widetilde{T}_{p}(a)}=\ldots= \\
=\frac{\widetilde{U}_{p(m+1)-1}(a) \cdot \widetilde{U}_{p(k+1)-1}(a)-(-1)^{p} \cdot \widetilde{U}_{p m-1}(a) \cdot \widetilde{U}_{p k-1}(a)}{\widetilde{U}_{p k-1}(a) \cdot\left(\widetilde{U}_{p(m+1)-1}(a)-\widetilde{T}_{p}(a) \cdot \widetilde{U}_{p m-1}(a)\right)+\widetilde{U}_{p m-1}(a) \cdot\left(\widetilde{U}_{p(k+1)-1}(a)-\widetilde{T}_{p}(a) \cdot \widetilde{U}_{p k-1}(a)\right)} \\
=\frac{\widetilde{U}_{p(m+k+1)-1}(a)}{\widetilde{U}_{p(m+k)-1}(a)}=\widetilde{\lambda}_{m+k}(a), \quad a \in \mathbb{R}^{*},
\end{gathered}
$$

since:
$\left.1^{\prime}\right) \widetilde{U}_{p(m+1)-1}(a) \cdot \widetilde{U}_{p(k+1)-1}(a)-(-1)^{p} \cdot \widetilde{U}_{p m-1}(a) \cdot \widetilde{U}_{p k-1}(a)=\widetilde{U}_{p-1}(a) \cdot$

$$
\widetilde{U}_{p(m+k+1)-1}(a), \quad \forall a \in \mathbb{C}, \quad \forall p, m, k \in \mathbb{N}^{*}
$$

$\left.\mathbf{2}^{\prime}\right) \widetilde{U}_{p(n+1)-1}(a)-\widetilde{T}_{p}(a) \cdot \widetilde{U}_{p n-1}(a)=\widetilde{U}_{p-1}(a) \cdot \widetilde{T}_{p n}(a), \quad \forall a \in \mathbb{C}, \quad \forall p, n \in \mathbb{N}^{*} ;$
$\left.\mathbf{3}^{\prime}\right) \widetilde{U}_{p k-1}(a) \cdot \widetilde{T}_{p m}(a)+\widetilde{U}_{p m-1}(a) \cdot \widetilde{T}_{p k}(a)=\widetilde{U}_{p(m+k)-1}(a), \forall a \in \mathbb{C}, \forall p, m, k \in \mathbb{N}^{*}$.
Hence

$$
\begin{equation*}
a_{3}=\widetilde{\lambda}_{m+k}(a), \quad m, k \in \mathbb{N}^{*}, \quad m \neq k \tag{6.2}
\end{equation*}
$$

An induction argument shows that, if we choose as initial values $a_{1}=\widetilde{\lambda}_{1}(a)=$ $2 \cdot \widetilde{T}_{p}(a)$ and $a_{2}=\widetilde{\lambda}_{2}(a)=2 \cdot \widetilde{T}_{p}(a)-\frac{(-1)^{p}}{\widetilde{\lambda}_{1}(a)}(\operatorname{see}(2.4)), a \in \mathbb{R}^{*}$, the secant method gives:

$$
\begin{aligned}
& a_{1}=\widetilde{\lambda}_{1}(a), \quad a \in \mathbb{R}^{*}, \\
& a_{2}=\widetilde{\lambda}_{2}(a), \quad a \in \mathbb{R}^{*}, \\
& a_{3}=\widetilde{\lambda}_{m+k}(a)=\widetilde{\lambda}_{1+2}(a)=\widetilde{\lambda}_{3}(a)=\widetilde{\lambda}_{F_{4}}(a), \quad a \in \mathbb{R}^{*}, \\
& a_{4}=\widetilde{\lambda}_{m+k}(a)=\widetilde{\lambda}_{2+3}(a)=\widetilde{\lambda}_{F_{5}}(a), \quad a \in \mathbb{R}^{*}, \\
& a_{5}=\widetilde{\lambda}_{m+k}(a)=\widetilde{\lambda}_{3+5}(a)=\widetilde{\lambda}_{8}(a)=\widetilde{\lambda}_{F_{6}}(a), \quad a \in \mathbb{R}^{*},
\end{aligned}
$$

i.e.,

$$
\begin{equation*}
a_{n}=\widetilde{\lambda}_{F_{n+1}}(a) \underset{n}{\longrightarrow} \widetilde{\lambda}_{\infty}(a) \tag{6.3}
\end{equation*}
$$

as the $n^{\text {th }}$ approximant to the number $\widetilde{\lambda}_{\infty}(a)=\left(a \pm \sqrt{a^{2}+1}\right)^{p}=\widetilde{T}_{p}(a) \pm \sqrt{a^{2}+1}$. $\widetilde{U}_{p-1}(a), a \in \mathbb{R}^{*}$, where $\left(F_{n}\right)_{n \geq 0}$ is the sequence of Fibonacci numbers.

In conclusion, we see that for $a=\frac{1}{2}$ and $p \in \mathbb{N}^{*}$, one obtains the Jamieson's results (see (1)) and for $a=\frac{1}{2}$ and $p=1$, we derive the Phillips's results (see (2)).

## REFERENCES

[1] Jamieson, M. - Fibonacci numbers and Aitken sequences revisited, Amer. Math. Monthly, 97 (1990), 829-831.
[2] Phillips, G. - Aitken sequences and Fibonacci numbers, Amer. Math. Monthly, 91 (1984), 354-357.
[3] Udrea, G. - A problem of Diophantos-Fermat and Chebyshev polynomials of the second kind, Port. Math., 52 (1995), 301-304.

Gheorghe Udrea,
Str. Unirii-Siret, Bl. 7A, Sc. 1, Ap. 17, Tg-Jiu, Cod 1400, Judet Gorj - ROMANIA

