THE DIOPHANTINE EQUATIONS

$$
x^{2}-k=2 \cdot T_{n}\left(\frac{b^{2} \pm 2}{2}\right)
$$

Gheorghe Udrea

It is the object of this note to demonstrate that the two equations of the title have only finitely many solutions in positive integers x and n for any given integers b and $k, k \neq \pm 2$. In these equations $\left(T_{n}(x)\right)_{n \geq 0}$ is the sequence of the Chebyshev polynomials of the first kind.

1 - Chebyshev polynomials of the first kind, $\left(T_{n}(x)\right)_{n \geq 0}$, are defined by the recurrence relation

$$
\begin{equation*}
T_{n+1}(x)=2 x \cdot T_{n}(x)-T_{n-1}(x), \quad \forall x \in \mathbb{C}, \quad \forall n \in \mathbb{N}^{*}, \tag{1.1}
\end{equation*}
$$

where $T_{0}(x)=1$ and $T_{1}(x)=x, \mathbb{C}$ being the set of complex numbers.
Also, we have the sequence $\left(\widetilde{T}_{n}(x)\right)_{n \geq 0}$ of polynomials "associated" of the Chebyshev polynomials $\left(T_{n}(x)\right)_{n \geq 0}$, defined as it follows:

$$
\begin{equation*}
\widetilde{T}_{n+1}(x)=2 x \cdot \widetilde{T}_{n}(x)+\widetilde{T}_{n-1}(x), \quad \forall x \in \mathbb{C}, \quad \forall n \in \mathbb{N}^{*}, \tag{1.2}
\end{equation*}
$$

with $\widetilde{T}_{0}(x)=1$ and $\widetilde{T}_{1}(x)=x$.
The connection between the sequence $\left(\widetilde{T}_{n}\right)_{n \geq 0}$ and the sequence $\left(T_{n}\right)_{n \geq 0}$ is given by the simple relations:

$$
\left\{\begin{array}{l}
\widetilde{T}_{k}(x)=\frac{T_{k}(i \cdot x)}{i^{k}} \tag{1.3}\\
T_{k}(x)=\frac{\widetilde{T}_{k}(i \cdot x)}{i^{k}}, \quad k \in \mathbb{N}, \quad x \in \mathbb{C}
\end{array}\right.
$$

where $i^{2}=-1$.

Two important properties of the polynomials $\left(T_{n}(x)\right)_{n \geq 0}$ are given by the formulas:

$$
\begin{equation*}
T_{n}(\cos \varphi)=\cos n \varphi, \quad \varphi \in \mathbb{C}, \quad n \in \mathbb{N} \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
T_{m}\left(T_{k}(x)\right)=T_{m k}(x), \quad \forall m, k \in \mathbb{N}, \quad \forall x \in \mathbb{C} \tag{1.5}
\end{equation*}
$$

$\mathbf{2}$ - We are going to prove the following lemmas:
Lemma 1. If $\left(T_{n}(x)\right)_{n \geq 0}$ is the sequence of Chebyshev polynomials of the first kind, then one has

$$
\begin{equation*}
T_{n}\left(a^{2}-1\right)=2 \cdot\left(T_{n}\left(\frac{a}{\sqrt{2}}\right)\right)^{2}-1, \quad \forall n \in \mathbb{N}, \quad \forall a \in \mathbb{C} \tag{2.1}
\end{equation*}
$$

Proof: Indeed, we have

$$
\begin{aligned}
T_{n}\left(a^{2}-1\right) & =T_{n}\left(2 \cdot\left(\frac{a}{\sqrt{2}}\right)^{2}-1\right)=T_{n}\left(T_{2}\left(\frac{a}{\sqrt{2}}\right)\right) \\
& =T_{2}\left(T_{n}\left(\frac{a}{\sqrt{2}}\right)\right)=2 \cdot\left(T_{n}\left(\frac{a}{\sqrt{2}}\right)\right)^{2}-1, \quad \text { q.e.d. } .
\end{aligned}
$$

Now, if we put in (2.1) $a=\frac{b}{\sqrt{2}}$, we obtain

$$
2 \cdot T_{n}\left(\frac{b^{2}-2}{2}\right)=z_{k}^{2}-2
$$

where $z_{n}=2 \cdot T_{n}\left(\frac{b}{2}\right) \in \mathbb{Z}, \forall n \in \mathbb{N}, \forall b \in \mathbb{Z}$.
Thus, we have

$$
x^{2}-k=z_{n}^{2}-2, \quad k \neq 2
$$

i.e.,

$$
\begin{equation*}
x^{2}-z_{n}^{2}=k-2, \quad k \neq 2 \tag{2.2}
\end{equation*}
$$

Lemma 2. If $\left(\widetilde{T}_{n}(x)\right)_{n \geq 0}$ is the sequence of polynomials" associated" of the Chebyshev polynomials $\left(T_{n}(x)\right)_{n \geq 0}$, then one has:
a) $\quad \widetilde{T}_{2 n}\left(\frac{b}{2}\right)=T_{n}\left(\frac{b^{2}+2}{2}\right), \quad b \in \mathbb{C}, \quad n \in \mathbb{N} ;$
b) $\quad \widetilde{T}_{2 n}\left(\frac{b}{2}\right)=2 \cdot \widetilde{T}_{n}^{2}\left(\frac{b}{2}\right)-(-1)^{n}, \quad b \in \mathbb{C}, \quad n \in \mathbb{N}$.

Proof: We have:
a) $\quad \widetilde{T}_{2 n}\left(\frac{b}{2}\right)=\frac{T_{2 n}\left(i \cdot \frac{b}{2}\right)}{i^{2 n}}=(-1)^{n} \cdot T_{2 n}\left(i \cdot \frac{b}{2}\right)$

$$
\begin{aligned}
& =(-1)^{n} \cdot T_{n}\left(T_{2}\left(i \cdot \frac{b}{2}\right)\right)=(-1)^{n} \cdot T_{n}\left(2 \cdot\left(\frac{i \cdot b}{2}\right)^{2}-1\right) \\
& =(-1)^{n} \cdot T_{n}\left(-\left(\frac{b^{2}}{2}+1\right)\right)=(-1)^{2 n} \cdot T_{n}\left(\frac{b^{2}+2}{2}\right), \quad \text { q.e.d. }
\end{aligned}
$$

b) $\quad \widetilde{T}_{2 n}\left(\frac{b}{2}\right)=\frac{T_{2 n}\left(i \cdot \frac{b}{2}\right)}{i^{2 n}}=(-1)^{n} \cdot T_{2 n}\left(i \cdot \frac{b}{2}\right)$

$$
\begin{aligned}
& =(-1)^{n} \cdot T_{2}\left(T_{n}\left(i \cdot \frac{b}{2}\right)\right)=(-1)^{n} \cdot\left(2 \cdot T_{n}^{2}\left(i \cdot \frac{b}{2}\right)-1\right) \\
& =(-1)^{n} \cdot\left(2 \cdot\left(i^{n} \cdot \widetilde{T}_{n}\left(\frac{b}{2}\right)\right)^{2}-1\right) \\
& =(-1)^{n} \cdot\left(2 \cdot(-1)^{n} \cdot \widetilde{T}_{n}^{2}\left(\frac{b}{2}\right)-1\right) \\
& =2 \cdot \widetilde{T}_{n}^{2}\left(\frac{b}{2}\right)-(-1)^{n}, \quad \text { q.e.d. }
\end{aligned}
$$

Now, from Lemma 2 we obtain:

$$
\begin{aligned}
2 \cdot T_{n}\left(\frac{b^{2}+2}{2}\right) & =2 \cdot \widetilde{T}_{2 m}\left(\frac{b}{2}\right)=2 \cdot\left(2 \cdot \widetilde{T}_{n}^{2}\left(\frac{b}{2}\right)-(-1)^{n}\right) \\
& =\left(2 \cdot \widetilde{T}_{n}\left(\frac{b}{2}\right)\right)^{2}-2(-1)^{n} \\
& =\widetilde{z}_{n}^{2}-(-1)^{n} \cdot 2
\end{aligned}
$$

where $\widetilde{z}_{n}=2 \cdot \widetilde{T}_{n}\left(\frac{b}{2}\right) \in \mathbb{Z}, \forall b \in \mathbb{Z}, \forall n \in \mathbb{N}$.
Thus, we have

$$
\begin{equation*}
x^{2}-k=\widetilde{z}_{n}^{2}-2(-1)^{n} \tag{2.4}
\end{equation*}
$$

or, equivalently,

$$
\begin{equation*}
x^{2}-\widetilde{z}_{n}^{2}=k \pm 2, \quad k \neq \pm 2 \tag{2.5}
\end{equation*}
$$

It will be observed that for given $k \in \mathbb{Z}, k \neq \pm 2$, the set of values of x satisfying equations (2.2) and (2.5) is finite and, accordingly, there are finitely many values of n satisfying the equations $x^{2}-k=2 \cdot T_{n}\left(\frac{b^{2} \pm 2}{2}\right), n \in \mathbb{N}, b \in \mathbb{Z}$.

Thus, for each given $k \in \mathbb{Z}, k \neq \pm 2$, there are finitely many possible values of $x, n \in \mathbb{N}$, satisfying the equation $x^{2}-k=2 \cdot T_{n}\left(\frac{b^{2}+2}{2}\right), b \in \mathbb{Z}$. This concludes the proof of the result of this paper.

Remarks.

$\alpha)$ For $b=1$ in $x^{2}-k=2 \cdot T_{n}\left(\frac{b^{2}+2}{2}\right)$, we obtain the equation

$$
\begin{equation*}
x^{2}-k=L_{2 n}, \quad n \in \mathbb{N} \tag{2.6}
\end{equation*}
$$

where $\left(L_{n}\right)_{n \geq 0}$ is the sequence of the Lucas numbers, defined as it follows:

$$
L_{n+1}=L_{n}+L_{n-1}, \quad L_{0}=2, \quad L_{1}=1
$$

Clearly, in (2.6) we utilized the identity

$$
\begin{equation*}
T_{n}\left(\frac{3}{2}\right)=\frac{1}{2} \cdot L_{2 n}, \quad \forall n \in \mathbb{N} \tag{2.7}
\end{equation*}
$$

β) If we put $k=0$ in (2.6) one obtains (see (2.5)) that the numbers $L_{2 n}$, $n \in \mathbb{N}$, are not perfect squares.
$\gamma)$ For $b=4$ in $x^{2}-k=2 \cdot T_{n}\left(\frac{b^{2}+2}{2}\right)$, we obtain the equation

$$
\begin{equation*}
x^{2}-k=\sqrt{5 \cdot F_{6 n}^{2}+4}, \quad n \in \mathbb{N} \tag{2.8}
\end{equation*}
$$

where $\left(F_{n}\right)_{n \geq 0}$ is the sequence of the Fibonacci numbers:

$$
F_{n+1}=F_{n}+F_{n-1}, \quad F_{0}=0, \quad F_{1}=1
$$

In (2.8) we utilized the identities

$$
F_{6 n}=8 \cdot U_{n-1}(9), \quad \forall n \in \mathbb{N}
$$

and

$$
\begin{equation*}
T_{n}^{2}(x)-\left(x^{2}-1\right) \cdot U_{n-1}^{2}(x)=1, \quad \forall x \in \mathbb{C}, \quad \forall n \in \mathbb{N}^{*} \tag{2.10}
\end{equation*}
$$

where $\left(U_{n}(x)\right)_{n \geq 0}$ is the sequence of Chebyshev polynomials of the second kind

$$
\begin{equation*}
U_{n+1}(x)=2 x \cdot U_{n}(x)-U_{n-1}(x), \quad x \in \mathbb{C}, \quad n \in \mathbb{N}^{*} \tag{2.11}
\end{equation*}
$$

with $U_{0}(x)=1$ and $U_{1}(x)=2 x$.
$\delta)$ If we put $k=0$ in (2.8) one obtains (see (2.5)) that the equation

$$
\begin{equation*}
x^{4}-5 \cdot F_{6 n}^{2}=4 \tag{2.12}
\end{equation*}
$$

has not solutions $(x, n) \in \mathbb{Z} \times \mathbb{N}$.

REFERENCES

[1] Cohn, J.H.E. - The diophantine equation $\left(x^{2}-c\right)^{2}=d y^{2}+4$, J. London Math. Soc., 8(2) (1974), 253.
[2] Cohn, J.H.E. - The diophantine equations $\left(x^{2}-c\right)^{2}=\left(t^{2} \pm 2\right) \cdot y^{2}+1$, Acta Arithmetica, 30 (1976), 253-255.

Gheorghe Udrea,

Str. Unirii-Siret, Bl. 7A, Sc. 1, Ap. 17, Tg-Jiu, Cod 1400, Judet Gorj - ROMANIA

