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A NEW EXTENSION OF KOMLÓS’ THEOREM
IN INFINITE DIMENSIONS.

APPLICATION: WEAK COMPACTNESS IN L1X

M. Saadoune *

Abstract: A new version of Komlós’ theorem in infinite dimensions is presented.

It gives a different approach to well-known theorems (C. Castaing [11], A. Ülger [30] and

J. Diestel–W.M. Ruess–W. Schachermayer [17]).

1 – Introduction

The purpose of this paper is to prove Komlós’ theorem for bounded sequences

in L1X (X being a separable Banach space) that satisfy a tightness condition

formulated in the manner of A. Ülger [30]. We obtain our result (Theorems

1 and 2) by combining truncation arguments and the diagonal process based

on successively applying the scalar version of Komlós’ theorem, via the biting

lemma. Corollaries 3–6 are special cases of Theorems 1–2 and include results of

E.J. Balder [5].

As applications, we recover directly from Corollary 3, by using the Lebesgue–

Vitali theorem, a relative weak compactness criterion of C. Castaing [[11], Th. 4.1,

p. 2.14]: (Theorem 7). More generally, we obtain, from Theorem 1, a general

weak compactness criterion (Theorem 8): the relative weak compactness in L1X
is characterized by the uniform integrability and the tightness condition used in

Theorem 1. This result involves recent criterions obtained by A. Ülger [30] and

J. Diestel–W.M. Ruess–W. Schachermayer [17].
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2 – Notations, definitions and background

Throughout this paper the triple (Ω,F , µ) is a finite measure space. Without

loss of generality we assume µ(Ω) = 1. (X, | · |) is a separable Banach space. The

norm topology on X will be referred to by the symbol s. The weak topology

σ(X,X∗) on X will be indicated similarly by the symbol w. Here X∗ stands for

the topological dual of X, the duality between X and X∗ is denoted by 〈 , 〉. The

(prequotient) space of all X-valued Bochner-integrable functions will be denoted

by L1X .

Recall (see [23]) that the dual of L1X is the (quotient) space L∞X∗ [X] of scalarly

measurable bounded functions from Ω into X∗. We denote by L0X∗ [X] the

(prequotient) space of scalarly measurable functions from Ω into X∗.

Also recall that a subset H of L1X is uniformly integrable (briefly UI) if

lim
t→∞

sup
u∈H

∫

[|u|>t]
|u| dµ = 0 .

It is well known that H is UI if it is bounded (i.e. supu∈H
∫

Ω |u| dµ < +∞) and

lim
µ(A)→0

sup
u∈H

∫

A
|u| dµ = 0 .

Definition. A setH of measurable functions is w-tight (resp. s-tight) if ∀ε>0,

there exists a measurable multifunction (for measurability of multifunctions see

[13]) with w-compact (resp. s-compact) values Kε such that

∀u ∈ H, µ
({

ω ∈ Ω: u(ω) /∈ Kε(ω)
})

≤ ε .

The following equivalent formulation of tightness is given in [4].

Definition. A set H of measurable functions is w-tight (resp. s-tight) if there

exists an F⊗B-measurable integrand h : Ω×X → [0,+∞] which is w-inf-compact

(resp. s-inf-compact) and such that

(‡) sup
u∈H

∫

Ω
h(ω, u(ω)) dµ < +∞ .

This notion of tightness goes back to 1979 (see C. Castaing [10] and K.T.

Andrews [2]). For more on tightness see [1], [7], [24], [27]. Note that every

bounded subset of L1X is w-tight whenever X is reflexive.
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Remark. In the first formulation of tightness the multifunctions Kε can

be assumed to be convex valued but in the second formulation its not always

possible to replace h by a convex inf-compact function: the following is due to

M. Valadier. Let dω be the Lebesgue measure on [0, 1].

Proposition. Let X be a Banach space containing a bounded sequence

(en)n∈N∗ which does not admit any w-convergent subsequence. Then there exists

a bounded set H in L1X([0, 1], dω) which is s-tight and such that there exists no

measurable integrand h : [0, 1]×X → [0,+∞] which is convex and w-inf-compact

in x and which satisfies (‡).

Proof: We may suppose without loss of generality that m 6= n ⇒ mem 6=

nen 6= 0. Let us consider H :={nen1A : n ∈ N∗, µ(A) = 1/n} ∪ {0}. Then H

is bounded in L1X . Let h0 be defined by h0(0) = 0, h0(nen) = n for n ≥ 1 and

h0(x) = +∞ elsewhere. Thus h0 is s-inf-compact and satisfies

sup
u∈H

∫

[0,1]
(h0 ◦ u)(ω) dω ≤ 1 ,

hence H is s-tight.

Now suppose that h : [0, 1]×X → [0,+∞] is any convex weakly inf-compact

integrand satisfying (‡). Then h(ω, en) → +∞ because otherwise there would

exist M < +∞ and a subsequence (enk
)k such that supk h(ω, enk

) ≤ M and

the sequence (enk
)k would admit a w-convergent further subsequence. If un =

nen1An ∈ H,
∫

[0,1]
h(ω, un(ω)) dω ≥

∫

An

h(ω, nen) dω .

It is possible to choose An such that
∫

[0,1] h(ω, un(ω)) dω → +∞. Indeed, since

0 ∈ H, one has h(ω, 0) < +∞ a.e. By convexity h(ω, nen) ≥ n[h(ω, en) −

(1 − 1
n
)h(ω, 0)] ≥ n[h(ω, en) − h(ω, 0)]. Then by Egorov’s theorem, there exists

a Borel subset B of [0, 1] such that µ(B) ≥ 1/2 and such that the sequence

(h(., en) − h(., 0))n converges uniformly to +∞ on B. It remains to choose, for

n ≥ 2, An contained in B.

Let us introduce the following notion of convergence [7].

Definition. Let (un)n∈N∗∪{∞} be a sequence of measurable functions from

Ω into X and Y be a subset of X∗.

– (un)n is said to K-converge (resp. σ(X,Y )-K-converge) almost everywhere

on Ω to u∞, if for every subsequence (uni
)i of (un)n there exists a null set
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N ∈ F such that for every ω ∈ Ω\N ,

1

n

n
∑

i=1

uni
(ω)→ u∞(ω)

(

resp. ∀x∗ ∈ Y,
〈

x∗,
1

n

n
∑

i=1

uni
(ω)

〉

→ 〈x∗, u∞(ω)〉
)

;

– (un)n is said to K-converge in measure to u∞, if for every subsequence (uni
)i

of (un)n
1

n

n
∑

i=1

uni
→ u∞ in measure .

Remark. Let (an)n∈N∗ be a sequence in R and a ∈ R. Then, (an)n
K-converges to a (consider each an as a constant function from Ω into R in

the definition above) is equivalent to an → a.

A celebrated discovery of Komlós [25] is as follows:

Theorem. Let (un)n be a bounded sequence of integrable functions from Ω

into R. Then (un)n has a subsequence which K-converges a.e. to an integrable

function.

This result has received a new proof by S.D. Chatterji [14], (see also [29] for

a short proof).

3 – Generalized Komlós’ theorem

The main result of this paper is the following theorem under a w-tightness

assumption.

Theorem 1. Let (un)n be a bounded sequence in L
1
X such that the following

tightness condition holds

T1: Given any subsequence (uki
)i of (un)n, there exists a w-tight sequence

(vn)n with vn ∈ co{uki
: i ≥ n}.

Let D be a countable σ(X∗, X)-dense subset of the unit ball B∗ of X∗. Then

there exist a function u∞ in L1X and a subsequence (u′n)n of (un)n such that

(a) (u′n)n σ(X,D)-K-converges a.e. to u∞;



A NEW EXTENSION OF KOMLÓS’ THEOREM 117

(b1) every w-tight sequence (vn)n, with vn ∈ co{u′i : i ≥ n} has a subsequence

(v′n)n such that

(v′n)n σ(X,D)-K-converges a.e. to u∞ ,

∀h ∈ L0X∗ [X] , (〈h, v′n〉)n K-converges in measure to 〈h, u∞〉 .

Proof: The proof will be given in three steps.

Step 1 – Existence of (u′n)n: by the biting lemma (see [18], a proof of the biting

lemma is reproduced in [26]), there exist an increasing sequence of measurable

sets Ap with limp→∞ µ(Ap) = 1 and a subsequence (u′n)n of (un)n such that

(1) ∀ p, the sequence (1Apu
′
n)n is UI .

On the other hand, using Komlós’ theorem and the diagonal sequence process,

we obtain the existence of integrable functions αx∗ , (x
∗ ∈ D), from Ω into R,

and of a subsequence of (u′n)n, which we may still denote by (u′n)n, such that for

every further subsequence (u′ni
)i of (u

′
n)n

(2) ∀x∗ ∈ D ,
1

n

n
∑

i=1

〈x∗, u′ni
(ω)〉 → αx∗(ω) a.e.

Let (vn)n be an arbitrary fixed and w-tight sequence, with vn ∈ co{u′i : i ≥ n}.

Then, for each q ∈ N∗, there exists a measurable multifunction with w-compact

values Kq such that

(3) ∀n , µ(Ω\Bn,q) ≤
1

q
,

where

Bn,q :=
{

ω ∈ Ω: vn(ω) ∈ Kq(ω)
}

.

The same diagonal process used above gives for the sequences (〈x∗, vn〉)n and

(〈x∗, 1Bn,qvn〉)n, the existence of integrable functions βx∗ and βx∗,q (x∗ ∈ D,

q ∈ N∗), and of a subsequence (v′n)n of (vn)n such that for every further subse-

quence (v′ni
)i of (v

′
n)n

∀x∗ ∈ D ,
1

n

n
∑

i=1

〈x∗, v′ni
(ω)〉 → βx∗(ω) a.e. ,(4)

∀x∗ ∈ D, ∀ q ∈ N∗ ,
1

n

n
∑

i=1

〈x∗, 1B′
ni,q

v′ni
(ω)〉 → βx∗,q(ω) a.e. ,(5)

where for each q ∈ N∗, (B′n,q)n is the subsequence of (Bn,q)n corresponding to

(v′n)n.
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By (1), (2), (4) and Vitali’s theorem we have, for every x∗ ∈ D, every p, every

A ∈ Ap ∩ F , every subsequence (u′ni
)i of (u

′
n)n and every subsequence (v′ni

)i of

(v′n)n

lim
n→∞

1

n

n
∑

i=1

∫

A
〈x∗, u′ni

〉 dµ =

∫

A
αx∗ dµ

and

lim
n→∞

1

n

n
∑

i=1

∫

A
〈x∗, v′ni

〉 dµ =

∫

A
βx∗ dµ .

Hence, by using the remark given in section 2, we get, for every x∗ ∈ D, every p

and every A ∈ Ap ∩ F ,

lim
n→∞

∫

A
〈x∗, u′n〉 dµ =

∫

A
αx∗ dµ ,(6)

lim
n→∞

∫

A
〈x∗, v′n〉 dµ =

∫

A
βx∗ dµ .(7)

Each v′n is of the form

v′n =
∑

i≤Jn

λi u
′
i+n, with λi ≥ 0 and

∑

i≤Jn

λi = 1 .

Using (6), (7) and this expression of v′n, one can easily see that for every x∗ ∈ D,

every p and every A ∈ Ap ∩ F ,

∫

A
αx∗ dµ =

∫

A
βx∗ dµ .

Therefore, since D is countable and limp→∞ µ(Ap) = 1, we deduce that for every

x∗ ∈ D

(8) αx∗(ω) = βx∗(ω) a.e.

Step 2 – Existence of u∞: we define for all n ∈ N∗ and q ∈ N∗ the following

partial sums

S′n :=
1

n

n
∑

i=1

v′i and S′n,q :=
1

n

n
∑

i=1

1B′
i,q
v′i .

1) Let q ∈ N∗. We may assume that Kq(ω) is convex and contains 0 for each

ω ∈ Ω by considering the corresponding multifunction co(Kq(.) ∪ {0}), thanks

to Krein and Eberlein–Šmulian’s theorem [[22], Th. 19 E]. The measurability

of this new map follows from [[13], Th. III.40] and [[21], Remark (1), p. 163].
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Since S′n,q(ω) belongs to the w-compact set Kq(ω) for all n ∈ N∗ and all ω ∈ Ω,

there exists a subsequence (S ′ni,q
(ω))i of (S′n,q(ω))n (possibly depending upon

ω), which w-converges to some limit point xq,ω. But, because of (5) the entire

sequence (S′n,q(ω))n w-converges to the same limit point whenever ω is outside

some negligible set N . Thus, we obtain

(9) ∀x∗ ∈ D, ∀ω ∈ Ω\N , βx∗,q(ω) = 〈x
∗, xq,ω〉 a.e.

Define u∞q (ω) :=xq,ω for ω ∈ Ω\N and u∞q (ω) := 0 for ω ∈ N . Then it is easily

seen by the Pettis measurability theorem [[16], Th. 2, II] that u∞q is measurable.

2) Let h ∈ L∞X∗ [X]. Since the sequence (〈h, 1ApS
′
n,q〉)n is UI and converges

a.e. to 〈h, 1Apu
∞
q 〉 for all p and all q ∈ N∗, the Lebesgue–Vitali theorem gives

(10)

∫

Ap

∣

∣

∣〈h, S′n,q〉 − 〈h, u
∞
q 〉
∣

∣

∣ dµ→ 0 ,

hence

∀ p, ∀ q ∈ N∗ , 1Ap S
′
n,q → 1Ap u

∞
q weakly in L1X .

Furthermore, ∀ p, ∀ q ∈ N∗,

sup
n

∫

Ap

|S′n − S′n,q| dµ ≤ sup
n

1

n

n
∑

i=1

∫

Ap∩(Ω\B′
i,q
)
|v′i| dµ

≤ sup
n

∫

Ap∩(Ω\B′
n,q)
|v′n| dµ

≤ sup
n

sup
m

∫

Ap∩(Ω\B′
n,q)
|u′m| dµ .

As (1) and (3) ensure

∀ p , lim
q→∞

sup
n

sup
m

∫

Ap∩(Ω\B′
n,q)
|u′m| dµ = 0 ,

we obtain

(11) ∀ p , lim
q→∞

sup
n

∫

Ap

|S′n − S′n,q| dµ = 0 .

Consequently, by Grothendieck’s weak relative compactness lemma [[20], ch. 5,

4, n◦ 1], for each p, the sequence (1ApS
′
n)n is relatively weakly compact in L1X .
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3) For each p choose a weak limit point u∞,p of the sequence (1ApS
′
n)n. Then,

by (7), we obtain ∀x∗ ∈ D, ∀A ∈ Ap ∩ F ,

∫

A
βx∗ dµ = lim

n→∞

∫

A
〈x∗, v′n〉 dµ

= lim
n→∞

∫

A
〈x∗, S′n〉 dµ

=

∫

A
〈x∗, u∞,p〉 dµ ,

hence

∀x∗ ∈ D , βx∗(ω) = 〈x
∗, u∞,p(ω)〉 a.e. in Ap .

Since limp→∞ µ(Ap) = 1, there exists a measurable function u∞ defined on all Ω

such that

(12) ∀x∗ ∈ D , βx∗(ω) = 〈x
∗, u∞(ω)〉 a.e.

Moreover, by (4) and (12), we have

∀x∗ ∈ D , 〈x∗, S′n(ω)〉 → 〈x∗, u∞(ω)〉 a.e.

which implies

|u∞(ω)| ≤ lim inf
n→∞

|S′n(ω)| a.e.

and hence
∫

Ω
|u∞| dµ ≤

∫

Ω
lim inf
n→∞

|S′n| dµ .

By Fatou’s lemma we get

∫

Ω
|u∞| dµ ≤ sup

n

∫

Ω
|S′n| dµ ≤ sup

n

∫

Ω
|un| dµ < +∞

and hence u∞ ∈ L1X .

Step 3 – (u′n)n and u∞ have the required properties.

1) By combining (2), (4), (8) and (12), we obtain

(13) (u′n)n and (v′n)n σ(X,D)-K-converge a.e. to u∞ .

Furthermore, from (5) and (9) we deduce that

(14) ∀ q ∈ N∗ , (1B′
n,q
v′n)n σ(X,X∗)-K-converges a.e. to u∞q .
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Fix h in L0X∗ [X]. We shall show that (〈h, v′n〉)n K-converges in measure to 〈h, u∞〉.

By considering the function h/(1+ |h|), we may suppose that |h|∞ < 1. Let (v′ni
)i

be a subsequence of (v′n)n. By (13) and (14), we have

∀x∗ ∈ D , 〈x∗, S′′n(ω)〉 → 〈x∗, u∞(ω)〉 a.e.

and

∀x∗ ∈ D, ∀ q ∈ N∗ , 〈x∗, S′′n,q(ω)〉 → 〈x∗, u∞q (ω)〉 a.e.

where

S′′n :=
1

n

n
∑

i=1

v′ni
and S′′n,q :=

1

n

n
∑

i=1

1B′
ni,q

v′ni
(n ∈ N∗) .

Then

∀x∗∈D, ∀ q∈N∗ ,
∣

∣

∣

〈

x∗, S′′n(ω)− S′′n,q(ω)
〉
∣

∣

∣→
∣

∣

∣

〈

x∗, u∞(ω)− u∞q (ω)
〉
∣

∣

∣ a.e.

Hence for all q ∈ N∗ and for a.e. ω we have

∣

∣

∣u∞(ω)− u∞q (ω)
∣

∣

∣ = sup
x∗∈D

∣

∣

∣

〈

x∗, u∞(ω)− u∞q (ω)
〉∣

∣

∣

≤ lim inf
n

∣

∣

∣S′′n(ω)− S′′n,q(ω)
∣

∣

∣ .

This inequality implies that ∀n ∈ N∗, ∀ p and ∀ q ∈ N∗

∫

Ap

∣

∣

∣〈h, S′′n〉−〈h, u∞〉
∣

∣

∣ dµ ≤

∫

Ap

∣

∣

∣〈h, S′′n〉−〈h, S
′′
n,q〉

∣

∣

∣ dµ+

∫

Ap

∣

∣

∣〈h, S′′n,q〉−〈h, u
∞
q 〉
∣

∣

∣ dµ

+

∫

Ap

∣

∣

∣〈h, u∞q 〉 − 〈h, u∞〉
∣

∣

∣ dµ

≤

∫

Ap

|S′′n − S′′n,q| dµ+

∫

Ap

∣

∣

∣〈h, S′′n,q〉 − 〈h, u
∞
q 〉
∣

∣

∣ dµ

+

∫

Ap

lim inf
n

|S′′n − S′′n,q| dµ .

Then by Fatou’s lemma, ∀n ∈ N∗, ∀ p and ∀ q ∈ N∗,
∫

Ap

∣

∣

∣〈h, S′′n〉−〈h, u∞〉
∣

∣

∣ dµ ≤ 2 sup
n

∫

Ap

|S′′n − S′′n,q| dµ+

∫

Ap

∣

∣

∣〈h, S′′n,q〉−〈h, u
∞
q 〉
∣

∣

∣ dµ .

Using similar arguments to those used to prove (10) and (11), we obtain

∀ p, ∀ q ∈ N∗ , lim
n→∞

∫

Ap

∣

∣

∣〈h, S′′n,q〉 − 〈h, u
∞
q 〉
∣

∣

∣ dµ = 0
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and

∀ p , lim
q→∞

sup
n

∫

Ap

|S′′n − S′′n,q| dµ = 0

hence

∀ p , lim
n→∞

∫

Ap

∣

∣

∣〈h, S′′n〉 − 〈h, u∞〉
∣

∣

∣ dµ = 0 .

Let ε > 0. For p and n sufficiently large, we have

µ(Ω\Ap) <
ε

2
and

∫

Ap

∣

∣

∣〈h, S′′n〉 − 〈h, u∞〉
∣

∣

∣ dµ ≤
ε2

2
.

Therefore, by Markov’s inequality, we get

µ

({

ω ∈ Ap :
∣

∣

∣〈h(ω), S′′n(ω)〉 − 〈h(ω), u∞(ω)〉
∣

∣

∣ > ε

})

≤
ε

2

then

µ

({

ω ∈ Ω:
∣

∣

∣〈h(ω), S′′n(ω)〉 − 〈h(ω), u∞(ω)〉
∣

∣

∣ > ε

})

≤ µ(Ω\Ap) +
ε

2
< ε .

Thus 〈h, S′′n〉 → 〈h, u∞〉 in measure.

2) Finally, if (wn)n is any other w-tight sequence, with wn ∈ co{u
′
i : i≥ n},

then the same method applied to (vn)n gives for (wn)n the existence of a subse-

quence (w′n)n of (wn)n and of a function v∞ ∈ L1X such that

(u′n)n and (w′n)n σ(X,D)-K-converge a.e. to v∞

∀h ∈ L0X∗ [X] , (〈h,w′n〉)n K-converges in measure to 〈h, v∞〉 .

Since (u′n)n σ(X,D)-K-converges a.e. to u∞, we get v∞ = u∞ a.e., so the proof

is complete.

Now we give the version of Theorem 1 relative to the s-tightness assumption.

Theorem 2. Let (un)n be a bounded sequence in L
1
X such that the following

tightness condition holds

T2: Given any subsequence (uki
)i of (un)n, there exists a s-tight sequence

(vn)n with vn ∈ co{uki
: i ≥ n}.

Let D be a countable σ(X∗, X)-dense subset of the unit ball, B∗, of X∗. Then

there exist a function u∞ in L1X and a subsequence (u′n)n of (un)n such that

(a) (u′n)n σ(X,D)-K-converges a.e. to u∞;
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(b2) Every s-tight sequence (vn)n, with vn ∈ co{u′i : i ≥ n} has a subsequence

(v′n)n such that

(v′n)n σ(X,D)-K-converges a.e. to u∞ ,

(v′n)n K-converges in measure to u∞ .

Proof: The proof is almost the same as the one given above. We will only

consider the points which need to be modified. Since each multifunction Kq has

s-compact values, the sequence (S ′n,q)n s-converges a.e. to u∞q . Therefore, by

Lebesgue–Vitali’s theorem,

∀ p, ∀ q ,

∫

Ap

|S′n,q − u∞q | dµ→ 0 .

Consequently, by virtue of (11), for each p the sequence (1ApS
′
n)n is relatively

strongly compact in L1X . Hence, (S′n)n is precompact in measure. If u∞ is a limit

point of (S′n)n with respect to the topology of convergence in measure, then by

(4),

∀x∗ ∈ D , βx∗(ω) = 〈x
∗, u∞(ω)〉 a.e.

Therefore (S ′n)n converges in measure to u∞. The remainder of the proof follows

easily from the proof of Theorem 1.

Every w-tight (resp. s-tight) sequence satisfies T1 (resp. T2). So we have the

following

Corollary 3. Let (un)n be a bounded sequence in L1X and D a countable

σ(X∗, X)-dense subset of B∗. If (un)n is w-tight (resp. s-tight), then there exist

a function u∞ in L1X and a subsequence (u′n)n of (un)n for which (a) and (b′1)

(resp. (a) and (b′2)) hold, where

(b′1) ∀h ∈ L0X∗ [X], (〈h, u′n〉)n K-converge in measure to 〈h, u∞〉;

(b′2) (u
′
n)n K-converges in measure to u∞.

The following result is due to E.J. Balder [[5], Th. B].

Corollary 4. Assume that X is not necessarily separable. Let (un)n be a

bounded sequence in L1X such that {un(ω) : n ∈ N} is a.e. relatively w-compact.

Then there exist a subsequence of (un)n that w-K-converges a.e. to a Bochner

integrable function.
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Proof: By the Pettis measurability theorem, we may assume that X is

separable. So by Corollary 3, there exist a subsequence of (un)n and a function

in L1X for which (a) holds. Since {un(ω) : n ∈ N} is a.e. relatively w-compact, we

conclude, by Krein and Eberlein–Šmulian’s theorem, that the convergence in (a)

extends to all x∗ ∈ X∗.

Corollary 5. Assume that X∗ is strongly separable. Let (un)n be a bounded

sequence in L1X such that the condition T1 holds. Then there exist a subsequence

of (un)n that w-K-converges a.e. to a Bochner integrable function.

Proof: Let D be a countable strongly dense subset of B∗. Let (u′n)n and

u∞ be as obtained in Theorem 1. By Komlós’ theorem and by extracting a

subsequence if necessary, we may suppose that the sequence (|u′n|)n K-converges

a.e. to an integrable function from Ω into R+. Hence, for every further subse-

quence (u′ni
)i of (u

′
n)n, the sequence (

1
n

∑n
i=1 u

′
ni
(ω))n is a.e. bounded. Therefore,

since (u′n)n σ(X,D)-K-converges a.e. to u∞ and D is dense, the sequence (u′n)n
w-K-converges a.e. to u∞.

From Corollary 5 we deduce the following result, which is due to E.J. Balder

[[5], Th. A].

Corollary 6. Assume that X is a reflexive Banach space (not necessar-

ily separable). Let (un)n be a bounded sequence in L1X . Then there exist a

subsequence of (un)n that w-K-converges a.e. to a Bochner integrable function.

Proof: By the Pettis measurability theorem, we may assume that X is

separable. Furthermore, since X is reflexive, X∗ is strongly separable. And, by

the boundedness assumption and reflexivity of X, the sequence (un)n is w-tight.

Thus we return to the situation of Corollary 5.

4 – Applications

As an immediate application of our results we have the following theorem,

which is due to C. Castaing [[11], Th. 4.1, p. 2. 14], see also [[1], Th. 6].

Theorem 7. Let H be a w-tight uniformly integrable subset of L1X . Then H

is sequentially relatively weakly compact (and hence relatively weakly compact)

in L1X .
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Proof: Let (un)n be a sequence in H. Let (u′n)n and u∞ be as obtained in

Corollary 3. By UI and (b′1), it follows from Lebesgue–Vitali’s theorem that

∀h ∈ L∞X∗ [X] ,
(

∫

Ω
〈h, u′n〉 dµ

)

n
K-converges to

∫

Ω
〈h, u∞〉 dµ .

Hence, by using the remark given in section 2, we get

u′n → u∞ weakly in L1X .

Thus H is sequentially relatively weakly compact. Then, by Eberlein–Šmulian’s

theorem [[22], Th. 18, A], H is relatively weakly compact in L1X .

Now we give a very general criterion for relative weak compactness in L1X .

Theorem 8. Let H be a bounded subset of L1X . Then the following state-

ments are equivalent:

(i) H is relatively weakly compact in L1X .

(ii) H is UI and every sequence in H satisfies T1.

(iii) H is UI and every sequence in H satisfies T2.

Proof: Suppose (i) holds. Then H is UI (see [16], [9]). Let (un)n be a

sequence in H. There exists a subsequence (u′n)n of (un)n that converges weakly

to some u ∈ L1X . Then, by Mazur’s theorem, there exists a sequence (vn)n, with

vn ∈ co{u′i : i ≥ n} such that |vn − u|L1
X
→ 0. Hence, there exists a subsequence

(v′n)n of (vn)n that converges a.e. to u. Therefore (v′n)n is s-tight. This proves

(iii). The implication (iii)⇒(ii) is obvious. Now let us prove the main implication

of the theorem (ii)⇒(i). Suppose (ii) holds. By Eberlein–Šmulian’s theorem, it

is enough to show that H is sequentially relatively weakly compact. Let (un)n be

a sequence in H. Since (un)n is bounded and satisfies T1, by Theorem 1, there

exist a subsequence (u′n)n of (un)n and a function u∞ ∈ L1X for which (b1) holds.

For a fixed h in L∞X∗ [X], choose a subsequence (u′ki
)i of (u

′
n)n such that

lim
i→+∞

∫

Ω
〈h, u′ki

〉 dµ = lim sup
n

∫

Ω
〈h, u′n〉 dµ .

By T1, there exists a w-tight sequence (vn)n, with vn ∈ co{u′ki
: i ≥ n} ⊂ co{u′i :

i ≥ n}. So, by (b1), every subsequence of (vn)n has a further subsequence (v′n)n
such that

(〈h, v′n〉)n K-converges in measure to 〈h, u∞〉
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then
(

∫

Ω
〈h, v′n〉 dµ

)

n
K-converges to

∫

Ω
〈h, u∞〉 dµ .

This is equivalent to

∫

Ω
〈h, v′n〉 dµ →

∫

Ω
〈h, u∞〉 dµ .

Consequently,
∫

Ω
〈h, vn〉 dµ →

∫

Ω
〈h, u∞〉 dµ .

Since each vn is of the form

vn =
∑

i≤kn

λi u
′
ki+n

, with λi ≥ 0 and
∑

i≤kn

λi = 1 ,

we have
∫

Ω
〈h, u∞〉 dµ = lim

n→+∞

∑

i≤kn

λi

∫

Ω
〈h, u′ki+n

〉 dµ

= lim
i→+∞

∫

Ω
〈h, u′ki

〉 dµ .

Then

lim sup
n

∫

Ω
〈h, u′n〉 dµ =

∫

Ω
〈h, u∞〉 dµ .

Similarly, we obtain

lim inf
n

∫

Ω
〈h, u′n〉 dµ =

∫

Ω
〈h, u∞〉 dµ .

Hence

lim
n→+∞

∫

Ω
〈h, u′n〉 dµ =

∫

Ω
〈h, u∞〉 dµ .

This proves (i).

Remark 1. Theorem 8 allows to recover a recent criterion for relative

weak compactness, which is due to A. Ülger [30] and J. Diestel–W.M. Ruess–

W. Schachermayer [17] (by the Pettis measurability theorem, the hypothesis “X

is separable” can be relaxed). In [17] the proof is based on the characterization of

the weak compactness by the iterated limit condition (see [[22], Lemma 1, 19 A]).

Remark 2. Considering constant functions in X, we recover also A. Ülger’s

lemma [[30], Lemma 2.1]. Recall that this author proved his result by using

James’s characterization of weak compactness via norm-attaining functionals.
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[9] Brooks, J.K. and Chacon, R.V. – Continuity and compactness of measures,
Adv. Math., 37 (1980), 16–26.

[10] Castaing, C. – Un résultat de compacité lié à la propriété des ensembles Dunford–
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[30] Ülger, A. – Weak compactness in L1(µ,X), Proc. Amer. Math. Soc., 113 (1991),

143–149.

Mohammed Saadoune,
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