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Abstract: Let E, F be Fréchet spaces and D an open set in E. The main aim of this

paper is to prove that every analytic function f : D → F (resp. f : D → H(F ′) where F

is Montel) which is weakly analytically extended to Ω is analytically extended to Ω when

dimE < ∞ and F ∈ (DN) (resp. F ∈ DN). Moreover it also shows that every function

on D ×G which is holomorphic in z ∈ D and weakly analytic in x ∈ D is analytic.

Introduction

Let E, F be locally convex spaces and D an open set in E. Assume that

f : D → F is an analytic function. We say that f is weakly analytically extended

to Ω, a domain in E containing D, if u ◦ f is analytically extended to Ω for all

u ∈ F ′, the dual space of F . In [9] Ligocka and Siciak have been proved that if E

is metrizable and Baire, F ′ is Baire and f is weakly analytically extended to Ω,

then f can be analytically extended to Ω. A counterexample for the case where

F ′ is not Baire was also given by them.

This is different with the holomorphic case, which was investigated in a col-

lection of papers of Bogdanowicz [2], [3], [4], [5] and later of Nachbin [10], [11],

Nguyen Thanh Van [12]. One of their main results is the equivalence of the weakly

holomorphic and holomorphic extension in the case where E is metrizable.

The aim of the present note is to consider the result of Ligocka and Siciak for

Fréchet-valued analytic functions and the recent one of Shiffman [14] about the

analyticity of separately analytic functions in the case of infinite dimension.

The problem is formulated in terms of linear topological invariants which

were introduced and investigated by Vogt in the 1980’s and the proof of the

other concerns the Nachbin topology of the spaces of the holomorphic functions.
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To formulate the results we recall the following.

Let E be a Fréchet space with an increasing fundamental system of semi-norms

{‖ · ‖k}
∞
k=1. We say that E has the property

(DN) ∃ p ≥ 1 ∀ q ≥ 1 ∀ d > 0 ∃ k ≥ q, C > 0

(DN) ∃ p ≥ 1 ∂q ≥ 1 ∃ k ≥ q ∀ d > 0 ∃C > 0



 : ‖ · ‖1+d

q ≤ C‖ · ‖k ‖ · ‖
d
p .

The properties (DN) and (DN) and many other ones were introduced and

investigated by Vogt ([15], [16], ...).

In this note we prove the following three Theorems

Theorem 1. Let E, F be real Fréchet spaces and let f : D → F be analytic.

If f is weakly analytically extended to Ω, then f is analytically extended to Ω

when one of the following holds

(i) dimE <∞ and F ∈ (DN);

(ii) F ∈ (DN).

Theorem 2. Let E be a real Fréchet space and F a complex Fréchet Montel

space. Assume f : D → H(F ′) is an analytic function, where F ′ is the strong

dual of F . If δuf is analytically extended to Ω, where

(δuf)(x) = f(x)(u) for x ∈ D and u ∈ F ′

then f is analytically extended to Ω when one of the following holds

(i) dimE <∞ and F ∈ (DN);

(ii) F ∈ (DN).

Theorem 3. Let E be a real Fréchet space and F a complex Fréchet space.

Assume f : D ×G→ C is a function, where D ×G is open in E × F , satisfying

the following

fx : z 7→ f(x, z) is holomorphic on G for x ∈ D

and

fµ : x 7→ µ(f(x, z)) is analytic on D for µ ∈ [H(G)]′ .

Then f is analytic.

The proofs of Theorems 1, 2 and 3 are given in §1, §2 and §3 respectively.



LINEAR TOPOLOGICAL INVARIANTS 103

In §4 we show a necessary condition for a complex space X which satisfies

that every weakly analytic function with values in H(X) is analytic.

Remark. In the case where D and G are open sets in Rm and Cn respec-

tively with fx is holomorphic for x ∈ D and f z is analytic for z belongs to a

nonpluripolar set in G, Theorem 3 was proved by Shiffman [14].

1 – Proof of Theorem 1

To prove the Theorem 1, we first prove the following result.

Let F be a real Fréchet space with strong dual F ′ and F ′bor the bornological

space associated to F ′. We have

1.1 Lemma. Let F be a real Fréchet space with F ∈ (DN). Then [F ′bor]
′ ∈

(DN).

Proof: It is known [16] that F ∈ (DN) if and only if

∃ p ∀ q ∃ k, C > 0: ‖ ‖q ≤ Cr‖ ‖k +
1

r
‖ ‖p ∀ r > 0

if and only if

∃ p ∀ q ∃ k, C > 0: U0
q ⊆ Cr U0

k +
1

r
U0
p ∀ r > 0 .

Thus

‖u‖′′q = sup
x′∈U0

q

|u(x′)| ≤ sup
x′∈Cr U0

k
+ 1

r
U0

p

|u(x′)| ≤

≤ Cr sup
x′∈U0

k

|u(x′)|+
1

r
sup
x′∈U0

p

|u(x′)| = Cr‖u‖′′k +
1

r
‖u‖′′p

for all r > 0 and u ∈ [F ′bor]
′.

This means [F ′bor]
′ ∈ (DN).

Proof of Theorem: (i) One can assume that E = Rn and Ω is connected.

It suffices to show that f is analytically extended at every x0 ∈ ∂D ∩ Ω.

Choose a neighbourhood W = I1 × I2 × ...× In of x0 in Ω, where

Ii = [ai, bi] , ai < bi, i = 1, ..., n .
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For each 0 < ε < 1, consider the linear map

Sε : F ′ → A(εW ) ,

given by

Sε(u)(x) = u f(x) for u ∈ F ′, x ∈ εW ,

where A(εW ) is the space of analytic functions on εW . By the uniqueness, Sε

has the closed graph.

On the other hand, since

A(εW ) := lim ind
W̃↓εW

H∞(W̃ ) = H(εW ) ,

where H∞(W̃ ) denotes the Banach space of bounded holomorphic functions on a

neighbourhood W̃ of εW in Cn, it follows that Sε : F ′bor → A(εW ) is continuous.

From the relations:

[H(εW )]′ ∼=
[
H(εI1) ⊗̂π ... ⊗̂π H(εIn)

]′

∼= H(C\εI1) ⊗̂π ... ⊗̂π H(C\εIn)
∼= H(∆) ⊗̂π ... ⊗̂π H(∆) ∼= H(∆n) ∈ (Ω̃) [16]

where

∆ =
{
λ ∈ C : |λ| < 1

}

and, by Lemma 1.1,

[F ′bor]
′ ∈ (DN)

by Vogt [16], we can find a neighbourhood W̃ε of εW in Cn such that Sε : F ′bor →

H∞(W̃ε) is continuous.

Define a holomorphic extension

f̂ε : W̃ε → [F ′bor]
′

by

f̂ε(z)(u) = Sε(u)(z) for z ∈ W̃ε, u ∈ F ′bor .

By the uniqueness the family {f̂ε} defines a holomorphic extension f̂ of f to a

neighbourhood W̃ of W in Cn.

Since f̂(W ∩D) ⊂ F and F is a closed subspace of [F ′bor]
′ we have f̃(W̃ ) ⊂ F .

This means f can be analytically extended at x0.

(ii) a) First assume that E is a Banach space. By (i) f is extended to a

Gateaux analytic function g : Ω→ F . It remains to check that g is analytic.
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Given x0 ∈ Ω. Consider the Taylor expansion of g at x0,

g(x) =
∑

n≥0

Pn g(x) .

By Ligocka and Siciak [9],

gq :=ωq g : Ω→ Fq is analytic for all q ≥ 1 ,

where Fq is the Banach space associated to the semi-norm ‖ · ‖q and ωq : F → Fq

is the canonical map.

This yields the continuity of all Pn g.

For each q ≥ 1, put

sq = lim sup
n

n

√
‖Pn g‖q and rq =

1

sq
,

where

‖Pn g‖q = sup
{
‖Pn g(x)‖q : ‖x‖ ≤ 1

}
.

We have

rq > 0 for q ≥ 1 .

Since F ∈ (DN), we have

∃ p ∀ q ≥ p ∃ k(q) ∀ d > 0 ∃Cd > 0: ‖ · ‖q ≤ C
1

1+d

d ‖ · ‖
1

1+d

k ‖ · ‖
1

1+d
p .

Then

sq ≤ lim
n

(
C

1

1+d

d

)1/n(
lim sup

n
‖Pn f‖

1/n
k

) 1

1+d
(
lim sup

n
‖Pn f‖1/np

) d
1+d

= s
1

1+d

k s
d

1+d
p .

As d→∞ we get

sq ≤ sp for q ≥ p

and hence

rq ≥ rp for q ≥ p .

This yields that g is analytic at x0.

b) General case. By (i) f is extended to a Gateaux analytic function g:Ω→F .

Let x0 ∈ Ω. For B ∈ B(E), the family of all balanced convex compact sets in

E, write

EC = E ⊕ iE , FC = F ⊕ iF and E(B)C = E(B)⊕ iE(B) ,
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where E(B) denotes the Banach space spanned by B.

By a) for each B ∈ B(E) with x0 ∈ E(B) there exists a convex neighbourhood

WB of 0 ∈ E(B)C and a holomorphic function gB : x0 +WB → FC such that

gB
∣∣∣
(x0+WB)∩Ω

= g
∣∣∣
(x0+WB)∩Ω

.

Put

W =
⋃{

x0 +WB : B ∈ B(E)
}

.

By the uniqueness the family {gB} defines a function ĝ : W → FC such that

ĝ
∣∣∣
W∩Ω

= g
∣∣∣
W∩Ω

.

It remains to check that W is a neighbourhood of x0 in EC.

Otherwise, there exists a sequence {zn}, zn = xn + iyn /∈ W for n ≥ 1,

converging to x0. Let B = conv{xn, yn}. Choose B1 ∈ B(E), B ⊂ B1 such that

canonical map E(B)C → EC(B1) is compact. Such a set B1 exists by [8].

Then zn → x0 in E(B1) and hence

zn ∈ x0 +WB1
⊂W for n sufficiently large .

This is impossible.

2 – Proof of Theorem 2

For the proof of Theorem 2, we recall the following.

Let {‖ ‖k}
∞
k=1 be a fundamental system of continuous semi-norms of a Fréchet

space E. For each subset B of E consider the general semi-norm

‖ ‖∗B : E∗ → [0,+∞]

given by

‖u‖∗B =
{
sup |u(x)| : x ∈ B

}
.

Write ‖ ‖∗k for B = Uk = {x ∈ E : ‖x‖k ≤ 1}.

We say that E has the property (Ω̃) if and only if

(Ω̃)

∀ p≥1 ∃ q≥1 ∃ d>0 ∀ k≥1, ∃C>0: ‖y‖∗1+d
q ≤ C‖y‖∗k ‖y‖

∗d
p for y∈E∗.

The properties (Ω̃) and other properties were introduced and investigated by

Vogt (see [15], [16], ...).
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For the proof of Theorem 2 we need the following two Lemmas

2.1 Lemma. Let B be a Banach space and E a Fréchet space with E ∈ (Ω̃).

Assume that f : B → E∗ is a holomorphic function of bounded type. Then there

exists a neighbourhood V of 0 in E such that:

(1) sup
{
‖f(x)‖∗V : ‖x‖ < r

}
<∞ for all r > 0 .

Proof: Let {‖ · ‖γ}
∞
γ=1 be a fundamental system of semi-norms of E and let

U be the unit ball of B. Since f(U) is bounded in E∗, there exists α ≥ 1 such

that

M(α, 1) = sup
{
‖f(x)‖∗α : x ∈ U

}
<∞ .

By the hypothesis E ∈ (Ω̃) we can find β ≥ α and d > 0 such that

(2) ∀ γ ≥ β ∃C > 0: ‖ · ‖∗1+d
β ≤ C‖ · ‖∗γ ‖ · ‖

∗d
α .

We check that (1) is satisfied for V = {y ∈ E : ‖y‖β < 1}. Indeed, fix r > 1.

Choose γ such that

M(γ, ρ) = sup
{
‖f(x)‖∗γ : ‖x‖ < ρ

}
<∞ ,

where ρ = (er)1+d + 1.

Writing the Taylor expansion of f at 0 ∈ B,

f(x) =
∑

n≥0

Pn f(x) , x ∈ B ,

we have

‖f(x)‖∗β ≤
∑

n≥0

‖Pn f(x)‖∗β =
∑

n≥0

rn
∥∥∥∥Pn f

(
x

r

)∥∥∥∥
∗

β

≤ C
1

1+d

∑

n≥0

rn
∥∥∥∥Pn f

(
x

r

)∥∥∥∥
∗ 1

1+d

γ

∥∥∥∥Pn f

(
x

r

)∥∥∥∥
∗ d

1+d

α

≤ C
1

1+d M(γ, ρ)
1

1+d M(α, 1)
d

1+d

∑

n≥0

(
r

ρ
1

1+d

)n nn

n!
<∞ .

2.2 Lemma. Let E and F be Fréchet space with E ∈ (Ω̃) and F ∈ (DN).

Assume that F is a Montel space. Then every holomorphic function from F ∗ into

E∗ can be factored through a Banach space.
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Proof: Given f : F ∗ → E∗ a holomorphic function. By Vogt [15], F is

isomorphic to a subspace of the space B ⊗̂π s for some Banach space B, where s

is the space of rapidly decreasing sequences.

Since the restriction map R from [B ⊗̂π s]∗ ∼= B∗ ⊗̂π s∗ into F ∗ is open, it

suffices to prove the theorem for g = fR.

On the other hand, since every Banach space is isomorphic to a quotient space

of the space `1(I) for some index set I, without loss of generality we may assume

that B∗ ∼= `1(I).

For each k ≥ 1 put

Ak =

{
u = (ηij)i∈I, j≥1 ⊂ C : |||u|||k =

∑

i∈I, j≥1

|ηij | j
−k <∞

}
.

It follows that:

`1(I) ⊗̂π s∗ ∼= lim ind
k

Ak

and

(3) ∃ p ≥ 1 ∀ q ≥ p, d > 0 ∃ k ≥ q, D > 0: |||δij |||
1+d
q ≥ D|||δij |||k |||δij |||

d
p ,

for all i ∈ I and all j ≥ 1, where {δij} is the canonical basis (which is not

necessarily countable) of `1(I) ⊗̂π s∗.

By Lemma 2.1 for each k ≥ 1 there exists γ = γ(k) such that

(4) M(k, γ, r) <∞ for all r > 0 .

Put α = γ(p) and take β ≥ α, d > 0 such that (2) holds. We check that g is

a holomorphic function from `1(I) ⊗̂π s∗ into E∗β. Fix q ≥ p. For q and d take

k ≥ q and D > 0 such that (3) holds.

Then for every u ∈ Aq, |||u|||q < r, we have

‖g(u)‖∗β≤
∑

n≥0

∑

i1,...,in∈I

j1,...,jn≥1

|ηi1j1 | · · · |ηinjn | |||δi1j1 |||q · · · |||δinjn |||q ·

∥∥∥Pn g(δi1j1 , ..., δinjn)
∥∥∥
∗

β

|||δi1j1 |||q · · · |||δinjn |||q

≤
∑

n≥0

∑

i1,...,in∈I

j1,...,jn≥1

|ηi1j1 | · · · |ηinjn | |||δi1j1 |||q · · · |||δinjn |||q ·
C

1

1+d

D
n

1+d

×

×

∥∥∥Pn g(δi1j1 , ..., δinjn)
∥∥∥
∗ 1

1+d

γ

∥∥∥Pn g(δi1j1 , ..., δinjn)
∥∥∥
∗ d

1+d

α

|||δi1j1 |||
1

1+d

k · · · |||δinjn |||
1

1+d

k |||δi1j1 |||
d

1+d
p · · · |||δinjn |||

d
1+d
p

≤ C
1

1+d M(k, γ, ρ)
1

1+d M(p, α, ρ)
d

1+d

∑

n≥0

nn rn

D
n

1+d ρn n!
<∞
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for ρ sufficiently large.

Now we are able to prove the Theorem.

As in Theorem 1 it suffices to prove (i).

Given f : D → H(F ′) an analytic function such that δuf is analytically

extended to Ω for every u ∈ F ′, where D is an open set in Rn and F is a complex

Fréchet–Montel space with F ∈ (DN).

Fix x0 ∈ ∂D ∩ Ω and choose a cube neighbourhood W of x0 in Ω.

Consider the function f̂ : F ′ → H(W ) induced by f .

a) First we show that f̂ is holomorphic.

It suffices to show that f̂k : F ′k → H(W ) is holomorphic for k ≥ 1.

Let {Um} be a neighbourhood basis of W in Cn. For each m ≥ 1, put

Am =
{
u ∈ F ′k : ‖δu f‖Um

≤ m
}

.

It follows that Am are closed in F ′k and F ′k =
⋃
m=1 Am. From Baire’s Theorem

there exists m0 such that V = intAm0
6= ∅.

Consider the function g : (W × F ′k) ∪ (Um0
× V )→ C defined by

g(x, u) = f̂k(u)(x) .

Then g is separately holomorphic. Since W is non-pluripolar and V is non-

empty open, by [13] for every finite dimensional subspace L ⊂ F ′k, there exists

a unique holomorphic function gL, on Um0
× L extending g|(W×L)∪(Um0

×V ∩L).

Then the family {gL}, by the Zorn Theorem [18], defines a holomorphic function

ĝ : Um0
× F ′k → C. This yields the holomorphicity of f̂k : F ′k → H(W ).

b) Since [H(W )]′ ∈ (Ω̃) [17], by Lemma 2.2, we find a continuous semi-norm

ρ on F ′ and a holomorphic function f̂ρ : F ′ρ → H(W ) such that f = f̂ρ ωρ.

Lemma 2.1 yields a neighbourhood U of W in Cn such that f̂ρ : F ′ρ → H(U)

is holomorphic. Hence f : D → H(F ′) is holomorphically extended to U , a

neighbourhood of x0 in Cn.

3 – Proof of Theorem 3

Without loss of generality we may assume that G is balanced.

(i) First consider the case where H(G) ∼= [H(G), τω], where τω denotes the

Nachbin topology.
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Consider the function f̂ : D → H(G) associated to f .

Since H(G) ∼= limprojK⊂⊂GH(K) [1], it follows that RK f̂ is analytic for all

K ⊂⊂ G, where RK : H(G)→ H(K) denotes the restriction map.

Now for each (x, z) ∈ D ×G we find neighbourhoods Ṽ and W of x and z in

EC and G respectively and a holomorphic function ĝ : Ṽ → H∞(W ) such that

ĝ
∣∣∣
Ṽ ∩D

= RW f̂
∣∣∣
Ṽ ∩D

.

This shows that the function g : Ṽ × X → C which is associated to ĝ is

holomorphic. Since

g
∣∣∣
(Ṽ×W )∩(D×G)

= f
∣∣∣
(Ṽ×W )∩(D×G)

we infer that f is analytic at (x, z).

(ii) The case where F is separable. Then there exists a continuous linear map

from a Fréchet–Montel Köthe space λ(A) onto F [6].

Since H(R−1(G)) ∼= [H(R−1(G), τω)] [1], by (i) the function f(id × R) : D ×

R−1(G)→ C and hence f is analytic.

(iii) General case. By F(F ) we denote the family of all closed separable

subspaces of F .

Given (x, z) ∈ D × G. By (ii) for each P ∈ F(F ) with z ∈ P there exists a

neighbourhood WP of (x, z) in EC×G and a holomorphic function gP : WP → C
such that

gP
∣∣∣
WP∩(D×G)

= f
∣∣∣
WP∩(D×G)

.

The uniqueness implies that the family {gP } defines a function g : W :=
⋃
P WP →

C such that

gP
∣∣∣
W∩(D×G)

= f
∣∣∣
W∩(D×G)

.

It remains to check that W is a neighbourhood of (x, z) in EC ×G.

Otherwise there exists {(xn, zn)} ⊂ EC × F converging to (x, z) such that

(xn + x, zn + z) /∈W for all n ≥ 1 .

Put P = span{zn} ∈ F(F ).

Then

(xn + x, zn + z) ∈WP ⊂W for n sufficiently large .

This is impossible.
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4 – Remark

Let X be a Stein connected manifold. In [7] L.M. Hai has proved that H(X) ∈

(DN) if and only if every H(X)-valued weakly holomorphic function on and any

L-regular compact set K in Cn is holomorphic on K. However for the analytic

case we only proved the following

Proposition. Let X be a connected complex space such that every weakly

analytic function on an open set in Rn with values in H(X) is analytic. Then

every bounded holomorphic function on X is constant.

Proof: Otherwise, let ϕ ∈ H(X) such that ϕ 6= const and

sup
X
|ϕ| = 1 .

Consider the function f : (−1, 1)×X → C given by

f(t, z) =
1

1 +
t2

1− ϕ(z)

.

It follows that f is analytic.

We check that the function f̂ : (−1, 1) → H(X) which is associated to f is

weakly analytic.

Indeed, given µ ∈ [H(X)]′ and t0 ∈ (−1, 1). Choose a compact set K in X

such that suppµ ⊂ K. By the compactness of K we can find a neighbourhood

U × V of {t0} × K in Cn × X and a holomorphic function g : U × V → C for

which

g
∣∣∣
(U×V )∩((−1,1)×X)

= f
∣∣∣
(U×V )∩((−1,1)×X)

.

Since ĝ : U → H(V ) is holomorphic and µ can be considered as an element of

[H(V )]′ it follows that µ f̂ is extended holomorphically to µ ĝ on U .

By the hypothesis f̂ is analytic. However this is impossible since the radius

of the convergence r(z) of the series

1−
t2

1− ϕ(z)
+

t4

(1− ϕ(z))2
−

t6

(1− ϕ(z))3
+ ...

is
√
|1− ϕ(z)| → 0 as z → ∂X.
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