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EXISTENCE FOR QUASILINEAR ELLIPTIC SYSTEMS
WITH QUADRATIC GROWTH HAVING

A PARTICULAR STRUCTURE

A. Mokrane

Abstract: In this paper, we consider the quasilinear elliptic system:


























−
N
∑

i,j=1

∂

∂xi

(

Aij(x, u)
∂uγ

∂xj

)

=

= Gγ(x, u,∇u) + F (x, u,∇u)Duγ in D′(Ω), 1 ≤ γ ≤ m,

u ∈ (H1
0 (Ω) ∩ L∞(Ω))m .

The right hand side of this system consists of two parts: the first one, Gγ(x, u,∇u),

can have a quadratic growth in Duδ for δ ≤ γ, and possibly a small quadratic growth

in Duδ for δ > γ; the second part is a coupling term with the particular structure

F (x, u,∇u)Duγ , where the nonlinearity F is the same for all the equations and can have

linear growth in ∇u. We approximate the problem and assume that an L∞-estimate

on the approximated solutions is known. Without assuming any smallness on this L∞-

estimate we then prove that the approximations converge strongly in (H1
0 (Ω))

m and that

the system admits at least one solution.

Introduction and results

In this paper we prove the existence of at least one solution for a quasilinear

elliptic system whose right hand side has a quadratic growth with respect to the

gradient but has a particular structure. More precisely, we consider the system

(1.1)















− div(A(x, u)Duγ) =

= Gγ(x, u,∇u) + F (x, u,∇u)Duγ in D′(Ω), 1 ≤ γ ≤ m,

u ∈ (H1
0 (Ω) ∩ L

∞(Ω))m ,
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where Ω is a bounded open subset of RN , with boundary ∂Ω (no smoothness

is assumed on ∂Ω), where uγ : Ω → R (1 ≤ γ ≤ m) are the components

of the unknown vector u = (u1, ..., um), where ∇u : Ω → Rm×N is its gra-

dients, i.e. the matrix whose γ-th row is the vector Duγ : Ω → RN , and

where − div(A(x, u)Duγ) = −
∑N

i,j=1
∂
∂xi

(Aij(x, u)
∂uγ

∂xj
), with Aij : Ω × Rm → R

Carathéodory functions which satisfy for α > 0 and β > 0:

(1.2)



























a.e. x ∈ Ω, ∀ s ∈ Rm, ∀ ξ ∈ RN

N
∑

i,j=1

Aij(x, s) ξi ξj ≥ α |ξ|2

|Aij(x, s)| ≤ β .

The functions Gγ : Ω × Rm × Rm×N → R and F : Ω × Rm × Rm×N → RN are

Carathéodory functions which satisfy:

|Gγ(x, s,Ξ)| ≤ C0 + C1

m
∑

δ=1

|ξδ|+ C2

γ
∑

δ=1

|ξδ|2 + η
m
∑

δ=γ+1

|ξδ|2 , 1≤γ≤m ,(1.3)

|F (x, s,Ξ)| ≤ C3 + C4|Ξ| ,(1.4)

where Ξ = (ξ1, ..., ξm) ∈ Rm×N with ξγ ∈ RN , and where C0, C1, C2, C3, C4
and η are positive constants, η being small enough as precised later in hypothesis

(1.10).

Assuming an L∞-estimate on the solutions of a system which approximates

(1.1), but without assuming any smallness of this L∞-estimate, we will prove that

problem (1.1) admits at least one solution. In fact, we will approximate problem

(1.1) and prove that, whenever they are bounded in (L∞(Ω))m, the solutions of

the approximated systems remain bounded and even compact in (H1
0 (Ω))

m. We

will then pass to the limit and obtain a solution of problem (1.1).

Approximation

For ε > 0, let Gγ
ε (x, s,Ξ) : Ω × Rm × Rm×N → R and Fε(x, s,Ξ) : Ω × Rm ×

Rm×N → RN be Carathéodory functions such that:

a.e. x ∈ Ω, ∀ s ∈ Rm, ∀Ξ ∈ Rm×N , 1 ≤ γ ≤ m ,

(1.5) |Gγ
ε (x, s,Ξ)| ≤

1

ε
, |Fε(x, s,Ξ) ξ

γ | ≤
1

ε
,

(1.6) |Gγ
ε (x, s,Ξ)| ≤ |G

γ(x, s,Ξ)| , |Fε(x, s,Ξ)| ≤ |F (x, s,Ξ)| ,

(1.7)

{

Gγ
ε (x, sε,Ξε)→ Gγ(x, s,Ξ) , Fε(x, sε,Ξε)→ F (x, s,Ξ)

when sε → s in Rm and Ξε → Ξ in Rm×N .
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Note that hypotheses (1.5), (1.6), (1.7) are satisfied for example when Gγ
ε and Fε

are defined by:

Gγ
ε (x, x,Ξ) =

Gγ(x, s,Ξ)

1 + ε|Gγ(x, s,Ξ)|
, Fε(x, s,Ξ) =

F (x, s,Ξ)

1 + ε|F (x, s,Ξ)| |Ξ|
.

Now we consider the approximated problem:

(1.8)















− div(A(x, uε)Du
γ
ε ) =

= Gγ
ε (x, uε,∇uε) + Fε(x, uε,∇uε)Du

γ
ε in D′(Ω), 1≤γ≤m,

uγε ∈ (H1
0 (Ω))

m .

In view of (1.5), an application of Schauder’s fixed point theorem implies that

problem (1.8) has at least one solution for ε > 0 given. Since the right hand side

of each equation in (1.8) is bounded by 2
ε
, this solution belongs to (L∞(Ω))m and

satisfies ‖uγε‖L∞(Ω) ≤
C
ε
for some constant C. We will from now on assume that

we have the following L∞(Ω)-estimate:

(1.9) ‖uγε‖L∞(Ω) ≤M , 1 ≤ γ ≤ m ,

where M is independent of ε. Such an estimate can be proved in particular cases

(see e.g. Theorem II.2 in A. Mokrane [4]).

We are now able to specify the smallness of the constant η which appears in

the growth condition (1.3): we will assume that

(1.10) 0 ≤ η ≤
C2

4

(

1

2m exp(8C2

α
M)

)m

.

We have the following theorem:

Theorem. Under hypotheses (1.2), (1.3), (1.4), (1.5), (1.6), (1.7), (1.9),

(1.10), problem (1.1) has at least one solution.

Remark I.1. In the case m = 2 this existence result has been be proved in

A. Bensoussan and J. Frehse [1]. For m ≥ 3, the result has been announced in

J. Frehse [3]. We prove here the Theorem using a method inspired by L. Boccardo,

F. Murat and J.P. Puel [2], where the system (1.1) is studied under the stronger

hypothesis that |Gγ(x, s,Ξ)| ≤ b(|s|) (1+ |Ξ|) where b : R+ → R+ is an increasing

function.

Remark I.2. The second order operator uγ → − div(A(x, u)Duγ) is the

same for all the equations. On the other hand the coupling between the equa-

tions takes place mainly through the term F (x, u,∇u)Duγ where the nonlinearity
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F has a linear growth in |∇u| (note that F is the same for all the equations),

and secondarily through the principal part of the operator (the matrix A de-

pends on u) and through the term Gγ(x, u,∇u) (which has a quadratic growth in

Du1, Du2, ..., Duγ). Note that if we neglect the coupling term F (x, u,∇u)Duγ

and if we assume η = 0, the right hand side of the first equation has a quadratic

growth only in Du1, the right hand side of the second equation has a quadratic

growth inDu1 andDu2, etc., until the last equation which has a quadratic growth

in the whole gradient ∇u.

Remark I.3. From hypotheses (1.3) and (1.4) we deduce that Hγ defined

by

(1.11) Hγ(x, s,Ξ) = Gγ(x, s,Ξ) + F (x, s,Ξ) ξγ ,

where Ξ = (ξ1, ..., ξm) ∈ Rm×N satisfies

(1.12)
|Hγ(x, s,Ξ)| ≤ C0 + C1

m
∑

δ=1

|ξδ|+ C2

γ
∑

δ=1

|ξδ|2 + η
m
∑

δ=γ+1

|ξδ|2

+ [C3 + C4 |Ξ|] |ξ
γ | .

In the casem = 2 (i.e. two equations, and two unknowns u1 and u2) (1.12) implies

that

(1.13)







|H1(x, s,Ξ)| ≤ C ′
0 + C ′

1[|ξ
1|+ |ξ2|] + C ′

2|ξ
1|2 + η|ξ2|2 + C ′

4|ξ
2| |ξ1|

|H2(x, s,Ξ)| ≤ C ′′
0 + C ′′

2 [|ξ
1|2 + |ξ2|2] ,

where the constants C ′
0, C

′
1, C

′
2, C

′
4, C

′′
0 , C

′′
2 do not depend on η.

We will prove in the present Remark that in the special case m = 2, whenever

the functions H1 and H2 satisfy (1.13), then they can be written under the form

(1.11), where G1, G2 and F satisfy (1.3) and (1.4); this will not be the case in

general when m ≥ 3 (see Remark I.4 below).

Indeed define

K(x, s,Ξ) = C ′
0 + C ′

1[|ξ
1|+ |ξ2|] + C ′

2|ξ
1|2 + η|ξ2|2 + C ′

4|ξ
2| |ξ1| ,

F (x, s,Ξ) = C ′
4

H1(x, s,Ξ)

K(x, s,Ξ)
|ξ2|

ψ(|ξ1|)

|ξ1|
ξ1 ,

where ψ : R → R is a smooth function such that 0 ≤ ψ(t) ≤ 1 for all t, ψ(t) = 0

if |t| ≤ 1
2 and ψ(t) = 1 if |t| ≥ 1. Define also

G1(x, s,Ξ) = H1(x, s,Ξ)− F (x, s,Ξ) ξ1 ,

G2(x, s,Ξ) = H2(x, s,Ξ)− F (x, s,Ξ) ξ2 .
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Then F , G1 and G2 are Carathéodory functions which satisfy (1.11); moreover

we have

|F (x, s,Ξ)| ≤ C ′
4|ξ

2| ≤ C ′
4|Ξ|, i.e. (1.4) .

On the other hand

G1(x, s,Ξ) =
H1(x, s,Ξ)

K(x, s,Ξ)

[

K(x, s,Ξ)− C ′
4|ξ

2| |ξ1|ψ(|ξ1|)
]

=

=
H1(x, s,Ξ)

K(x, s,Ξ)

[

C ′
0 + C ′

1[|ξ
1|+ |ξ2|] + C ′

2|ξ
1|2 + η|ξ2|2 + C ′

4|ξ
2| |ξ1| {1− ψ(|ξ1|)}

]

so that, in view of the properties of ψ,

|G1(x, s,Ξ)| ≤ C ′
0+C

′
1[|ξ

1|+ |ξ2|]+C ′
2|ξ

1|2+η|ξ2|2+C ′
4|ξ

2|, i.e. (1.3) for G1 .

Finally

|G2(x, s,Ξ)| ≤ |H2(x, s,Ξ)|+ |F (x, s,Ξ)| |ξ2|

≤ C ′′
0 + C ′′

2 [|ξ
1|2 + |ξ2|2] + C ′

4|ξ
2|2, i.e. (1.3) for G2 .

Remark I.4. Let us now prove that if m ≥ 3, and if Hγ satisfy (1.12), then

it can not in general be written under the form (1.11) with Gγ and F satisfying

(1.3) and (1.4).

Consider for that the special case where m = 3, N = 1 (the ξγ are therefore

scalars) and where

(1.14) Hγ(x, s,Ξ) = aγ |ξ3| ξγ , γ = 1, 2, 3 ,

with aγ 6= 0, a1 6= a2. Then Hγ satisfies (1.12) with η = 0.

If H1 could be written under the form (1.11), with G1 satisfying (1.3), we

would have

G1(x, s,Ξ) = H1(x, s,Ξ)− F (x, s,Ξ) ξ1 =
[

a1|ξ3| − F (x, s,Ξ)
]

ξ1 .

Since the growth condition (1.3) on G1 does not allow G1 to have a term of the

form |ξ3| |ξ1| (indeed, use of Young’s inequality would give |ξ1| |ξ3| ≤ η
2 |ξ

3|2 +
1
2η |ξ

1|2, but here C2 =
1
2η would depend on η), this implies that

a1|ξ
3| − |F (x, s,Ξ)| ≤ C when |Ξ| is large .
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Similarly if H2 can be written under the form (1.11), with G2 satisfying (1.3),

we will have

G2(x, s,Ξ) = H2(x, s,Ξ)− F (x, s,Ξ) ξ2

=
[

a2|ξ3| − F (x, s,Ξ)
]

ξ2

= [a2 − a1] |ξ3| ξ2 +
[

a1|ξ
3| − F (x, s,Ξ)

]

ξ2 .

But again the growth condition (1.3) on G2 does not allow G2 to have a term

of the form |ξ3| |ξ2|. If m = 3 and if H1 and H2 are given by (1.14) it is thus

impossible to write Hγ under the form (1.11).

II – Proof of the Theorem

The proof of the Theorem will be performed in three steps: we will first prove

an (H1
0 (Ω))

m-estimate for uε, then the strong convergence in (H1
0 (Ω))

m of uε,

and finally we will pass to the limit in the approximated problem (1.8).

II.1. (H1
0 (Ω))

m-estimate

We have the following:

Proposition II.1. Assume that (1.2), (1.3), (1.4) and (1.6) hold true. If the

solutions uε of the approximated problem (1.8) satisfy (1.9), and if η satisfies

(2.1) 0 ≤ η ≤
C2

4

(

1

2m exp(2C2

α
M)

)m

,

then uε remains bounded in (H1
0 (Ω))

m.

Note that ϕ : R → R satisfies (2.1) as soon as (1.10) is satisfied.

Proof of Proposition II.1: Consider the test function(∗)

vγε = (a)γ ϕ′(uγε ) exp[µψ(uε)] ,

where ϕ : R → R and ψ : R → R are defined by

(2.2) ϕ(t) = eλt + e−λt − 2, ∀ t ∈ R , ψ(s) =
m
∑

γ=1

(a)γ ϕ(sγ), ∀ s ∈ Rm ,

(∗) In the notation (a)γ , γ denotes a power and not a superscript as it does in aγ .
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and where λ, µ and a are positive constants that we choose as

(2.3)















λ =
2C2
α
, a =

1

2meλM
, µ =

C23
2θα

+
C24
2θα

,

where θ is any fixed number such that 0 < θ ≤ (a)m λ
C2

4
.

Since uε belongs to (H1
0 (Ω)∩L

∞(Ω))m, the test function vγε belongs to H1
0 (Ω)

and defining ψε by ψε = ψ(uε), we have

(2.4) Dvγε = Duγε (a
γ)ϕ′′(uγε ) exp[µψε] + µDψε(a)

γ ϕ′(uγε ) exp[µψε] .

We use vγε as test function in the γ-th equation of system (1.8) and sum up

from γ = 1 to γ = m. We obtain:

(2.5)
m
∑

γ=1

∫

Ω
A(x, uε)Du

γ
ε Du

γ
ε (a)

γ ϕ′′(uγε ) exp[µψε] dx+

+ µ
m
∑

γ=1

∫

Ω
A(x, uε)Du

γ
ε Dψε(a)

γ ϕ′(uγε ) exp[µψε] dx =

=
m
∑

γ=1

∫

Ω
Gγ
ε (x, uε,∇uε)(a)

γ ϕ′(uγε ) exp[µψε] dx

+
m
∑

γ=1

∫

Ω
Fε(x, uε,∇uε)Du

γ
ε (a)

γ ϕ′(uγε ) exp[µψε] dx .

Noting that:

(2.6) Dψε =
m
∑

γ=1

(a)γ ϕ′(uγε )Du
γ
ε ,

and using the coercivity condition (1.2) and the growth conditions (1.6), (1.3) on

Gγ
ε we obtain:

(2.7) α
m
∑

γ=1

∫

Ω
|Duγε |

2 (a)γ ϕ′′(uγε ) exp[µψε] dx+ αµ

∫

Ω
|Dψε|

2 exp[µψε] dx ≤

≤
m
∑

γ=1

∫

Ω

[

C0+C1

m
∑

δ=1

|Duδε|+C2

γ
∑

δ=1

|Duδε|
2+η

m
∑

δ=γ+1

|Duδε|
2
]

(a)γ |ϕ′(uγε )| exp[µψε] dx

+

∫

Ω
Fε(x, uε,∇uε)Dψε exp[µψε] dx .
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We estimate the second integral of the right hand side of (2.7) by using the

growth conditions (1.6), (1.4) on Fε and Youngs inequality. We obtain:

∫

Ω
Fε(x, uε,∇uε)Dψε exp[µψε] dx ≤

∫

Ω

[

C3 + C4|∇uε|
]

|Dψε| exp[µψε] dx ≤

(2.8)

≤

∫

Ω

[

θ

2
+
C23
2 θ
|Dψε|

2 +
θ

2
|∇uε|

2 +
C24
2 θ
|Dψε|

2
]

exp[µψε] dx

=

∫

Ω

[

θ

2
+

(

C23
2θ

+
C24
2θ

)

|Dψε|
2 +

θ

2
|∇uε|

2
]

exp[µψε] dx .

We now estimate various terms of the first integral of the right hand side of

(2.7); for what concerns the third term, we have, splitting the sum into δ = γ

and δ < γ, then reversing the order of
∑

γ and
∑

δ:

C2

m
∑

γ=1

γ
∑

δ=1

|Duδε|
2 (a)γ |ϕ′(uγε )| =

(2.9)

= C2

m
∑

γ=1

|Duγε |
2 (a)γ |ϕ′(uγε )|+ C2

m
∑

γ=1

γ−1
∑

δ=1

|Duδε|
2 (a)γ |ϕ′(uγε )|

= C2

m
∑

γ=1

|Duγε |
2 (a)γ |ϕ′(uγε )|+ C2

m
∑

δ=1

∑

γ=δ+1

|Duδε|
2 (a)γ |ϕ′(uγε )|

= C2

m
∑

γ=1

|Duγε |
2 (a)γ |ϕ′(uγε )|+ C2

m
∑

γ=1

m
∑

δ=γ+1

|Duγε |
2 (a)δ |ϕ′(uδε)| ;

for the fourth term we write:

(2.10)

η
m
∑

γ=1

m
∑

δ=γ+1

|Duδε|
2 (a)γ |ϕ′(uγε )| ≤ η

m
∑

γ=1

m
∑

δ=1

|Duδε|
2 (a)γ |ϕ′(uγε )|

= η
m
∑

γ=1

m
∑

δ=1

|Duγε |
2 (a)δ |ϕ′(uδε)| .

Using (2.8), (2.9) and (2.10), inequality (2.7) becomes:

(2.11)
m
∑

γ=1

∫

Ω
|Duγε |

2 exp[µψε]

{

α(a)γ ϕ′′(uγε )− C2(a)
γ |ϕ′(uγε )| −

− C2

m
∑

δ=γ+1

(a)δ |ϕ′(uδε)| − η
m
∑

δ=1

(a)δ |ϕ′(uδε)| −
θ

2

}

dx+
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+

∫

Ω
|Dψε|

2 exp[µψε]

{

αµ−
C23
2θ
−
C24
2θ

}

dx ≤

≤

∫

Ω

θ

2
exp[µψε] dx+

m
∑

γ=1

∫

Ω

[

C0 + C1

m
∑

δ=1

|Duδε|
]

(a)γ |ϕ′(uγε )| exp[µψε] dx .

In view of the choices made in (2.3), of the hypothesis (2.1) made on η, and of

Lemma II.1 that we state and prove below, we deduce from (2.11) that we have,

for α0 given by (2.15):

(2.12) α0

m
∑

γ=1

∫

Ω
|Duγε |

2 exp[µψε] dx ≤

≤

∫

Ω

θ

2
exp[µψε] dx+

m
∑

γ=1

∫

Ω

[

C0 + C1

m
∑

δ=1

|Duδε|
]

(a)γ |ϕ′(uγε )| exp[µψε] dx ,

which using Young’s inequality and the facts that exp[µψε] ≥ 1 and that

‖uγε‖L∞(Ω) ≤ M (which implies that ψε is bounded in L∞(Ω)), implies that

uε is bounded in (H1
0 (Ω))

m. Proposition II.1 is proved.

Lemma II.1. Let λ, a, θ and η be such that

(2.13) λ =
2C2
α

, a =
1

2meλM
, 0 < θ ≤ (a)m λ

C2

4
, 0 ≤ η ≤ (a)m

C2

4
.

Then for any γ, 1 ≤ γ ≤ m, and for any uε such that |uδε| ≤M for any δ, we have

(2.14) α(a)γ ϕ′′(uγε )− C2(a)
γ |ϕ′(uγε )| − C2

m
∑

δ=γ+1

(a)δ |ϕ′(uδε)| −

− η
m
∑

δ=1

(a)δ |ϕ′(uδε)| −
θ

2
≥ α0

where α0 is defined by

(2.15) α0 = (a)m λ
C2

4
.

Proof of Lemma II.1: Since we have







∀ t, |t| ≤M, |ϕ′(t)| ≤ λ|eλt − e−λt| ≤ λ eλ|t| ≤ λ eλM ,

ϕ′′(t) = λ2(eλt + e−λt) ≥ λ2 eλ|t| ,
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we obtain for 1 ≤ γ ≤ m and for any uε with |uδε| ≤M , 1 ≤ δ ≤ m,

(2.16) α(a)γ ϕ′′(uγε )−C2(a)
γ |ϕ′(uγε )|−C2

m
∑

δ=γ+1

(a)δ |ϕ′(uδε)|−η
m
∑

δ=1

(a)δ |ϕ′(uδε)|−
θ

2
≥

≥ α(a)γ λ2 eλ|u
γ
ε | − C2(a)

γ λ eλ|u
γ
ε | − C2

m
∑

δ=γ+1

(a)δ λ eλM − η
m
∑

δ=1

(a)δ λ eλM −
θ

2
.

Since αλ2 > C2 λ, the infinimum of the right hand side of (2.16) is achieved for

|uγε | = 0; using also the fact that

0 < (a)m < (a)m−1 < ... < (a)γ+1 < (a)γ < ... < (a)1 < (a)0 = 1

we estimate from below the right hand side of (2.16) by

(2.17) α(a)γ λ2 − C2(a)
γ λ− C2m(a)γ+1 λ eλM − ηmaλ eλM −

θ

2
=

= (a)γ λ
[

αλ− C2 λ− C2maeλM
]

−
[

ηmaλ eλM +
θ

2

]

.

In view of the values of λ, a, θ and η given by (2.13), the right hand side of

(2.17) is greater than

(2.18) (a)γ λ
C2

2
−
[

ηmaλ eλM +
θ

2

]

≥

≥ (a)m λ
C2

2
−

[

(a)m
C2

4

λ

2
+

1

2
(a)m λ

C2

4

]

= (a)m λ
C2

4
,

which is α0 by definition (2.15). Lemma II.1 is proved.

Remark II.1. In the proofs of Proposition II.1 and of Lemma II.1, θ is a fixed

number such that 0 < θ ≤ (a)mλC2

4 . Actually, in these two proofs, we could have

chosen θ = (a)mλC2

4 . But it will be important in the proof of Proposition II.2 to

have the possibility of choosing θ as small as we want.

II.2. Strong convergence in (H1
0 (Ω))

m

Since by Proposition II.1 uε remains bounded in (H1
0 (Ω))

m, we can extract a

subsequence, still denoted by uε, such that

(2.19) uε ⇀ u in (H1
0 (Ω))

m weak .
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Proposition II.2. Assume that (1.2), (1.3), (1.4) and (1.6) hold true. If the

solutions uε of the approximated problem (1.8) satisfy (1.9) and (2.19), and if η

satisfies

0 ≤ η ≤
C2

4

(

1

2m exp(8C2

α
M)

)m

, (i.e. (1.10))

then uε converges strongly to u in (H1
0 (Ω))

m.

Proof of Proposition II.2: Let us set uγε = uγε − u
γ , and write the system

(1.8) under the form:

(2.20) − div
(

A(x, uε)Du
γ
ε

)

− div
(

A(x, uε)Du
γ
)

=

= Gγ
ε (x, uε,∇uε) + F (x, uε,∇uε)Du

γ
ε + Fε(x, uε,∇uε)Du

γ , 1≤γ≤m .

We use in he γ-th equation of system (2.20) the test function:

vγε = (a)γ ϕ′(uγε ) exp[µψε], with ψε = ψ(uε) ,

where ϕ : R → R and ψ : R → R are defined by

(2.21) ϕ(t) = eλ t + e−λ t − 2, ∀ t ∈ R , ψ(s) =
m
∑

γ=1

(a)γ ϕ(sγ), ∀ s ∈ Rm ,

and where λ, µ and a are positive constants that we choose as

(2.22)















λ =
4C2
α
, a =

1

2me2λM
, µ =

C23
2θα

+
C24
2θα

,

where θ is any fixed number such that 0 < θ ≤ (a)m λ
C2

2
.

Summing up from γ = 1 to γ = m, we obtain:

(2.23)
m
∑

γ=1

∫

Ω
A(x, uε)Du

γ
ε Du

γ
ε (a)

γ ϕ′′(uγε ) exp[µψε] dx+

+ µ
m
∑

γ=1

∫

Ω
A(x, uε)Du

γ
ε Dψε(a)

γ ϕ′(uγε ) exp[µψε] dx

+
m
∑

γ=1

∫

Ω
A(x, uε)Du

γ Duγε (a)
γ ϕ′′(uγε ) exp[µψε] dx

+ µ
m
∑

γ=1

∫

Ω
A(x, uε)Du

γ Dψε(a)
γ ϕ′(uγε ) exp[µψε] dx =
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=
m
∑

γ=1

∫

Ω
Gγ
ε (x, uε,∇uε)(a)

γ ϕ′(uγε ) exp[µψε] dx

+

∫

Ω
Fε(x, uε,∇uε)Du

γ
ε (a)

γ ϕ′(uγε ) exp[µψε] dx

+
m
∑

γ=1

∫

Ω
Fε(x, uε,∇uε)Du

γ(a)γ ϕ′(uγε ) exp[µψε] dx .

Using the coercivity condition (1.2) and the growth condition (1.6), (1.3), and

the fact that

Dψε =
m
∑

γ=1

(a)γ ϕ′(uγε )Du
γ
ε ,

we have:

(2.24) α
m
∑

γ=1

∫

Ω
|Duγε |

2(a)γ ϕ′′(uγε ) exp[µψε] dx+ αµ

∫

Ω
|Dψε|

2 exp[µψε] dx ≤

≤ −
m
∑

γ=1

∫

Ω
A(x, uε)Du

γ Duγε (a)
γ ϕ′′(uγε ) exp[µψε] dx

− µ
m
∑

γ=1

∫

Ω
A(x, uε)Du

γ Dψε(a)
γ ϕ′(uγε ) exp[µψε] dx

+
m
∑

γ=1

∫

Ω

[

C0 + C1

m
∑

δ=1

|Duδε|+ C2

γ
∑

δ=1

|Duδε|
2 +

+ η
m
∑

δ=γ+1

|Duδε|
2
]

(a)γ |ϕ′(uγε )| exp[µψε] dx

+

∫

Ω
Fε(x, uε,∇uε)Dψε exp[µψε] dx

+
m
∑

γ=1

∫

Ω
Fε(x, uε,∇uε)Du

γ(a)γ ϕ′(uγε ) exp[µψε] dx .

We estimate the fourth integral of the right hand sided of (2.24) by using the

growth conditions (1.6), (1.4) on Fε and Young’s inequality, as well as (a+ b)2 ≤

2a2 + 2b2. We obtain:

(2.25)

∫

Ω
Fε(x, uε,∇uε)Dψε exp[µψε] dx ≤
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≤

∫

Ω

(

C3 + C4|∇uε|
)

|Dψε| exp[µψε] dx

≤

∫

Ω

[

θ

2
+
C23

2θ
|Dψε|

2 +
θ

2
|∇uε|

2 +
C24

2θ
|Dψε|

2
]

exp[µψε] dx

≤

∫

Ω

[

θ

(

1

2
+ |∇u|2

)

+

(

C23

2θ
+
C24

2θ

)

|Dψε|
2 + θ|∇uε|

2
]

exp[µψε] dx .

We now estimate various terms of the third integral of the right hand side of

(2.24); for what concerns the third term, we have, as in (2.9), (splitting the sum

into δ = γ and δ < γ, then reversing the order of and
∑

γ and
∑

δ), and then

using (a+ b)2 ≤ 2a2 + 2b2:

(2.26) C2

m
∑

γ=1

γ
∑

δ=1

|Duδε|
2(a)γ |ϕ′(uγε )| =

= C2

m
∑

γ=1

|Duγε |
2(a)γ |ϕ′(uγε )|+ C2

m
∑

γ=1

m
∑

δ=γ+1

|Duγε |
2(a)δ |ϕ′(uδε)|

≤ 2C2

m
∑

γ=1

|Duγε |
2(a)γ |ϕ′(uγε )|+ 2C2

m
∑

γ=1

|Duγ |2(a)γ |ϕ′(uγε )|

+ 2C2

m
∑

γ=1

m
∑

δ=γ+1

|Duγε |
2(a)δ |ϕ′(uδε)|+ 2C2

m
∑

γ=1

m
∑

δ=γ+1

|Duγ |2(a)δ |ϕ′(uδε)| ;

for the fourth term we write:

(2.27) η
m
∑

γ=1

m
∑

δ=γ+1

|Duδε|
2(a)γ |ϕ′(uγε )| ≤

≤ η
m
∑

γ=1

m
∑

δ=1

|Duδε|
2(a)γ |ϕ′(uγε )| = η

m
∑

γ=1

m
∑

δ=1

|Duγε |
2(a)δ |ϕ′(uδε)|

≤ 2η
m
∑

γ=1

m
∑

δ=1

|Duγε |
2(a)δ |ϕ′(uδε)|+ 2η

m
∑

γ=1

m
∑

δ=1

|Duγ |2(a)δ |ϕ′(uδε)| .

Using (2.25), (2.26) and (2.27), inequality (2.24) becomes:

(2.28)
m
∑

γ=1

∫

|Duγε |
2 exp[µψε]

{

α(a)γ ϕ′′(uγε )− 2C2(a)
γ |ϕ′(uγε )| −

− 2C2

m
∑

δ=γ+1

(a)δ |ϕ′(uδε)| − 2η
m
∑

δ=1

(a)δ |ϕ′(uδε)| − θ

}

dx+
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+

∫

Ω
|Dψε|

2 exp[µψε]

(

αµ−
C23

2θ
−
C24

2θ

)

dx ≤

≤ θ

∫

Ω

(

1

2
+ |∇u|2

)

exp[µψε] dx+Rε ,

where Rε is defined by:

(2.29)

Rε = −
m
∑

γ=1

∫

Ω
A(x, uε)Du

γ Duγε (a)
γ ϕ′′(uγε ) exp[µψε] dx

− µ
m
∑

γ=1

∫

Ω
A(x, uε)Du

γ Dψε(a)
γ ϕ′(uγε ) exp[µψε] dx

+
m
∑

γ=1

∫

Ω

[

C0 + C1

m
∑

δ=1

|Duδε|
]

(a)γ |ϕ′(uγε )| exp[µψε] dx

+
m
∑

γ=1

∫

Ω
Fε(x, uε,∇uε)Du

γ(a)γ ϕ′(uγε ) exp[µψε] dx

+ 2C2

m
∑

γ=1

∫

Ω
|Duγ |2(a)γ |ϕ′(uγε )| exp[µψε] dx

+ 2C2

m
∑

γ=1

m
∑

δ=γ+1

∫

Ω
|Duγ |2(a)δ |ϕ′(uδε)| exp[µψε] dx

+ 2η
m
∑

γ=1

m
∑

δ=1

∫

Ω
|Duγ |2(a)δ |ϕ′(uδε)| exp[µψε] dx .

We now apply to the first integral of (2.28) Lemma 11.1, where ϕ, λ and a are

replaced by ϕ, λ and a, and where C2, η, θ, and M are replaced by 2C2, 2η, 2θ

and 2M (note indeed that we now have |uεδ| < 2M); in view of the choices made

in (2.22), of the hypothesis (1.10) made on η, and on Lemma II.1, we deduce

from (2.28) that for α0 given by:

(2.30) α0 = (a)m λ
C2

2
=

(

1

2m exp(8C2

α
M)

)m 2C22
α

,

we have:

(2.31) α0

m
∑

γ=1

∫

Ω
|Duγε |

2 exp[µψε] dx ≤ θ

∫

Ω

(

1

2
+ |∇u|2

)

exp[µψε] dx+Rε .

Since






uγε ⇀ 0 in H1
0 (Ω) weak*, L∞(Ω) weak and a.e.x ∈ Ω

ψε ⇀ 0 in H1
0 (Ω) weak*, L∞(Ω) weak and a.e.x ∈ Ω
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and since ϕ′(0) = 0 while Fε satisfies (1.6), (1.4), it is easy to prove that:

Rε → 0 .

Similarly we have:
∫

Ω

(

1

2
+ |∇u|2

)

exp[µψε] dx →

∫

Ω

(

1

2
+ |∇u|2

)

dx .

Since exp[µψε] ≥ 1, we deduce from (2.31) that

lim sup
ε→0

α0

m
∑

γ=1

∫

Ω
|Duγε |

2 dx ≤ θ

∫

Ω

(

1

2
+ |∇u|2

)

dx .

Since θ > 0 and since α0 does not depend on θ, this implies that uε = uε − u

tends to zero strongly in H1
0 (Ω). Proposition II.2 is proved.

II.3. Passing to the limit

Because of the strong convergence in (H1
0 (Ω))

m of uε to u, and because of the

hypotheses (1.6), (1.7), (1.3) and (1.4) on Fε and G
γ
ε , passing to the limit in each

term of equation (1.8) is easy. We thus have proved the existence of at least one

solution of problem (1.1). This completes the proof of the Theorem.
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