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REGULARITY UP TO THE BOUNDARY
OF SOLUTIONS OF THE DIRICHLET PROBLEM

FOR CERTAIN DEGENERATE ELLIPTIC EQUATIONS

G. Petronilho

Abstract: We prove, through a more careful analysis of its symbols, the ellipticity of

certain pseudodifferential operators. We use this result and the concatenation technique

to prove the regularity up to the boundary of solutions of the Dirichlet problem for

certain classes of second-order degenerate elliptic equations.

I – Introduction

This work is concerned with the regularity up to the boundary of solutions

of the Dirichlet problem for certain classes of second-order degenerate elliptic

equations in the plane.

On this subject, Baouendi [2] showed, by using a priori estimates, that the

solutions of the Dirichlet problem for certain degenerate elliptic operators are

smooth up to the boundary. The degeneracy considered has constant rate at the

boundary.

Bergamasco, Gerszonowicz and Petronilho [3], by using the theory of Fourier

integral operators and pseudodifferential operators, showed that the method of

transfer to the boundary via the associated heat equations, as introduced by

Treves [8], [9] in the case of nondegenerate equations, can be used to prove reg-

ularity for a class of equations that degenerate at the boundary. More precisely

they considered the cases when the operators are of the form:

P =
(

∂t + it
k a(t, x) ∂x + b(t, x)

) (

∂t − it
l ã(t, x) ∂x + b̃ (t, x)

)

with a.ã > 0 for t = 0; a, ã, b, b̃ smooth functions; k, l nonnegative integers
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or

P =
(

∂t + it
k a(t, x) ∂x

) (

∂t − it
l ã(t, x) ∂x

)

where k, l ≥ 4 are integers; a.ã > 0 for t > 0 (the boundary given by t = 0 ).

Bergamasco and Petronilho [4], by using only the theory of pseudodifferential

operators, showed the same type of result when the operators are of the form:

(H1) P =
(

∂t + it
k a(t, x) ∂x + b(t, x)

) (

∂t − it
l ã(t, x) ∂x + b̃(t, x)

)

where k, l ≥ 4 are integers; a.ã > 0 for t > 0; b, b̃ smooth functions

or

(H2) P =
(

∂t + i ψ(t) a(t, x) ∂x + b(t, x)
) (

∂t − i ψ̃(t) ã(t, x) ∂x + b̃(t, x)
)

with a.ã > 0 for t = 0; ψ, ψ̃ smooth functions, ψ, ψ̃ ≥ 0; b, b̃ as before.

In [3] and [4], except in the elliptic case, it is fundamental the fact that the

coefficient of ∂x, in each factor, has one zero of a certain order in t = 0. This

order depends on the class of operators in study and may be infinite. In case of

nondegenerate equations see e.g. [1], [5].

In this work we prove the regularity up to boundary of solutions of the Dirich-

let problem for a class of operators where the coefficient of ∂x, in each factor,

need not have one zero in t = 0, which allows us to cover examples which are

not contained in [2], [3] and [4], see examples after Theorem 2.

We prove also that the desired regularity holds for a class of operators which

are perturbations (of order ≤ 1) of operators that are factored as a product of

two factors of order one (see Theorem 3).

In section II we prove, through a more careful analysis of its symbols, the

ellipticity of certain pseudodifferential operators (see Theorem 1), an essential

point in the proof of Theorem 2.

In section III, by using the result of section II and following the lines of the

proof of Theorem 1 of [4], we prove Theorem 2.

In section IV, by using the concatenations of [6] we prove Theorem 3.

We call attention to the fact that the method of concatenations has already

been used to prove local solvability, hypoellipticity and uniqueness of solutions

of the Cauchy problem. We do not know any reference that uses this method to

prove the hypoellipticity of boundary value problem as we have done here.
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II – Ellipticity of certain pseudodifferential operators

Let U ⊂ Rn be a neighborhood of the origin and let T > 0. We will now

recall a definition and some properties of a class of symbols for pseudodifferential

operators given in [3] and [4].

Let λ(t, x) be a smooth nonnegative function in [0, T ]× U .

Let m ∈ R and let 0 ≤ δ < 1; set VT = {(t, s) ∈ R2 : 0 ≤ t ≤ s ≤ T}.

Definition. A function h(t, s, x, ξ) belongs to the class Am,λ
1,δ = Am,λ

1,δ (U) if

h is smooth on VT × U × (Rn|{0}) and there exists B > 0 such that for every

α, β ∈ Zn
+, and every γ, ε ∈ Z+, and every compact set K contained in VT × U ,

there exists a constant c = c(α, β, γ, ε,K) such that

∣

∣

∣∂εt∂
γ
s ∂

α
x ∂

β
ξ h(t, s, x, ξ)

∣

∣

∣ ≤ c(1 + |ξ|)m+ε+γ+δ|α|−|β| exp
(

−B |ξ|
∫ s

t
λ(r, x) dr

)

for all (t, s, x, ξ) ∈ K × (Rn|{0}).

Properties.

1) ∂εt∂
γ
s ∂

α
x ∂

β
ξ (A

m,λ
1,δ ) ⊂ A

m+ε+γ+δ|α|−|β|,λ
1,δ ;

2) Am,λ
1,δ ⊂ Sm

1,δ, uniformly in (t, s) ∈ VT ;

3) If h ∈ Am,λ
1,δ and g ∈ A

m′,λ′

1,δ′ then h.g ∈ Am+m′,λ+λ′

1,δ′′ , where δ′′ = max{δ, δ′}.

We consider now G(t, s) and H(t, s) pseudodifferential operators of order zero

in U , depending smoothly on t ≤ s and s ≤ t, respectively, in [0, T ] (if T is small).

We assume that the symbols of G and H are given respectively by:

g(t, s, x, ξ) =
+∞
∑

j=0

gj(t, s, x, ξ)

where gj ∈ A
−j,ã
1,0 , j = 0, 1, ..., with ã a smooth function in [0, T ] × U and ã > 0

for t = 0

and

h(t, s, x, ξ) =
+∞
∑

j=0

hj(t, s, x, ξ)

where hj ∈ A
−j/2,a
1,1/2 , j = 0, 1, . . ., with a a smooth function in [0, T ]×U and a > 0

for t > 0 (in the definition of Am,λ
1,1/2, the class of symbols to which hj belongs,

j = 0, 1, . . ., we take VT = {(t, s) ∈ R2 : 0 ≤ s ≤ t ≤ T}).
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Further we assume that the principal parts of g and h are given respectively

by:

g0(t, s, x, ξ) = exp
(

−|ξ|
∫ s

t
ã(r, x) dr

)

, 0 ≤ t ≤ s ≤ T ,

and

h0(t, s, x, ξ) = exp
(

−|ξ|
∫ t

s
a(r, x) dr

)

, 0 ≤ s ≤ t ≤ T .

We can now state the

Theorem 1. The operator

N(x,Dx) =

∫ T

0

G(0, s)H(s, 0) ds

is an elliptic pseudodifferential operator of order −1 on U .

Before proving Theorem 1 we prove the following

Lemma 1. If f ∈ Am,λ
1,δ with λ > 0 in [0, T ]× U and if

b(t, x, ξ) =

∫ T

t
f(t, s, x, ξ) ds , 0 ≤ t ≤ s ≤ T ,

then for every compact set K1 contained in [0, T ] and every compact set K2

contained in U , there exists a constant c = c(K1,K2) > 0 such that

|b(t, x, ξ)| ≤ c(1 + |ξ|)m−1

for all (t, x, ξ) ∈ K1 ×K2 × (Rn|{0}).

Proof: Since (t, x) ∈ K1 × K2 and f ∈ A
m,λ
1,δ we have that there exists a

constant c = c(K1,K2) > 0 such that

|f(t, s, x, ξ)| ≤ c(1 + |ξ|)m exp
(

−B|ξ|
∫ s

t
λ(r, x) dr

)

for all (t, s, x, ξ) ∈ K, where

K =
(

(K1 × [0, T ]) ∩ VT
)

×K2 × (Rn|{0}) .

Since λ > 0 in [0, T ]× U there is a constant c1 such that

|f(t, s, x, ξ)| ≤ c(1 + |ξ|)m exp
[

−c1 |ξ| (s− t)
]

for all (t, s, x, ξ) ∈ K.
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Thus,

|b(t, x, ξ)| ≤ c(1 + |ξ|)m
∫ T

t
exp

[

−c1 |ξ| (s− t)
]

ds

≤ c2(1 + |ξ|)
m−1

for all (t, x, ξ) ∈ K1 ×K2 × (Rn|{0}).

We prove now the Theorem 1. We make use of the letter c to denote various

constants.

We call attention to the fact that in this proof we need to take more care (as

compared to that done in Proposition 5 of [4]) in the analysis of the symbol of

N(x,Dx).

Proof of Theorem 1: We observe that the symbol of N , σ(N), is given by

σ(N)(x, ξ) =

∫ T

0

F (s, x, ξ) ds

where

(1) F (s, x, ξ)−
∑

|α|≤M−1

1

α!
∂αξ g(0, s, x, ξ)D

α
xh(s, 0, x, ξ) ∈ S

−M/2
1,1/2 .

Set

Σ0(x, ξ) =

∫ T

0

g(0, s, x, ξ)h(s, 0, x, ξ) ds+

∫ T

0

∑

|α|=1

∂αξ g D
α
xh

+

∫ T

0

∑

|α|=2

1

α!
∂αξ g D

α
xh .

By (1) we have

(2)
∣

∣

∣σ(N)(x, ξ)− Σ0(x, ξ)
∣

∣

∣ ≤ c(1 + |ξ|)−3/2 .

Set

Σ1(x, ξ) =

∫ T

0

g0 h0 +

∫ T

0

g0 h1 +

∫ T

0

g0 h2 +

∫ T

0

g1 h0

+

∫ T

0

∑

|α|=1

∂αξ g0D
α
xh0 +

∫ T

0

∑

|α|=1

∂αξ g0D
α
xh1

+

∫ T

0

∑

|α|=2

1

α!
∂αξ g0D

α
xh0 .
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The hypothesis about the symbols g and h implies that the following inequality

holds:

(3)
∣

∣

∣Σ0(x, ξ)− Σ1(x, ξ)
∣

∣

∣ ≤ c(1 + |ξ|)−3/2 .

We observe that
∣

∣

∣Σ1(x, ξ)−
∫ T

0

g0 h0

∣

∣

∣ ≤
6
∑

j=1

|Lj(x, ξ)|

where

Lj(x, ξ) =

∫ T

0

Mj(s, x, ξ) ds

with Mj ∈ A
ε,a+ã
1,1/2 ; j = 1, . . . , 6, (ε = −1 or ε = −1/2).

The properties of the class of symbols guarantee that

Mj ∈ A
ε,a+ã
1,1/2 , j = 1, . . . , 6 and ε = −1 or ε = −1/2 .

For each j = 1, . . . , 6 by using Lemma 1 with Mj in the place of f , λ = a+ ã and

t = 0, we obtain

|Lj(x, ξ)| =
∣

∣

∣

∫ T

0

Mj(s, x, ξ) ds
∣

∣

∣ ≤ c(1 + |ξ|)ε−1 ≤ c(1 + |ξ|)−3/2

for x ∈ K̃ ⊂ U , where K̃ is a compact set.

Thus,

(4)
∣

∣

∣Σ1(x, ξ)−
∫ T

0

g0 h0

∣

∣

∣ ≤ c(1 + |ξ|)−3/2 .

The inequalities (2), (3) and (4) show that

(5) σ(N) =

∫ T

0

g0 h0 modulo S
−3/2
1,1/2 .

By using the definition of g0 and h0 (see p.3) we have

(6)

∫ T

0

g0(0, s, x, ξ)h0(s, 0, x, ξ) ds =

∫ T

0

exp
[

−|ξ|
∫ s

0

(a+ ã) (r, x) dr
]

ds

≤
∫ T

0

exp(−c |ξ| s) ds

≤ c(1 + |ξ|)−1 .

In the penultimate inequality we use the fact that a+ ã > 0.
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One has also that

(7)

∫ T

0

g0 h0 ds ≥
∫ T

0

exp(−c |ξ| s) ds ≥ c(1 + |ξ|)−1 .

Here we use the fact that a+ ã ≤ c.

Thus, (5), (6) and (7) imply that N(x,Dx) is elliptic of order −1.

Remark. Theorem 1 admits a microlocal version, which will be used in the

proof of Theorem 2; the proof of the microlocal version will be omitted.

III – Application to the Dirichlet problem for certain second-order

degenerate elliptic differential equations

By using Theorem 1 and following the lines of the proof of Theorem 1 of [4]

we prove a result on regularity up to the boundary of solutions of the Dirichlet

problem for certain second-order degenerate elliptic equations in the plane.

We have included the proof for the sake of completeness.

Theorem 2. Let U ⊂ R be a neighborhood of the origin and let T > 0. Let

a, ã, b, b̃ be smooth functions on [0, T ] × U . We assume that a and ã are real,

a > 0 for t > 0 and ã > 0 for t = 0.

Let

P =
(

∂t + i a(t, x) ∂x + b(t, x)
) (

∂t − i ã(t, x) ∂x + b̃(t, x)
)

.

If u ∈ C∞([0, T ], D′(U)) satisfies

(∗)
Pu = f ∈ C∞([0, T ]× U) ,

u|t=0 = g ∈ C∞(U) ,

then u ∈ C∞([0, T ]× U), perhaps after shrinking T , U .

Proof: By using the integrating factors expB(t, x) and exp B̃(t, x) where

B(t, x) =
∫ t
0
b(s, x) ds and B̃(t, x) =

∫ t
0
b̃(s, x) ds a simple computation shows

that u is a solution of
Pu = f

u|t=0 = g

if and only if v = exp(B) · u is a solution of

P̃ v = h

v|t=0 = g
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where

h = exp(B) · f , P̃ = (∂t + i a ∂x +A)Q (∂t − i ã ∂x + Ã) ,

with Q = exp(B − B̃), A = ac and Ã = ã c̃ for smooth functions c, c̃.

Thus, the hypoellipticity of the problem (∗) is equivalent to the hypoellipticity

of the following problem

(∗∗)
P̃ u = f ∈ C∞([0, T ]× U) ,

u|t=0 = g ∈ C∞(U) .

The proof of hypoellipticity of (∗∗) will be made by showing that the wave-front

set of u is empty, i.e., WF (u) = ∅. For this, it suffices to show that

WF (u) ∩ (U × R+) = ∅ ,(8)

WF (u) ∩ (U × R−) = ∅ .(9)

We will start with the proof of (8).

Let
L+ = ∂t + i a ∂x +A ,

L− = ∂t − i ã ∂x + Ã .

The backward (resp. forward) Cauchy problem for L+ (resp. L−) has a microlocal

parametrix which we denote G+(t, s) (resp. G−(t, s)) (see construction in [3]; see

also [2] for the case in which L+ and L− are pseudodifferential operators); this

means that
L+G+(t, s) ∼ 0 , 0 ≤ t ≤ s ≤ T ,

G+ ∼ I , t = s ,

and
L−G−(t, s) ∼ 0 , 0 ≤ s ≤ t ≤ T ,

G− ∼ I , t = s ,

where A ∼ 0 denotes the fact that A is a C∞ function of (t, s) valued in the space

of regularizing operators in the space variables.

Let u ∈ C∞([0, T ], D′(U)) satisfy (∗∗). We uncouple (∗∗):

(10) L+v = f ∈ C∞([0, T ]× U) ,

(11) QL−u = v and u|t=0 = g ∈ C∞(U) .
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By using the fact that G+ and G− are both regularizing for t 6= s, we deduce

from (10) (denoting by ≈ the equivalence modulo smooth functions on [0, T ]×U)

(12) v(t, .) ≈ G+(t, T ) v(T, .)−
∫ T

t
G+(t, s) f(s, .) ds

for 0 ≤ t ≤ T , and therefore

(13) v ≈ 0 (i.e. it is smooth for t < T ) .

Now (11) implies

u(t, .) ≈ G−(t, 0) g +

∫ t

0

G−(t, s)Q
−1 v(s, .) ds

for 0 ≤ t ≤ T .

Since G− is a pseudodifferential operator and g ∈ C
∞ the pseudolocal prop-

erty of G− and (13) imply that u is C
∞ in [0, T )× U as desired.

Our goal will now be to prove (9).

For this we consider the problems

L+v = f

v|t=0 = v0

where v0 is the trace v|t=0 and

QL−u = v

u|t=T = uT .

Here, also there exist (see [3]) pseudodifferential operators H(t, s) and G(t, s)

such that
L+H(t, s) ∼ 0 , 0 ≤ s ≤ t ≤ T ,

H ∼ I , t = s ,

and
QL−G(t, s) ∼ 0 , 0 ≤ s ≤ t ≤ T

G ∼ I , t = s .

As in the proof of (8), we deduce

(14) v(t, .) ≈ H(t, 0) v0 +

∫ t

0

H(t, s) f(s, .) ds .

Thus,

(15) v(t, .) ≈ H(t, 0) v0 .
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Analogously, we prove

u(t, .) ≈ G(t, T )u(T, .)−
∫ T

t
G(t, s)Q−1 v(s, .) ds .

Thus,

(16) u(t, .) ≈ −
∫ T

t
G(t, s)Q−1v(s, .) ds .

By using (15) and (16) we have

(17) u(t, .) ≈
∫ T

t
G(t, s)Q−1H(s, 0) v0 ds .

When t = 0 the initial condition u|t=0 = g ∈ C∞(U) shows that

(18) N(x,Dx) v0 =

∫ T

0

G(0, s)Q−1(s, x)H(s, 0) v0(.) ds

is smooth.

The construction of G and H (see [4]) guarantees that they are as in the

microlocal version of Theorem 1 and therefore N is elliptic of order −1 in U .

The only difference between (18) and Theorem 1 is the presence of the non-

vanishing factorQ−1 inN(x,Dx); which does not entail any essential modification

in the proof.

Since Nv0 is smooth and N is elliptic we conclude that v0 is smooth and

therefore (15) implies v ≈ 0.

Thus (16) implies u ≈ 0, as desired.

We present now some examples of operators for which the regularity of solu-

tions of the Dirichlet problem is studied through our results and has not been

previously studied by [2], [3], [4].

Examples:

1) P =
(

∂t + i(t+ x
2) ∂x + b(t, x)

) (

∂t − i ∂x + b̃(t, x)
)

where b, b̃ are smooth functions.

2) P =
(

∂t + i(φ(t) + ψ(x)) ∂x + b(t, x)
) (

∂t − i(1 + t) ∂x + b̃(t, x)
)

where b, b̃ are as in (1), φ is flat in t = 0 and φ > 0 for t > 0; ψ is flat in

x = 0 and ψ ≥ 0.

3) P =
(

∂t + i φ(t, x) ∂x
)

(∂t − i∂x)

where φ is flat in (t, x) = (0, 0) and φ > 0 for t > 0.
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IV – Concatenation and regularity

We shall use the concatenations of [6] to prove the regularity up to the bound-

ary of solutions of the Dirichlet problem for a class of operators which are per-

turbations (of order ≤ 1) of a subclass of operators studied by [3], [4].

Theorem 3. Let U ⊂ R be a neighborhood of the origin and let T > 0.

Let

P = P (cj) = (∂t − i a t
k ∂x) (∂t − i b t

k ∂x) + i cj t
k−1 ∂x

where

a · b < 0 , k = 1, 2, . . . ,

cj = j(k + 1) (a− b) , j = 0, 1, 2, . . . .

If u ∈ C∞([0, T ], D′(U)) satisfies

P (cj)u = f ∈ C∞([0, T ]× U)

u|t=0 = g ∈ C∞(U)

then u ∈ C∞([0, T )× U).

Proof: The proof will be made by induction on j.

If j = 0 we have c0 = 0 and therefore

P (0) = (∂t − i a t
k ∂x) (∂t − i b t

k ∂x) .

The Theorem 3 of [3] says that P (0) has the desired regularity.

We now assume that P (cj) has the desired regularity and proceed to show

that P (cj+1) has the desired regularity.

Let u ∈ C∞([0, T ], D′(U)) be such that

(19) P (cj+1)u = f ∈ C∞([0, T ]× U)

with

(20) u|t=0 = g ∈ C∞(U) .

Let
X = ∂t − i a t

k ∂x ,

Y = ∂t − i b t
k ∂x .
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By using the following concatenation (see [4]):

(

tY −
cj+1

a− b
+ 2

)

P (cj+1) = P
[

cj+1 − (k + 1) (a− b)
]

(

tY −
cj+1

a− b

)

we have
(

tY − (j + 1) (k + 1) + 2
)

P (cj+1) = P (cj)
(

tY − (j + 1)(k + 1)
)

and therefore

(21)
(

tY − (j + 1) (k + 1) + 2
)

P (cj+1)u = P (cj)
(

tY − (j + 1) (k + 1)
)

u .

Since P (cj+1)u ∈ C
∞([0, T ]× U), (21) implies that

(22) P (cj)
(

tY − (j + 1) (k + 1)
)

u ∈ C∞([0, T ]× U) .

By hypothesis u|t=0 ∈ C
∞(U) and therefore

(23)
(

tY u− (j + 1) (k + 1)u
)

|t=0
∈ C∞(U) .

Thus, the induction hypothesis guarantees that

(24) tY u− (j + 1) (k + 1)u ∈ C∞([0, T ]× U) .

We recall the following relation (see [4]):

(

tX +
cj+1

a− b
− 1

)(

tY −
cj+1

a− b

)

− t2 P (cj+1) =
cj+1

a− b

(

1−
cj+1

a− b

)

that is,

(25)
(

tX + (j + 1) (k + 1)− 1
) (

tY − (j + 1) (k + 1)
)

− t2 P (cj+1) =

= (j + 1) (k + 1)
[

1− (j + 1) (k + 1)
]

.

Then (19), (24) and (25) imply that

(j + 1) (k + 1)
[

1− (j + 1) (k + 1)
]

u ∈ C∞([0, T ]× U) .

Since k = 1, 2, . . . and j = 0, 1, 2, . . . we have

(j + 1) (k + 1)
[

1− (j + 1) (k + 1)
]

6= 0

and therefore u ∈ C∞([0, T ]× U). The proof is complete.
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