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REDUCTION OF COMPLEX POISSON MANIFOLDS

J.M. Nunes da Costa *

Abstract: In this paper we define the reduction of complex Poisson manifolds and we

present a reduction theorem. We give an example of reduction on the dual of a complex

Lie algebra with its complex Lie–Poisson structure. In this example the reduction is

obtained by the action of a complex Lie subgroup of SL(2, C) on sl∗(2, C). Finally, we

establish a relationship between complex and real Poisson reduction.

Introduction

The notion of reduction has been formulated in terms of the modern differen-

tial geometry by J. Sniatycki and W. Tulczyjew [11], in the case of real symplectic

manifolds. J. Marsden and A. Weinstein [7] stated a famous theorem concerning

the real symplectic reduction, when a Lie group acts on a symplectic manifold

with a Hamiltonian action, having an equivariant momentum map.

In the case of real differential manifolds, reduction methods have been es-

tablished for Poisson manifolds by J. Marsden and T. Ratiu [6], for contact and

cosymplectic manifolds by C. Albert [1] and for Jacobi manifolds by K. Mikami

[8] and J.M. Nunes da Costa [9].

The notion of complex Poisson structure, defined on a complex manifold, was

introduced by A. Lichnerowicz [5].

The aim of this paper is to show that we can also establish a notion of reduc-

tion for the complex Poisson manifolds.

In sections 1 and 2 we recall some definitions and properties concerning the al-

most complex structure of a manifold, the Schouten bracket [10] and the complex

Poisson manifolds.
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Section 3 is devoted to the reduction of complex Poisson manifolds. We prove

a reduction theorem containing the necessary and sufficient condition for a sub-

manifold of a complex Poisson manifold to inherit a reduced complex Poisson

structure.

Using the same procedure as in the real case, A. Lichnerowicz [5] has shown

that the dual of a finite-dimensional complex Lie algebra carries a complex Pois-

son structure. In section 4 we present an example where the complex Poisson

manifold is sl∗(2,C) and the reduction is due to the action of a complex Lie group
on this complex Lie algebra.

In the last section we study the relationship between the real and the complex

Poisson reduction.

1 – Almost complex structure of a manifold

We recall briefly some definitions concerning the almost complex structure of

an analytic complex manifold (see [2], [3], [4] and [5]).

Let M be an analytic complex manifold of (complex) dimension m and let J

be its operator of almost complex structure. We consider an analytic complex

atlas on M such that if (zα)α=1,...,m is a system of local complex coordinates,

then

zα =
1√
2
(xα + i xα) , α = α+m ,

where the 2m real numbers (xk) are the real local coordinates associated with

the complex coordinates (zα).

We denote by (TxM)
c (resp. (T ∗

xM)
c) the complexification of the tangent

space (resp. cotangent) to M on x ∈M . Let

∂

∂zα
=
1√
2

(
∂

∂xα
− i ∂

∂xα

) (
resp. dzα =

1√
2
(dxα + i dxα)

)

and denote by ∂
∂zα

(resp. dzα) the complex conjugate. For every x ∈ M , the m
vectors ∂

∂zα
(x) (resp. dzα(x)) generate a m-dimensional complex vector subspace

of (TxM)
c (resp. (T ∗

xM)
c) which we denote by (TxM)

(1,0) (resp. (T ∗
xM)

(1,0)). On

the other hand, the m vectors ∂
∂zα
(x) (resp. dzα(x)) generate a m-dimensional

complex vector subspace of (TxM)
c (resp. (T ∗

xM)
c) which we denote by (TxM)

(0,1)

(resp. (T ∗
xM)

(0,1)). So, we have the following direct sums

(TxM)
c = (TxM)

(1,0) ⊕ (TxM)(0,1) and (T ∗
xM)

c = (T ∗
xM)

(1,0) ⊕ (T ∗
xM)

(0,1) .
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The linear operator Jx on TxM can be extended to the whole (TxM)
c and has

the eigenvalues i and −i. The vector subspace (TxM)(1,0) (resp. (TxM)(0,1)) of
(TxM)

c is generated by the eigenvectors associated with the eigenvalue i (resp.

−i).
A vector v ∈ (TxM)c of components (vα, vα), with vα = vα, is called a real

vector and, if v is a real vector, Jx(v) is also a real vector.

2 – Schouten bracket and complex Poisson manifolds

For each x ∈ M , the decompositions (TxM)c = (TxM)(1,0) ⊕ (TxM)(0,1) and
(T ∗

xM)
c = (T ∗

xM)
(1,0)⊕ (T ∗

xM)
(0,1) of (TxM)

c and (T ∗
xM)

c, allow us to introduce

the notion of type for the complex tensor fields. So, given a skew symmetric

contravariant complex tensor field T of order t (briefly a t-tensor) on M we can

write T as a sum of t-tensors T (p,q) of type (p, q), with p + q = t. A t-tensor

of type (t, 0) is called a holomorphic t-tensor if its components are holomorphic

functions in all local complex charts.

If Λ is a real 2-tensor on M , the following decomposition stands:

Λ = Λ(2,0) + Λ(1,1) + Λ(0,2) ,

with Λ(0,2) = Λ(2,0). Besides, we suppose that Λ(1,1) = 0, which is equivalent

to the fact that the Poisson bracket of a holomorphic function on M and an

antiholomorphic function on M locally vanishes (cf. [5]).

On the space of skew symmetric contravariant complex tensor fields on M ,

we consider the Schouten bracket [10], whose properties are similar to the real

case. If R is a r-tensor and T is a t-tensor, then the Schouten bracket [R, T ] of

R and T is a (r + t− 1)-tensor. In particular, if R and T are holomorphic, then
[R, T ] is also holomorphic.

Definition 1 ([5]). Let M be a connected paracompact analytic complex

manifold and let Λ(2,0) be a 2-tensor on M with Λ(0,2) = Λ(2,0). The couple

(M,Λ(2,0)) is called a complex Poisson manifold if

[Λ(2,0),Λ(2,0)] = 0 and [Λ(2,0),Λ(0,2)] = 0 .

Remark 1. If Λ(2,0) is a holomorphic 2-tensor, we always have [Λ(2,0),Λ(0,2)]=

0.

Let (M,Λ(2,0)) be a complex Poisson manifold. If we consider the differentiable

structure of M , underlying to its analytic complex structure, the real 2-tensor
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Λ = Λ(2,0)+Λ(0,2) (with Λ(0,2) = Λ(2,0)) defines a real Poisson manifold structure

on M .

Conversely, if the real 2-tensor Λ defines a real Poisson structure on the ana-

lytic complex manifoldM and if Λ = Λ(2,0)+Λ(0,2), then (M,Λ(2,0)) is a complex

Poisson manifold.

Associated with the real 2-tensor Λ, there exists a morphism of (real) vector

bundles,

Λ# : T ∗M → T M ,

given by 〈β,Λ#(α)〉 = Λ(α, β), with α and β elements of the same fibre of T ∗M .

Analogously, there exists a morphism of complex vector bundles, associated with

Λ(2,0),

(Λ(2,0))# : (T ∗M)(1,0) → (T M)(1,0) ,

defined in a similar way.

3 – Reduction of complex Poisson manifolds

LetN be a paracompact analytic complex submanifold of the analytic complex

manifold M , with complex dimension n (n ≤ m). We denote by TNM the (real)

tangent bundle T M of M restricted to N .

Let F be a vector subbundle of TNM , that verifies the two following proper-

ties:

i) for all x ∈ N , Jx(Fx) ⊂ Fx;

ii) F ∩ T N is a completely integrable (real) vector subbundle of the tangent

bundle of N , which defines a simple foliation of N ; the set N̂ of the leaves

determined by F ∩ T N is a differentiable manifold and the canonical

projection π : N → N̂ is a submersion.

Proposition 1. If conditions i) and ii) hold, then N̂ has the structure of a

complex manifold.

Proof: We only have to show that N̂ is an almost complex manifold whose

torsion vanishes.

Let S be a leaf of the foliation of N determined by F ∩ T N . By condition i),
for every x ∈ S, Jx(TxS) ⊂ TxS and so, we may define a map

Ĵπ(x) : Tπ(x)N̂ → Tπ(x)N̂ ,
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such that Ĵπ(x) ◦ Txπ = Txπ ◦ Jx. This map establishes an almost complex
structure on N̂ .

Since N is a paracompact analytic complex manifold, its torsion vanishes.

The torsion of N̂ also vanishes because it is the projection of the torsion of N .

Remark 2. Condition i) means that the subbundle F is invariant under J .

Then, for all x ∈ N , Jx defines a complex structure on the (real) vector space Fx
and we have the direct sum

F c
x = F (1,0)

x ⊕ F (0,1)
x ,

with F
(1,0)
x ⊂ (TxM)(1,0) and F (0,1)

x ⊂ (TxM)(0,1).

Definition 2. Suppose that conditions i) and ii) above hold and assume the

following:

iii) if f and g are complex functions defined on M , with differentials df and

dg vanishing on F c, then d({f, g}(2,0)) also vanishes on F c, where {·, ·}(2,0)
denotes the Poisson bracket on (M,Λ(2,0)).

We say the triple (M,N,F ) is complex Poisson reducible if N̂ has the structure

of a complex Poisson manifold such that, if f̂ and ĝ are complex functions on N̂

and if f and g are complex functions on M , which are extensions of f̂ ◦ π and
ĝ ◦ π respectively, with df and dg vanishing on F c, then

{f̂ , ĝ}(2,0)
N̂

◦ π = {f, g}(2,0) ◦ j ,

where j : N →M is the canonical injection.

Remark 3. For all complex functions f onM , we set df = (df)(1,0)+(df)(0,1),

with (df)(1,0) ∈ (T ∗M)(1,0) and (df)(0,1) ∈ (T ∗M)(0,1). It is then obvious that df

vanishes on F c if and only if (df)(1,0) vanishes on F (1,0) and (df)(0,1) vanishes on

F (0,1).

Reduction Theorem. Suppose that conditions i), ii) and iii) hold. The

triple (M,N,F ) is complex Poisson reducible if and only if

(Λ(2,0))# (F (1,0))0 ⊂ F (1,0) + (TN)(1,0) ,

where (F (1,0))0 is the subbundle of (T ∗M)(1,0) with fibre

(F (1,0)
x )0 =

{
α ∈ (T ∗

xM)
(1,0) : 〈α, v〉 = 0, ∀ v ∈ F (1,0)

x

}
.
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Proof: Assume that (M,N,F ) is complex Poisson reducible. Let x be an

arbitrary element of N . If β
(1,0)
x ∈ (F (1,0))0, one can find a complex map f on

M such that df vanishes on F c and (df)(1,0)(x) = β
(1,0)
x . By Remark 3, (df)(1,0)

vanishes on F (1,0). Let α
(1,0)
x be an arbitrary element of (F

(1,0)
x + (TxN)

(1,0))0.

Let us choose an extension g of the complex zero function on N such that

(dg)(1,0)(x) = α
(1,0)
x and dg vanishes on F c (so, (dg)(1,0) vanishes on F (1,0)).

Then,

〈
α(1,0)
x , (Λ(2,0)

x )# (β(1,0)
x )

〉
= {f, g}(2,0)(j(x)) = {f̂ , 0}(2,0)

N̂
= 0 ,

where f̂ : N̂ → C with f̂ ◦ π = f ◦ j, and we get

(Λ(2,0)
x )# (F (1,0)

x )0 ⊂ F (1,0)
x + (TxN)

(1,0) .

Suppose now that for all x ∈ N , we have (Λ
(2,0)
x )#(F

(1,0)
x )0 ⊂ F

(1,0)
x +

(TxN)
(1,0). Let f̂ and ĝ be two complex functions on N̂ and let f and g be

extensions of f̂ ◦ π and ĝ ◦ π, respectively, with df and dg vanishing on F c. From

iii), d({f, g}(2,0)) vanishes on F c; then, {f, g}(2,0) is constant on the leaves of N
and induces a map on N̂ that we denote by {f̂ , ĝ}(2,0)

N̂
. One can show that this

map does not depend on the choice of the extensions of f̂ ◦ π and ĝ ◦ π. It only
remains to check that the bracket {·, ·}(2,0)

N̂
, defined in this way is in fact a com-

plex Poisson bracket. But this is easy to do because each one of its properties is

a consequence of the corresponding property of the Poisson bracket {·, ·}(2,0) on

M .

4 – Complex Lie group actions on a complex Poisson manifold. Com-

plex Poisson reduction of sl∗(2,C)

Let (M,Λ(2,0)) be a complex Poisson manifold and let G be a complex Lie

group acting on M with an action φ. We say that φ is a complex Poisson action

if for every g ∈ G, the map φg : x ∈M → φ(g, x) ∈M is a complex holomorphic

Poisson morphism.

For each X in the Lie algebra G of G, we denote by X
(1,0)
M the fundamental

vector field associated with X for the action φ. It is a holomorphic vector field

of type (1, 0). If we take a connected complex Lie group G, the action φ of G on

M is a complex Poisson action if and only if the vector field X
(1,0)
M is a complex

Poisson infinitesimal automorphism, this means, if and only if [Λ(2,0), X
(1,0)
M ] = 0.
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Remark 4. Since for every g ∈ G, the map φg : M → M is holomorphic,

it is also an almost complex map. This means that the following equality holds,

for all x ∈M :
Txφg ◦ Jx = Jφg(x) ◦ Txφg .

If we take a Poisson action of a complex Lie group G on a complex Poisson

manifold, such that the set of orbits is a complex manifold, this set has the

structure of a reduced complex Poisson manifold. We are going to consider the

case where the complex Poisson manifold is the dual G∗ of a complex Lie algebra

of the complex Lie group G and the complex Poisson action is a restriction of the

complex coadjoint action of G on G∗.

We take the connected complex Lie group SL(2,C). Its Lie algebra sl(2,C)
may be identified with the complexification of the real Lie algebra sl(2,R) and
consists of all 2× 2 traceless complex matrices. It is a complex Lie subalgebra of
gl(2,C), with complex dimension 3, that is, real dimension 6.
The set {α1, α2, α3, β1, β2, β3} with

α1 =
1√
2

(
1 0
0 −1

)
, α2 =

(
0 1
0 0

)
, α3 =

(
0 0
1 0

)
,

β1 =
1√
2

(
i 0
0 −i

)
, β2 =

(
0 i

0 0

)
, β3 =

(
0 0
i 0

)
,

is a (real) basis of sl(2,C). Thus, the set {A1, A2, A3}, with Aj = αj + βj ,

j = 1, 2, 3, is a complex basis of sl(2,C).
Let { ∂

∂A1
, ∂
∂A2

, ∂
∂A3
} be the basis of sl∗(2,C), dual of the basis {A1, A2, A3}.

(We consider the dual product of sl(2,C) and sl∗(2,C) given by ∂
∂Ak
(Aj) =

1
2 tr(

t(Ak)Aj), j, k ∈ {1, 2, 3}).
If J is the (canonical) operator of almost complex structure of sl∗(2,C), we

have

J

(
∂

∂Aj

)
= i

∂

∂Aj
, j ∈ {1, 2, 3} ,

and every ∂
∂Aj

is a vector field of type (1, 0) of the complex manifold sl∗(2,C).
Let us compute the following brackets in sl(2,C):

[A1, A2] = A1A2 −A2A1 = (
√
2 + i

√
2)A2 ,

[A1, A3] = A1A3 −A3A1 = −(
√
2 + i

√
2)A3 ,

and

[A2, A3] = A2A3 −A3A2 = (
√
2 + i

√
2)A1 .
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The 2-tensor

Λ(2,0) = (
√
2 + i

√
2)A2

∂

∂A1
∧ ∂

∂A2
− (
√
2 + i

√
2)A3

∂

∂A1
∧ ∂

∂A3

+ (
√
2 + i

√
2)A1

∂

∂A2
∧ ∂

∂A3

is of type (2, 0) and defines a complex Poisson manifold structure on sl∗(2,C),
because the following equalities hold

[Λ(2,0),Λ(2,0)] = 0 and [Λ(2,0),Λ(0,2)] = 0 .

This is the so called complex Lie-Poisson structure of sl∗(2,C).
Let H be the subgroup of SL(2,C) of complex dimension 1, whose Lie algebra

is generated by A1. We consider the following action of H on the complex Poisson

manifold (sl∗(2,C),Λ(2,0)),

ψ : (h, ξ) ∈ H × sl∗(2,C)→ t(h−1) ξ th ∈ sl∗(2,C) ,

which is the restriction of the coadjoint action of SL(2,C) on sl∗(2,C), to the
Lie subgroup H. Since H is connected and its Lie algebra is generated by A1,

for showing that ψ is a complex Poisson action, we only have to show that

[(A1)
(1,0)
M ,Λ(2,0)] = 0. But, since ψ is a restriction of the coadjoint action, we

have (A1)
(1,0)
M (ξ) = −ad∗A1

(ξ), for all ξ ∈ sl∗(2,C). (For every X,Y ∈ sl(2,C),
〈ad∗X(ξ), Y 〉 = −〈ξ, [X,Y ]〉).
Thus,

A
(1,0)
M = (

√
2 + i

√
2)A2

∂

∂A2
− (
√
2 + i

√
2)A3

∂

∂A3

and a straightforward calculation leads to

[(A1)
(1,0)
M ,Λ(2,0)] = 0 .

If F
(1,0)
ξ denotes the complex vector space generated by (A1)

(1,0)
M (ξ), by Re-

mark 4, we can deduce that Jξ(Fξ) ⊂ Fξ, for all ξ ∈ sl∗(2,C), where Fξ is
the vector space of the real vectors of F c

ξ = F
(1,0)
ξ ⊕ F

0,1
ξ . Then, the triple

(sl∗(2,C), sl∗(2,C), F ) is complex Poisson reducible and the manifold of the leaves
of sl∗(2,C) is a reduced complex Poisson manifold of complex dimension 2.
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5 – The relationship between real and complex Poisson reduction

LetM be an analytic complex manifold and let Λ be a real 2-tensor Poisson on

M with Λ = Λ(2,0)+Λ(0,2), where Λ(0,2) = Λ(2,0). The real 2-tensor Λ determines a

real Poisson structure onM while Λ(2,0) determines a complex Poisson structure.

We can state the following.

Proposition 2. Let N be a paracompact analytic complex submanifold of

M and let F be a real subbundle of that verifies conditions i), ii) and iii). Then,

the triple (M,N,F ) is complex Poisson reducible if and only if it is real Poisson

reducible.

Proof: By Poisson reduction theorems in the real and complex cases, we

only have to show that the two following conditions are equivalent:

1) Λ#(F 0) ⊂ F + T N ;

2) (Λ(2,0))#(F (1,0))0 ⊂ F (1,0) + (TN)(1,0),

where F 0 is the annihilator of F in T ∗M .

Let α
(1,0)
x be an arbitrary element of (F

(1,0)
x )0 and let α

(0,1)
x be its complex

conjugate. Then, αx = α
(1,0)
x +α

(0,1)
x is a (real) element of F 0

x . If we assume that

Λ#
x (αx) ∈ Fx + TxN , we can deduce that (Λ

(2,0)
x )#(α

(1,0)
x ) ∈ F

(1,0)
x + (TxN)

(1,0)

and 1)⇒2). For showing that 2)⇒1), we have to remark that if α ∈ T ∗M (α real)

we can write α = α(1,0)+α(0,1), where α(1,0) ∈ (T ∗M)(1,0) and α(0,1) ∈ (T ∗M)(0,1),

with α(0,1) = α(1,0). If α ∈ F 0, then α(1,0) ∈ (F (1,0))0 and also α(0,1) ∈ (F (0,1))0.
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