REDUCTION OF COMPLEX POISSON MANIFOLDS

J.M. Nunes da Costa *

Abstract

In this paper we define the reduction of complex Poisson manifolds and we present a reduction theorem. We give an example of reduction on the dual of a complex Lie algebra with its complex Lie-Poisson structure. In this example the reduction is obtained by the action of a complex Lie subgroup of $S L(2, \mathbb{C})$ on $s l^{*}(2, \mathbb{C})$. Finally, we establish a relationship between complex and real Poisson reduction.

Introduction

The notion of reduction has been formulated in terms of the modern differential geometry by J. Sniatycki and W. Tulczyjew [11], in the case of real symplectic manifolds. J. Marsden and A. Weinstein [7] stated a famous theorem concerning the real symplectic reduction, when a Lie group acts on a symplectic manifold with a Hamiltonian action, having an equivariant momentum map.

In the case of real differential manifolds, reduction methods have been established for Poisson manifolds by J. Marsden and T. Ratiu [6], for contact and cosymplectic manifolds by C. Albert [1] and for Jacobi manifolds by K. Mikami [8] and J.M. Nunes da Costa [9].

The notion of complex Poisson structure, defined on a complex manifold, was introduced by A. Lichnerowicz [5].

The aim of this paper is to show that we can also establish a notion of reduction for the complex Poisson manifolds.

In sections 1 and 2 we recall some definitions and properties concerning the almost complex structure of a manifold, the Schouten bracket [10] and the complex Poisson manifolds.

[^0]Section 3 is devoted to the reduction of complex Poisson manifolds. We prove a reduction theorem containing the necessary and sufficient condition for a submanifold of a complex Poisson manifold to inherit a reduced complex Poisson structure.

Using the same procedure as in the real case, A. Lichnerowicz [5] has shown that the dual of a finite-dimensional complex Lie algebra carries a complex Poisson structure. In section 4 we present an example where the complex Poisson manifold is $s l^{*}(2, \mathbb{C})$ and the reduction is due to the action of a complex Lie group on this complex Lie algebra.

In the last section we study the relationship between the real and the complex Poisson reduction.

1 - Almost complex structure of a manifold

We recall briefly some definitions concerning the almost complex structure of an analytic complex manifold (see [2], [3], [4] and [5]).

Let M be an analytic complex manifold of (complex) dimension m and let J be its operator of almost complex structure. We consider an analytic complex atlas on M such that if $\left(z^{\alpha}\right)_{\alpha=1, \ldots, m}$ is a system of local complex coordinates, then

$$
z^{\alpha}=\frac{1}{\sqrt{2}}\left(x^{\alpha}+i x^{\bar{\alpha}}\right), \quad \bar{\alpha}=\alpha+m
$$

where the $2 m$ real numbers $\left(x^{k}\right)$ are the real local coordinates associated with the complex coordinates $\left(z^{\alpha}\right)$.

We denote by $\left(T_{x} M\right)^{c}$ (resp. $\left.\left(T_{x}^{*} M\right)^{c}\right)$ the complexification of the tangent space (resp. cotangent) to M on $x \in M$. Let

$$
\frac{\partial}{\partial z^{\alpha}}=\frac{1}{\sqrt{2}}\left(\frac{\partial}{\partial x^{\alpha}}-i \frac{\partial}{\partial x^{\bar{\alpha}}}\right) \quad\left(\text { resp. } d z^{\alpha}=\frac{1}{\sqrt{2}}\left(d x^{\alpha}+i d x^{\bar{\alpha}}\right)\right)
$$

and denote by $\frac{\partial}{\partial z^{\bar{\alpha}}}\left(\right.$ resp. $\left.d z^{\bar{\alpha}}\right)$ the complex conjugate. For every $x \in M$, the m vectors $\frac{\partial}{\partial z^{\alpha}}(x)$ (resp. $\left.d z^{\alpha}(x)\right)$ generate a m-dimensional complex vector subspace of $\left(T_{x} M\right)^{c}\left(\right.$ resp. $\left.\left(T_{x}^{*} M\right)^{c}\right)$ which we denote by $\left(T_{x} M\right)^{(1,0)}\left(\right.$ resp. $\left.\left(T_{x}^{*} M\right)^{(1,0)}\right)$. On the other hand, the m vectors $\frac{\partial}{\partial z^{\bar{\alpha}}}(x)$ (resp. $\left.d z^{\bar{\alpha}}(x)\right)$ generate a m-dimensional complex vector subspace of $\left(T_{x} M\right)^{c}\left(\operatorname{resp} .\left(T_{x}^{*} M\right)^{c}\right)$ which we denote by $\left(T_{x} M\right)^{(0,1)}$ (resp. $\left.\left(T_{x}^{*} M\right)^{(0,1)}\right)$. So, we have the following direct sums

$$
\left(T_{x} M\right)^{c}=\left(T_{x} M\right)^{(1,0)} \oplus\left(T_{x} M\right)^{(0,1)} \quad \text { and } \quad\left(T_{x}^{*} M\right)^{c}=\left(T_{x}^{*} M\right)^{(1,0)} \oplus\left(T_{x}^{*} M\right)^{(0,1)}
$$

The linear operator J_{x} on $T_{x} M$ can be extended to the whole $\left(T_{x} M\right)^{c}$ and has the eigenvalues i and $-i$. The vector subspace $\left(T_{x} M\right)^{(1,0)}$ (resp. $\left.\left(T_{x} M\right)^{(0,1)}\right)$ of $\left(T_{x} M\right)^{c}$ is generated by the eigenvectors associated with the eigenvalue i (resp. $-i)$.

A vector $v \in\left(T_{x} M\right)^{c}$ of components $\left(v^{\alpha}, v^{\bar{\alpha}}\right)$, with $v^{\bar{\alpha}}=\overline{v^{\alpha}}$, is called a real vector and, if v is a real vector, $J_{x}(v)$ is also a real vector.

2 - Schouten bracket and complex Poisson manifolds

For each $x \in M$, the decompositions $\left(T_{x} M\right)^{c}=\left(T_{x} M\right)^{(1,0)} \oplus\left(T_{x} M\right)^{(0,1)}$ and $\left(T_{x}^{*} M\right)^{c}=\left(T_{x}^{*} M\right)^{(1,0)} \oplus\left(T_{x}^{*} M\right)^{(0,1)}$ of $\left(T_{x} M\right)^{c}$ and $\left(T_{x}^{*} M\right)^{c}$, allow us to introduce the notion of type for the complex tensor fields. So, given a skew symmetric contravariant complex tensor field T of order t (briefly a t-tensor) on M we can write T as a sum of t-tensors $T^{(p, q)}$ of type (p, q), with $p+q=t$. A t-tensor of type $(t, 0)$ is called a holomorphic t-tensor if its components are holomorphic functions in all local complex charts.

If Λ is a real 2 -tensor on M, the following decomposition stands:

$$
\Lambda=\Lambda^{(2,0)}+\Lambda^{(1,1)}+\Lambda^{(0,2)}
$$

with $\Lambda^{(0,2)}=\overline{\Lambda^{(2,0)}}$. Besides, we suppose that $\Lambda^{(1,1)}=0$, which is equivalent to the fact that the Poisson bracket of a holomorphic function on M and an antiholomorphic function on M locally vanishes (cf. [5]).

On the space of skew symmetric contravariant complex tensor fields on M, we consider the Schouten bracket [10], whose properties are similar to the real case. If R is a r-tensor and T is a t-tensor, then the Schouten bracket $[R, T]$ of R and T is a $(r+t-1)$-tensor. In particular, if R and T are holomorphic, then $[R, T]$ is also holomorphic.

Definition 1 ([5]). Let M be a connected paracompact analytic complex manifold and let $\Lambda^{(2,0)}$ be a 2 -tensor on M with $\Lambda^{(0,2)}=\overline{\Lambda^{(2,0)}}$. The couple ($M, \Lambda^{(2,0)}$) is called a complex Poisson manifold if

$$
\left[\Lambda^{(2,0)}, \Lambda^{(2,0)}\right]=0 \quad \text { and } \quad\left[\Lambda^{(2,0)}, \Lambda^{(0,2)}\right]=0
$$

Remark 1. If $\Lambda^{(2,0)}$ is a holomorphic 2-tensor, we always have $\left[\Lambda^{(2,0)}, \Lambda^{(0,2)}\right]=$ 0.

Let ($M, \Lambda^{(2,0)}$) be a complex Poisson manifold. If we consider the differentiable structure of M, underlying to its analytic complex structure, the real 2-tensor
$\Lambda=\Lambda^{(2,0)}+\Lambda^{(0,2)}\left(\right.$ with $\left.\Lambda^{(0,2)}=\overline{\Lambda^{(2,0)}}\right)$ defines a real Poisson manifold structure on M.

Conversely, if the real 2-tensor Λ defines a real Poisson structure on the analytic complex manifold M and if $\Lambda=\Lambda^{(2,0)}+\Lambda^{(0,2)}$, then $\left(M, \Lambda^{(2,0)}\right)$ is a complex Poisson manifold.

Associated with the real 2-tensor Λ, there exists a morphism of (real) vector bundles,

$$
\Lambda^{\#}: T^{*} M \rightarrow T M
$$

given by $\left\langle\beta, \Lambda^{\#}(\alpha)\right\rangle=\Lambda(\alpha, \beta)$, with α and β elements of the same fibre of $T^{*} M$. Analogously, there exists a morphism of complex vector bundles, associated with $\Lambda^{(2,0)}$,

$$
\left(\Lambda^{(2,0)}\right)^{\#}:\left(T^{*} M\right)^{(1,0)} \rightarrow(T M)^{(1,0)}
$$

defined in a similar way.

3 - Reduction of complex Poisson manifolds

Let N be a paracompact analytic complex submanifold of the analytic complex manifold M, with complex dimension $n(n \leq m)$. We denote by $T_{N} M$ the (real) tangent bundle $T M$ of M restricted to N.

Let F be a vector subbundle of $T_{N} M$, that verifies the two following properties:
i) for all $x \in N, J_{x}\left(F_{x}\right) \subset F_{x}$;
ii) $F \cap T N$ is a completely integrable (real) vector subbundle of the tangent bundle of N, which defines a simple foliation of N; the set \widehat{N} of the leaves determined by $F \cap T N$ is a differentiable manifold and the canonical projection $\pi: N \rightarrow \widehat{N}$ is a submersion.

Proposition 1. If conditions i) and ii) hold, then \widehat{N} has the structure of a complex manifold.

Proof: We only have to show that \widehat{N} is an almost complex manifold whose torsion vanishes.

Let S be a leaf of the foliation of N determined by $F \cap T N$. By condition i), for every $x \in S, J_{x}\left(T_{x} S\right) \subset T_{x} S$ and so, we may define a map

$$
\widehat{J}_{\pi(x)}: T_{\pi(x)} \widehat{N} \rightarrow T_{\pi(x)} \widehat{N}
$$

such that $\widehat{J}_{\pi(x)} \circ T_{x} \pi=T_{x} \pi \circ J_{x}$. This map establishes an almost complex structure on \widehat{N}.

Since N is a paracompact analytic complex manifold, its torsion vanishes. The torsion of \widehat{N} also vanishes because it is the projection of the torsion of N.

Remark 2. Condition i) means that the subbundle F is invariant under J. Then, for all $x \in N, J_{x}$ defines a complex structure on the (real) vector space F_{x} and we have the direct sum

$$
F_{x}^{c}=F_{x}^{(1,0)} \oplus F_{x}^{(0,1)},
$$

with $F_{x}^{(1,0)} \subset\left(T_{x} M\right)^{(1,0)}$ and $F_{x}^{(0,1)} \subset\left(T_{x} M\right)^{(0,1)}$.
Definition 2. Suppose that conditions i) and ii) above hold and assume the following:
iii) if f and g are complex functions defined on M, with differentials $d f$ and $d g$ vanishing on F^{c}, then $d\left(\{f, g\}^{(2,0)}\right)$ also vanishes on F^{c}, where $\{\cdot, \cdot\}^{(2,0)}$ denotes the Poisson bracket on $\left(M, \Lambda^{(2,0)}\right)$.

We say the triple (M, N, F) is complex Poisson reducible if \widehat{N} has the structure of a complex Poisson manifold such that, if \widehat{f} and \widehat{g} are complex functions on \widehat{N} and if f and g are complex functions on M, which are extensions of $\widehat{f} \circ \pi$ and $\hat{g} \circ \pi$ respectively, with $d f$ and $d g$ vanishing on F^{c}, then

$$
\{\widehat{f}, \widehat{g}\}_{\widehat{N}}^{(2,0)} \circ \pi=\{f, g\}^{(2,0)} \circ j
$$

where $j: N \rightarrow M$ is the canonical injection.
Remark 3. For all complex functions f on M, we set $d f=(d f)^{(1,0)}+(d f)^{(0,1)}$, with $(d f)^{(1,0)} \in\left(T^{*} M\right)^{(1,0)}$ and $(d f)^{(0,1)} \in\left(T^{*} M\right)^{(0,1)}$. It is then obvious that $d f$ vanishes on F^{c} if and only if $(d f)^{(1,0)}$ vanishes on $F^{(1,0)}$ and $(d f)^{(0,1)}$ vanishes on $F^{(0,1)}$.

Reduction Theorem. Suppose that conditions i), ii) and iii) hold. The triple (M, N, F) is complex Poisson reducible if and only if

$$
\left(\Lambda^{(2,0)}\right)^{\#}\left(F^{(1,0)}\right)^{0} \subset F^{(1,0)}+(T N)^{(1,0)}
$$

where $\left(F^{(1,0)}\right)^{0}$ is the subbundle of $\left(T^{*} M\right)^{(1,0)}$ with fibre

$$
\left(F_{x}^{(1,0)}\right)^{0}=\left\{\alpha \in\left(T_{x}^{*} M\right)^{(1,0)}:\langle\alpha, v\rangle=0, \forall v \in F_{x}^{(1,0)}\right\} .
$$

Proof: Assume that (M, N, F) is complex Poisson reducible. Let x be an arbitrary element of N. If $\beta_{x}^{(1,0)} \in\left(F^{(1,0)}\right)^{0}$, one can find a complex map f on M such that $d f$ vanishes on F^{c} and $(d f)^{(1,0)}(x)=\beta_{x}^{(1,0)}$. By Remark 3, $(d f)^{(1,0)}$ vanishes on $F^{(1,0)}$. Let $\alpha_{x}^{(1,0)}$ be an arbitrary element of $\left(F_{x}^{(1,0)}+\left(T_{x} N\right)^{(1,0)}\right)^{0}$. Let us choose an extension g of the complex zero function on N such that $(d g)^{(1,0)}(x)=\alpha_{x}^{(1,0)}$ and $d g$ vanishes on $F^{c}\left(\right.$ so, $(d g)^{(1,0)}$ vanishes on $\left.F^{(1,0)}\right)$. Then,

$$
\left\langle\alpha_{x}^{(1,0)},\left(\Lambda_{x}^{(2,0)}\right)^{\#}\left(\beta_{x}^{(1,0)}\right)\right\rangle=\{f, g\}^{(2,0)}(j(x))=\{\widehat{f}, 0\}_{\widehat{N}}^{(2,0)}=0,
$$

where $\widehat{f}: \widehat{N} \rightarrow \mathbb{C}$ with $\widehat{f} \circ \pi=f \circ j$, and we get

$$
\left(\Lambda_{x}^{(2,0)}\right)^{\#}\left(F_{x}^{(1,0)}\right)^{0} \subset F_{x}^{(1,0)}+\left(T_{x} N\right)^{(1,0)} .
$$

Suppose now that for all $x \in N$, we have $\left(\Lambda_{x}^{(2,0)}\right)^{\#}\left(F_{x}^{(1,0)}\right)^{0} \subset F_{x}^{(1,0)}+$ $\left(T_{x} N\right)^{(1,0)}$. Let \widehat{f} and \widehat{g} be two complex functions on \hat{N} and let f and g be extensions of $\widehat{f} \circ \pi$ and $\widehat{g} \circ \pi$, respectively, with $d f$ and $d g$ vanishing on F^{c}. From iii), $d\left(\{f, g\}^{(2,0)}\right)$ vanishes on F^{c}; then, $\{f, g\}^{(2,0)}$ is constant on the leaves of N and induces a map on \widehat{N} that we denote by $\{\widehat{f}, \widehat{g}\}_{\widehat{N}}^{(2,0)}$. One can show that this map does not depend on the choice of the extensions of $\widehat{f} \circ \pi$ and $\widehat{g} \circ \pi$. It only remains to check that the bracket $\{\cdot, \cdot\}_{\widehat{N}}^{(2,0)}$, defined in this way is in fact a complex Poisson bracket. But this is easy to do because each one of its properties is a consequence of the corresponding property of the Poisson bracket $\{\cdot, \cdot\}^{(2,0)}$ on M. ■

4 - Complex Lie group actions on a complex Poisson manifold. Complex Poisson reduction of $s l^{*}(2, \mathbb{C})$

Let $\left(M, \Lambda^{(2,0)}\right)$ be a complex Poisson manifold and let G be a complex Lie group acting on M with an action ϕ. We say that ϕ is a complex Poisson action if for every $g \in G$, the map $\phi_{g}: x \in M \rightarrow \phi(g, x) \in M$ is a complex holomorphic Poisson morphism.

For each X in the Lie algebra \boldsymbol{G} of G, we denote by $X_{M}^{(1,0)}$ the fundamental vector field associated with X for the action ϕ. It is a holomorphic vector field of type (1,0). If we take a connected complex Lie group G, the action ϕ of G on M is a complex Poisson action if and only if the vector field $X_{M}^{(1,0)}$ is a complex Poisson infinitesimal automorphism, this means, if and only if $\left[\Lambda^{(2,0)}, X_{M}^{(1,0)}\right]=0$.

Remark 4. Since for every $g \in G$, the map $\phi_{g}: M \rightarrow M$ is holomorphic, it is also an almost complex map. This means that the following equality holds, for all $x \in M$:

$$
T_{x} \phi_{g} \circ J_{x}=J_{\phi_{g}(x)} \circ T_{x} \phi_{g} .
$$

If we take a Poisson action of a complex Lie group G on a complex Poisson manifold, such that the set of orbits is a complex manifold, this set has the structure of a reduced complex Poisson manifold. We are going to consider the case where the complex Poisson manifold is the dual \boldsymbol{G}^{*} of a complex Lie algebra of the complex Lie group G and the complex Poisson action is a restriction of the complex coadjoint action of G on \boldsymbol{G}^{*}.

We take the connected complex Lie group $S L(2, \mathbb{C})$. Its Lie algebra $s l(2, \mathbb{C})$ may be identified with the complexification of the real Lie algebra $s l(2, \mathbb{R})$ and consists of all 2×2 traceless complex matrices. It is a complex Lie subalgebra of $g l(2, \mathbb{C})$, with complex dimension 3 , that is, real dimension 6 .

The set $\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \beta_{1}, \beta_{2}, \beta_{3}\right\}$ with

$$
\begin{array}{lll}
\alpha_{1}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), & \alpha_{2}=\left(\begin{array}{cc}
0 & 1 \\
0 & 0
\end{array}\right), & \alpha_{3}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), \\
\beta_{1}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right), & \beta_{2}=\left(\begin{array}{ll}
0 & i \\
0 & 0
\end{array}\right), & \beta_{3}=\left(\begin{array}{ll}
0 & 0 \\
i & 0
\end{array}\right),
\end{array}
$$

is a (real) basis of $\operatorname{sl}(2, \mathbb{C})$. Thus, the set $\left\{A_{1}, A_{2}, A_{3}\right\}$, with $A_{j}=\alpha_{j}+\beta_{j}$, $j=1,2,3$, is a complex basis of $s l(2, \mathbb{C})$.

Let $\left\{\frac{\partial}{\partial A_{1}}, \frac{\partial}{\partial A_{2}}, \frac{\partial}{\partial A_{3}}\right\}$ be the basis of $s l^{*}(2, \mathbb{C})$, dual of the basis $\left\{A_{1}, A_{2}, A_{3}\right\}$. (We consider the dual product of $s l(2, \mathbb{C})$ and $s l^{*}(2, \mathbb{C})$ given by $\frac{\partial}{\partial A_{k}}\left(A_{j}\right)=$ $\left.\frac{1}{2} \operatorname{tr}\left({ }^{\mathrm{t}}\left(\overline{A_{k}}\right) A_{j}\right), j, k \in\{1,2,3\}\right)$.

If J is the (canonical) operator of almost complex structure of $s l^{*}(2, \mathbb{C})$, we have

$$
J\left(\frac{\partial}{\partial A_{j}}\right)=i \frac{\partial}{\partial A_{j}}, \quad j \in\{1,2,3\},
$$

and every $\frac{\partial}{\partial A_{j}}$ is a vector field of type $(1,0)$ of the complex manifold $s l^{*}(2, \mathbb{C})$.
Let us compute the following brackets in $s l(2, \mathbb{C})$:

$$
\begin{aligned}
& {\left[A_{1}, A_{2}\right]=A_{1} A_{2}-A_{2} A_{1}=(\sqrt{2}+i \sqrt{2}) A_{2}} \\
& {\left[A_{1}, A_{3}\right]=A_{1} A_{3}-A_{3} A_{1}=-(\sqrt{2}+i \sqrt{2}) A_{3}}
\end{aligned}
$$

and

$$
\left[A_{2}, A_{3}\right]=A_{2} A_{3}-A_{3} A_{2}=(\sqrt{2}+i \sqrt{2}) A_{1}
$$

The 2-tensor

$$
\begin{aligned}
\Lambda^{(2,0)}= & (\sqrt{2}+i \sqrt{2}) A_{2} \frac{\partial}{\partial A_{1}} \wedge \frac{\partial}{\partial A_{2}}-(\sqrt{2}+i \sqrt{2}) A_{3} \frac{\partial}{\partial A_{1}} \wedge \frac{\partial}{\partial A_{3}} \\
& +(\sqrt{2}+i \sqrt{2}) A_{1} \frac{\partial}{\partial A_{2}} \wedge \frac{\partial}{\partial A_{3}}
\end{aligned}
$$

is of type $(2,0)$ and defines a complex Poisson manifold structure on $s l^{*}(2, \mathbb{C})$, because the following equalities hold

$$
\left[\Lambda^{(2,0)}, \Lambda^{(2,0)}\right]=0 \quad \text { and } \quad\left[\Lambda^{(2,0)}, \Lambda^{(0,2)}\right]=0
$$

This is the so called complex Lie-Poisson structure of $s l^{*}(2, \mathbb{C})$.
Let H be the subgroup of $S L(2, \mathbb{C})$ of complex dimension 1 , whose Lie algebra is generated by A_{1}. We consider the following action of H on the complex Poisson manifold $\left(s l^{*}(2, \mathbb{C}), \Lambda^{(2,0)}\right)$,

$$
\psi:(h, \xi) \in H \times s l^{*}(2, \mathbb{C}) \rightarrow^{\mathrm{t}}\left(h^{-1}\right) \xi^{\mathrm{t}} h \in s l^{*}(2, \mathbb{C}),
$$

which is the restriction of the coadjoint action of $S L(2, \mathbb{C})$ on $s l^{*}(2, \mathbb{C})$, to the Lie subgroup H. Since H is connected and its Lie algebra is generated by A_{1}, for showing that ψ is a complex Poisson action, we only have to show that $\left[\left(A_{1}\right)_{M}^{(1,0)}, \Lambda^{(2,0)}\right]=0$. But, since ψ is a restriction of the coadjoint action, we have $\left(A_{1}\right)_{M}^{(1,0)}(\xi)=-a d_{A_{1}}^{*}(\xi)$, for all $\xi \in \operatorname{sl} l^{*}(2, \mathbb{C})$. (For every $X, Y \in \operatorname{sl}(2, \mathbb{C})$, $\left.\left\langle a d_{X}^{*}(\xi), Y\right\rangle=-\langle\xi,[X, Y]\rangle\right)$.

Thus,

$$
A_{M}^{(1,0)}=(\sqrt{2}+i \sqrt{2}) A_{2} \frac{\partial}{\partial A_{2}}-(\sqrt{2}+i \sqrt{2}) A_{3} \frac{\partial}{\partial A_{3}}
$$

and a straightforward calculation leads to

$$
\left[\left(A_{1}\right)_{M}^{(1,0)}, \Lambda^{(2,0)}\right]=0
$$

If $F_{\xi}^{(1,0)}$ denotes the complex vector space generated by $\left(A_{1}\right)_{M}^{(1,0)}(\xi)$, by Remark 4 , we can deduce that $J_{\xi}\left(F_{\xi}\right) \subset F_{\xi}$, for all $\xi \in s l^{*}(2, \mathbb{C})$, where F_{ξ} is the vector space of the real vectors of $F_{\xi}^{c}=F_{\xi}^{(1,0)} \oplus F_{\xi}^{0,1}$. Then, the triple $\left(s l^{*}(2, \mathbb{C}), s l^{*}(2, \mathbb{C}), F\right)$ is complex Poisson reducible and the manifold of the leaves of $s l^{*}(2, \mathbb{C})$ is a reduced complex Poisson manifold of complex dimension 2.

5 - The relationship between real and complex Poisson reduction

Let M be an analytic complex manifold and let Λ be a real 2 -tensor Poisson on M with $\Lambda=\Lambda^{(2,0)}+\Lambda^{(0,2)}$, where $\Lambda^{(0,2)}=\overline{\Lambda^{(2,0)}}$. The real 2-tensor Λ determines a real Poisson structure on M while $\Lambda^{(2,0)}$ determines a complex Poisson structure. We can state the following.

Proposition 2. Let N be a paracompact analytic complex submanifold of M and let F be a real subbundle of that verifies conditions i), ii) and iii). Then, the triple (M, N, F) is complex Poisson reducible if and only if it is real Poisson reducible.

Proof: By Poisson reduction theorems in the real and complex cases, we only have to show that the two following conditions are equivalent:

1) $\Lambda^{\#}\left(F^{0}\right) \subset F+T N$;
2) $\left(\Lambda^{(2,0)}\right)^{\#}\left(F^{(1,0)}\right)^{0} \subset F^{(1,0)}+(T N)^{(1,0)}$,
where F^{0} is the annihilator of F in $T^{*} M$.
Let $\alpha_{x}^{(1,0)}$ be an arbitrary element of $\left(F_{x}^{(1,0)}\right)^{0}$ and let $\alpha_{x}^{(0,1)}$ be its complex conjugate. Then, $\alpha_{x}=\alpha_{x}^{(1,0)}+\alpha_{x}^{(0,1)}$ is a (real) element of F_{x}^{0}. If we assume that $\Lambda_{x}^{\#}\left(\alpha_{x}\right) \in F_{x}+T_{x} N$, we can deduce that $\left(\Lambda_{x}^{(2,0)}\right)^{\#}\left(\alpha_{x}^{(1,0)}\right) \in F_{x}^{(1,0)}+\left(T_{x} N\right)^{(1,0)}$ and 1$) \Rightarrow 2$). For showing that 2$) \Rightarrow 1$), we have to remark that if $\alpha \in T^{*} M$ (α real) we can write $\alpha=\alpha^{(1,0)}+\alpha^{(0,1)}$, where $\alpha^{(1,0)} \in\left(T^{*} M\right)^{(1,0)}$ and $\alpha^{(0,1)} \in\left(T^{*} M\right)^{(0,1)}$, with $\alpha^{(0,1)}=\overline{\alpha^{(1,0)}}$. If $\alpha \in F^{0}$, then $\alpha^{(1,0)} \in\left(F^{(1,0)}\right)^{0}$ and also $\alpha^{(0,1)} \in\left(F^{(0,1)}\right)^{0}$.

REFERENCES

[1] Albert, C. - Le théorème de réduction de Marsden-Weinstein en géométrie cosymplectique et de contact, J. Geom. Phys., 6(4) (1989), 627-649.
[2] Helgason, S. - Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press, London, 1978.
[3] Kobayashi, S. and Nomizu, K. - Foundations of Differential Geometry, vol. II, lnterscience Publ., John Wiley \& Sons, New York, 1963.
[4] Lichnerowjcz, A. - Théorie globale des connexions et des groupes d'holonomie, Consiglio Nazionale delle Ricerche Monografie Matematiche, Roma, 1955.
[5] Lichnerowjcz, A. - Variétés de Jacobi et espaces homogènes de contact complexes, J. Math. Pures et Appl., 67 (1988), 131-173.
[6] Marsden, J. and Ratiu, T. - Reduction of Poisson manifolds, Letters in Math. Phys., 11 (1986), 161-169.
[7] Marsden, J. and Weinstein, A. - Reduction of symplectic manifolds with symmetry, Reports on Math. Phys., 5 (1974), 121-130.
[8] Mikami, K. - Reduction of local Lie algebra structures, Proc. Amer. Math. Soc., 105(3) (1989), 686-691.
[9] Nunes da Costa, J.M. - Réduction des Variétés de Jacobi, C.R. Acad. Sci. Paris, Série I, 308 (1989), 101-103.
[10] Schouten, J. - On differential operators of first order in tensor calculus, Convegno di Geom. Diff. Italia, Ed. Cremonese, Roma, 1953.
[11] Sniatyckj, J. and Tulczyjew, W. - Generating forms of Lagrangian submanifolds, Indiana Univ. Math. J., 22 (1972), 267-275.

Joana Margarida Nunes da Costa,
Departamento de Matemática, Universidade de Coimbra, Apartado 3008, 3000 Coimbra - PORTUGAL

E-mail: jmcosta@mat.uc.pt

[^0]: Received: August 9, 1996; Revised: December 10, 1996.
 AMS Classification: 53C12, 53C15, 58F05.
 Keywords: Complex Poisson manifold, Poisson reduction.

 * Partially supported by: PBIC/C/CEN/1060/92 and PRAXIS/2/2.1/MAT/19/94.

