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REDUCTION OF COMPLEX POISSON MANIFOLDS

J.M. NUNES DA CoSTA *

Abstract: In this paper we define the reduction of complex Poisson manifolds and we
present a reduction theorem. We give an example of reduction on the dual of a complex
Lie algebra with its complex Lie—Poisson structure. In this example the reduction is
obtained by the action of a complex Lie subgroup of SL(2,C) on si*(2,C). Finally, we

establish a relationship between complex and real Poisson reduction.

Introduction

The notion of reduction has been formulated in terms of the modern differen-
tial geometry by J. Sniatycki and W. Tulczyjew [11], in the case of real symplectic
manifolds. J. Marsden and A. Weinstein [7] stated a famous theorem concerning
the real symplectic reduction, when a Lie group acts on a symplectic manifold
with a Hamiltonian action, having an equivariant momentum map.

In the case of real differential manifolds, reduction methods have been es-
tablished for Poisson manifolds by J. Marsden and T. Ratiu [6], for contact and
cosymplectic manifolds by C. Albert [1] and for Jacobi manifolds by K. Mikami
[8] and J.M. Nunes da Costa [9].

The notion of complex Poisson structure, defined on a complex manifold, was
introduced by A. Lichnerowicz [5].

The aim of this paper is to show that we can also establish a notion of reduc-
tion for the complex Poisson manifolds.

In sections 1 and 2 we recall some definitions and properties concerning the al-
most complex structure of a manifold, the Schouten bracket [10] and the complex
Poisson manifolds.
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Section 3 is devoted to the reduction of complex Poisson manifolds. We prove
a reduction theorem containing the necessary and sufficient condition for a sub-
manifold of a complex Poisson manifold to inherit a reduced complex Poisson
structure.

Using the same procedure as in the real case, A. Lichnerowicz [5] has shown
that the dual of a finite-dimensional complex Lie algebra carries a complex Pois-
son structure. In section 4 we present an example where the complex Poisson
manifold is s/*(2, C) and the reduction is due to the action of a complex Lie group
on this complex Lie algebra.

In the last section we study the relationship between the real and the complex
Poisson reduction.

1 — Almost complex structure of a manifold

We recall briefly some definitions concerning the almost complex structure of
an analytic complex manifold (see [2], [3], [4] and [5]).

Let M be an analytic complex manifold of (complex) dimension m and let J
be its operator of almost complex structure. We consider an analytic complex
atlas on M such that if (2%)q=1,..m is a system of local complex coordinates,
then

«

z (z*+iz%), a=a+m,

1
V2
where the 2m real numbers (z*) are the real local coordinates associated with
the complex coordinates (z%).

We denote by (T,M)¢ (resp. (TxM)¢) the complexification of the tangent
space (resp. cotangent) to M on x € M. Let

o 1,0 .0 1

@ = ﬁ (6[1,'& — Zaxa) <resp. dZa = \/i(dxa + dea)>
and denote by 8% (resp. dz®) the complex conjugate. For every x € M, the m

vectors %(3}) (resp. dz%(x)) generate a m-dimensional complex vector subspace

of (T, M) (vesp. (T M)¢) which we denote by (T, M)10 (resp. (T:M)10). On
the other hand, the m vectors a%a(x) (resp. dz%(z)) generate a m-dimensional
complex vector subspace of (T, M )¢ (resp. (T M)°) which we denote by (T, M)

(resp. (T M)OD). So, we have the following direct sums

(T M) = (T,M)"D & (T, M)V and (T3 M)° = (T3 M) & (T3 M)
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The linear operator J, on T, M can be extended to the whole (7, M )¢ and has
the eigenvalues 7 and —i. The vector subspace (T, M) (resp. (T, M)(OD) of
(T, M)¢ is generated by the eigenvectors associated with the eigenvalue i (resp.
—1).

A vector v € (T, M)¢ of components (v, v%), with v = v2, is called a real
vector and, if v is a real vector, J;(v) is also a real vector.

2 — Schouten bracket and complex Poisson manifolds

For each 2 € M, the decompositions (T, M)¢ = (T, M) @ (T, M)V and
(T M) = (T M) @ (T M)OD of (T, M)¢ and (T*M)°, allow us to introduce
the notion of type for the complex tensor fields. So, given a skew symmetric
contravariant complex tensor field T' of order ¢ (briefly a ¢-tensor) on M we can
write 7 as a sum of t-tensors T of type (p,q), with p+q = t. A t-tensor
of type (t,0) is called a holomorphic t-tensor if its components are holomorphic
functions in all local complex charts.

If A is a real 2-tensor on M, the following decomposition stands:

A=ARD 4 ALY 4 A02)

with A(®2) = A0, Besides, we suppose that ALY = 0, which is equivalent
to the fact that the Poisson bracket of a holomorphic function on M and an
antiholomorphic function on M locally vanishes (cf. [5]).

On the space of skew symmetric contravariant complex tensor fields on M,
we consider the Schouten bracket [10], whose properties are similar to the real
case. If R is a r-tensor and 7' is a t-tensor, then the Schouten bracket [R,T] of
R and T is a (r +t — 1)-tensor. In particular, if R and T are holomorphic, then
[R,T] is also holomorphic.

Definition 1 ([5]). Let M be a connected paracompact analytic complex
manifold and let AZ0 be a 2-tensor on M with A(®2) = A(20). The couple
(M, AR9)) is called a complex Poisson manifold if

AZD ACOT =0 and [AZD AOD] =0 .

Remark 1. If A(%0) is a holomorphic 2-tensor, we always have [A(20), A(0:2)]

Let (M, A(2’0)) be a complex Poisson manifold. If we consider the differentiable
structure of M, underlying to its analytic complex structure, the real 2-tensor
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A =AZD 4 AO2) (with A02) = A20)) defines a real Poisson manifold structure
on M.

Conversely, if the real 2-tensor A defines a real Poisson structure on the ana-
lytic complex manifold M and if A = A0 4 A©2) then (M, AZ9)) is a complex
Poisson manifold.

Associated with the real 2-tensor A, there exists a morphism of (real) vector
bundles,

A*:T"M = TM ,

given by (8, A" (a)) = A(e, #), with o and (3 elements of the same fibre of 7M.

Analogously, there exists a morphism of complex vector bundles, associated with
AZ0)

(ACON# . (7 A0 — (7 p)(0)

defined in a similar way.

3 — Reduction of complex Poisson manifolds

Let N be a paracompact analytic complex submanifold of the analytic complex
manifold M, with complex dimension n (n < m). We denote by Tnx M the (real)
tangent bundle T'M of M restricted to N.

Let F be a vector subbundle of Ty M, that verifies the two following proper-
ties:

i) for all z € N, J,(F,) C Fy;

ii) FNT N is a completely integrable (real) vector subbundle of the tangent
bundle of N, which defines a simple foliation of N; the set N of the leaves
determined by F NT N is a differentiable manifold and the canonical
projection w: N — N is a submersion.

Proposition 1. If conditions i) and ii) hold, then N has the structure of a
complex manifold.

Proof: We only have to show that N is an almost complex manifold whose
torsion vanishes.

Let S be a leaf of the foliation of N determined by F N'T' N. By condition i),
for every x € S, J,(T,S) C TS and so, we may define a map

Jw(a:): Tw(x)N - TTr(J:)N7
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such that j,r(x) oT,m = T,m o J,. This map establishes an almost complex
structure on N.

Since N is a paracompact analytic complex manifold, its torsion vanishes.
The torsion of N also vanishes because it is the projection of the torsion of N.

Remark 2. Condition i) means that the subbundle F is invariant under J.
Then, for all x € N, J, defines a complex structure on the (real) vector space F,
and we have the direct sum

Fc = Fm(lzo) EB Fggo»l) ,

xT
with FAM% < (T,0)9) and ™V ¢ (T, M),
Definition 2. Suppose that conditions i) and ii) above hold and assume the
following:

iii) if f and g are complex functions defined on M, with differentials df and
dg vanishing on F¢, then d({f, g} >9) also vanishes on F¢, where {-, -}(20)
denotes the Poisson bracket on (M, A(20)).

We say the triple (M, N, F') is complex Poisson reducible if N has the structure
of a complex Poisson manifold such that, if f and g are complex functions on N
and if f and g are complex functions on M, which are extensions of f om and
g o w respectively, with df and dg vanishing on F¢, then

7 (20 .
(F.912%om = {f,9)®V 0,
where j: N — M is the canonical injection.

Remark 3. For all complex functions f on M, we set df = (df )0 4 (df )V,
with (df)19) e (T*M)10) and (df)OY e (T M)V, Tt is then obvious that df
vanishes on F¢ if and only if (df)("0) vanishes on F19 and (df)(®") vanishes on
FOD,

Reduction Theorem. Suppose that conditions i), ii) and iii) hold. The
triple (M, N, F) is complex Poisson reducible if and only if

(A(Q,O))# (F(LO))O c FLO) 4 (TN)(LO) 7
where (F(1:9)0 js the subbundle of (T*M)19) with fibre

(FM)° = {a e (M) M0 (a,0) =0, Yv e PO
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Proof: Assume that (M, N, F') is complex Poisson reducible. Let z be an
arbitrary element of N. If 6;1,0) e (F19)0 one can find a complex map f on
M such that df vanishes on F¢ and (df)10(z) = B, By Remark 3, (df)(%)
vanishes on F(19. Let ol"” be an arbitrary element of (F,,gl’o) + (T, N )00,
Let us choose an extension ¢ of the complex zero function on N such that
(dg)10) (z) = af and dg vanishes on F¢ (so, (dg)"? vanishes on F(1.0)),
Then,

(a0, (ALY# (510)) = {£, g} (j(w)) = {F,0}2" =0,
where f: N — C with fow:foj, and we get

(A(Q,O))# (FJEI,O))O C Fggl,O) + (TmN)(LO) )

x

Suppose now that for all x € N, we have (AE,;Q’O))#(FJ(;I’U))O c FLO 4

(T,N)10) . Let f and § be two complex functions on N and let f and g be
extensions of f o and gom, respectively, with df and dg vanishing on F¢. From
iii), d({f, g}*9) vanishes on F¢; then, {f,g}*% is constant on the leaves of N
and induces a map on N that we denote by {f, g?}%’o). One can show that this

map does not depend on the choice of the extensions of fo m and gom. It only
remains to check that the bracket {-, -}%O), defined in this way is in fact a com-
plex Poisson bracket. But this is easy to do because each one of its properties is
a consequence of the corresponding property of the Poisson bracket {-, -}(270) on
M. n

4 — Complex Lie group actions on a complex Poisson manifold. Com-
plex Poisson reduction of sl*(2,C)

Let (M ,A(z,o)) be a complex Poisson manifold and let G be a complex Lie
group acting on M with an action ¢. We say that ¢ is a complex Poisson action
if for every g € G, the map ¢4: © € M — ¢(g,x) € M is a complex holomorphic
Poisson morphism.

For each X in the Lie algebra G of GG, we denote by X ](\}’0) the fundamental
vector field associated with X for the action ¢. It is a holomorphic vector field
of type (1,0). If we take a connected complex Lie group G, the action ¢ of G on

M is a complex Poisson action if and only if the vector field X](\}’O) is a complex

Poisson infinitesimal automorphism, this means, if and only if [A(Q’O), X](\/l[’o)] = 0.
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Remark 4. Since for every g € G, the map ¢,: M — M is holomorphic,
it is also an almost complex map. This means that the following equality holds,
for all x € M:

Tx¢g Odg = J¢g(z) o T:c¢g :

If we take a Poisson action of a complex Lie group G on a complex Poisson
manifold, such that the set of orbits is a complex manifold, this set has the
structure of a reduced complex Poisson manifold. We are going to consider the
case where the complex Poisson manifold is the dual G* of a complex Lie algebra
of the complex Lie group G and the complex Poisson action is a restriction of the
complex coadjoint action of G on G*.

We take the connected complex Lie group SL(2,C). Its Lie algebra si(2,C)
may be identified with the complexification of the real Lie algebra sl(2,R) and
consists of all 2 x 2 traceless complex matrices. It is a complex Lie subalgebra of
gl(2,C), with complex dimension 3, that is, real dimension 6.

The set {1, a2, a3, 81, B2, B3} with
a—i<1 0) a_(Ol) a_(OO)
=alo 1) 27 o o) @71 oo)
1 (i 0 0 i 00
ﬁl_\/i(o —i)’ 52_(0 0)’ ﬁ3_<i 0>’

is a (real) basis of sl(2,C). Thus, the set {Ai, A2, A3}, with 4; = «o; + 35,
j =1,2,3, is a complex basis of sl(2,C).

Let {8%11, 8%12, 8%‘3} be the basis of sl*(2,C), dual of the basis {A1, A2, A3}.
(We consider the dual product of si(2,C) and si*(2,C) given by %(Aj) =
Lex(() 4y), Gk € {1.2,3))

If J is the (canonical) operator of almost complex structure of sl*(2,C), we
have

0 0
= ) =i—, je{1,2

and every aiAj is a vector field of type (1,0) of the complex manifold sl*(2,C).
Let us compute the following brackets in si(2, C):

[A1, Ag] = A1 Ay — As A1 = (V2 +iV2) Ay,
[A1, A3] = A1 Az — A3A) = —(V2+iV?2) A3,

and
[Ag, A3] = Ag Az — AzAs = (V2 +iV2) A; .
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The 2-tensor

0 0 0 0
(270): y — ) - -
A (\/§+Z\/§)A26A1A6A2 (\/§+Z\/§)A38A1/\6A3
. 0 0

is of type (2,0) and defines a complex Poisson manifold structure on si*(2,C),
because the following equalities hold

A ARD =0 and [APO AOI]=0.

This is the so called complex Lie-Poisson structure of si*(2,C).

Let H be the subgroup of SL(2,C) of complex dimension 1, whose Lie algebra
is generated by A;. We consider the following action of H on the complex Poisson
manifold (s*(2,C), A(%0)),

Y (h,§€) € H x s1*(2,C) — (1) e € s1*(2,0)

which is the restriction of the coadjoint action of SL(2,C) on si*(2,C), to the
Lie subgroup H. Since H is connected and its Lie algebra is generated by Aj,
for showing that ¢ is a complex Poisson action, we only have to show that
[(Al)g\}[’o),/\@’o)] = 0. But, since 1 is a restriction of the coadjoint action, we
have (A1) (7€) = —ad?y, (€), for all € € s1*(2,C). (For every X,Y € s1(2,C),
(ad%x (€),Y) = = (& [X, Y])).
Thus,
0

)
A" = (V2 iV2) Ay oo = (VR HiV2) As 5o
2 3

and a straightforward calculation leads to

(A5 A0 =0

If Fg(l’o) denotes the complex vector space generated by (Al)g\ijo) (£), by Re-
mark 4, we can deduce that J¢(Fe) C Fg, for all £ € s1*(2,C), where F¢ is
the vector space of the real vectors of F¢ = Fg(l’o) @ Féo’l. Then, the triple
(sl*(2,C), sl*(2,C), F) is complex Poisson reducible and the manifold of the leaves
of s1*(2,C) is a reduced complex Poisson manifold of complex dimension 2.
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5 — The relationship between real and complex Poisson reduction

Let M be an analytic complex manifold and let A be a real 2-tensor Poisson on
M with A = AZ0 £ A02) where A(92) = A(20). The real 2-tensor A determines a
real Poisson structure on M while A9 determines a complex Poisson structure.

We can state the following.

Proposition 2. Let N be a paracompact analytic complex submanifold of
M and let F' be a real subbundle of that verifies conditions i), ii) and iii). Then,
the triple (M, N, F) is complex Poisson reducible if and only if it is real Poisson
reducible.

Proof: By Poisson reduction theorems in the real and complex cases, we
only have to show that the two following conditions are equivalent:

1) A#(FO) C F+ T N;
2) (ACOY#(p(.0)0  p(L0) 4 (T N)(L0),

where F° is the annihilator of F in T*M.

Let aél’o) be an arbitrary element of (Fél’o))o and let 043(50’1) be its complex
conjugate. Then, o, = 04;(,;1’0) + a;(xo’l) is a (real) element of FV. If we assume that
A#(ay) € Fy + TN, we can deduce that (Af’o))#(a&l’(’)) e PO 4 (T, N)(10)
and 1)=-2). For showing that 2)=-1), we have to remark that if « € T*M (« real)
we can write a = o109 a0 where (10 € (T*M)19) and o0V € (T M)OD),
with (01 = a(10), If o € FO, then a9 ¢ (F(1L9)0 and also %V € (FO:D)0 g
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