AN APPROXIMATION PROCEDURE FOR FIXED POINTS OF STRONGLY LIPSCHITZ OPERATORS

Ram U. Verma

Abstract

Based on a modified iterative algorithm, fixed points of the operators of the form $S=T+U$ on nonempty closed convex subsets of Hilbert spaces are approximated. Here T is strongly Lipschitz and Lipschitz continuous and U is Lipschitz continuous.

1 - Introduction

Recently, Wittmann [5, Theorem 2] approximated fixed points of nonexpansive mappings T on nonempty closed convex subsets of Hilbert spaces by employing an iterative procedure

$$
\begin{equation*}
x_{n}=\left(1-a_{n}\right) x_{0}+a_{n} T x_{n-1} \quad \text { for } n \geq 1 \tag{1}
\end{equation*}
$$

where $\left\{a_{n}\right\}$ is an increasing sequence in $[0,1)$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} a_{n}=1 \quad \text { and } \quad \sum_{n=1}^{\infty}\left(1-a_{n}\right)=\infty \tag{2}
\end{equation*}
$$

This result, for example, applies to $a_{n}=1-n^{-a}$ with $0<a \leq 1$, and improves a theorem of Halpern [1, Theorem 3] which does not apply to the case $a_{n}=1-1 / n$. Furthermore, (2) is not just sufficient, but also necessary for the convergence of $\left\{x_{n}\right\}$ for all T [1, Theorem 2].

Here we are concerned with the approximation of fixed points of operators of the form $S=T+U$, where T is strongly Lipschitz and Lipschitz continuous and U is Lipschitz continuous on a nonempty closed convex subset K of a real Hilbert
space H by using the following modified iterative procedure in a more general setting

$$
\begin{equation*}
x_{n+1}=\left(1-a_{n}\right) x_{n}+a_{n}\left[(1-t) x_{n}+t(T+U) x_{n}\right] \quad \text { for } n \geq 0 \tag{3}
\end{equation*}
$$

where $t>0$ is arbitrary and the sequence $\left\{x_{n}\right\}$ lies in $[0,1]$ such that $\sum_{n=0}^{\infty} a_{n}$ diverges for all $n \geq 0$.

For $U=0$ in (3), we find the iterative algorithm

$$
\begin{equation*}
x_{n+1}=\left(1-a_{n}\right) x_{n}+a_{n}\left[(1-t) x_{n}+t T x_{n}\right] \quad \text { for all } n \geq 0 \tag{4}
\end{equation*}
$$

For $t=1$ in (4), we arrive at

$$
\begin{equation*}
x_{n+1}=\left(1-a_{n}\right) x_{n}+a_{n} T x_{n} \quad \text { for all } n \geq 0 \tag{5}
\end{equation*}
$$

2 - Preliminaries

Let H be a real Hilbert space with the inner product $\langle\cdot, \cdot\rangle$ and norm $\|\cdot\|$.
Definition 2.1 An operator $T: H \rightarrow H$ is said to be strongly Lipschitz if, for all u, v in H, there exists a real number $r \geq 0$ such that

$$
\begin{equation*}
\langle T u-T v, u-v\rangle \leq-r\|u-v\|^{2} . \tag{6}
\end{equation*}
$$

The operator T is called Lipschitz continuous if there exists a real number $s>0$ such that

$$
\begin{equation*}
\|T u-T v\| \leq s\|u-v\| \quad \text { for all } u, v \text { in } H . \tag{7}
\end{equation*}
$$

It is easily seen that (7) implies that

$$
\begin{equation*}
\langle T u-T v, u-v\rangle \leq s\|u-v\|^{2} \quad \text { for all } u, v \text { in } H . \tag{8}
\end{equation*}
$$

Definition 2.2. An operator $T: H \rightarrow H$ is said to be hemicontinuous if, for all u, v in H, the function

$$
\begin{equation*}
t \rightarrow\langle T(t u+(1-t) v), u-v\rangle \quad \text { for } \quad 0 \leq t \leq 1 \tag{9}
\end{equation*}
$$

is continuous.

To this end, let us consider an example of strongly Lipschitz operator where the real number r in inequality (6) is slightly relaxed.

Example 2.1 [6]: Let K be a nonempty closed convex subset of a real Hilbert space H. Let $T: K \rightarrow K$ be hemicontinuous on K such that, for a real number $r>-1$ and for all u, v in K,

$$
\begin{equation*}
\langle T u-T v, u-v\rangle \leq-r\|u-v\|^{2} . \tag{10}
\end{equation*}
$$

Then T has a unique fixed point in K.

3 - The fixed point theorem

In this section we consider the approximation of fixed points of a combination of strongly Lipschitz and Lipschitz continuous operators.

Theorem 3.1. Let H be a real Hilbert space and let K be a non-empty closed convex subset of H. Let $T: K \rightarrow K$ be strongly Lipschitz and Lipschitz continuous with respective real numbers $r \geq 0$ and $s \geq 1$, and let $U: K \rightarrow K$ be Lipschitz continuous with a real number $m>0$. Let F be a nonempty set of fixed points of $S=T+U$, and let $\left\{a_{n}\right\}$ be a sequence in $[0,1]$ such that $\sum_{n=0}^{\infty} a_{n}$ diverges for all $n \geq 0$. Then, for any x_{0} in K, the sequence $\left\{x_{n}\right\}$ generated by the iterative algorithm (3) for

$$
\begin{equation*}
0 \leq k=\left[\left((1-t)^{2}-2 t(1-t) r+t^{2} s^{2}\right)^{1 / 2}+t m\right]<1 \tag{11}
\end{equation*}
$$

for all t such that $0<t<2(1+r-m) /\left(1+2 r+s^{2}-m^{2}\right)$ and $1+r-m>0$, converges to a fixed point of $S=T+U$.

When $U=0$ in Theorem 3.1, we arrive at the following result.
Corollary 3.1. Let K be a nonempty closed convex subset of a real Hilbert space H. Let $T: K \rightarrow K$ be strongly Lipschitz and Lipschitz continuous with corresponding constants $r \geq 0$ and $s \geq 1$. Let $\left\{a_{n}\right\}$ be a sequence in $[0,1]$ such that $\sum_{n=0}^{\infty} a_{n}$ diverges for all $n \geq 0$. Then, for any element x_{0} in K, the sequence $\left\{x_{n}\right\}$ generated by the iterative algorithm (4) for

$$
\begin{equation*}
0 \leq k_{0}=\left[(1-t)^{2}-2 t(1-t) r+t^{2} s^{2}\right]^{1 / 2}<1 \tag{12}
\end{equation*}
$$

for all t such that $0<t<2(1+r) /\left(1+2 r+s^{2}\right)$, converges to a fixed point of T.

Proof of Theorem 3.1: For an element z in F, we have

$$
\begin{equation*}
\left\|x_{n+1}-z\right\|= \tag{13}
\end{equation*}
$$

$$
\begin{aligned}
= & \|\left(1-a_{n}\right) x_{n}+a_{n}\left[(1-t) x_{n}+t(T+U) x_{n}\right]-\left(1-a_{n}\right) z \\
& -a_{n}[(1-t) z+t(T+U) z] \| \\
= & \left\|\left(1-a_{n}\right)\left(x_{n}-z\right)+a_{n}\left[(1-t)\left(x_{n}-z\right)+t\left(T x_{n}-T z\right)+t\left(U x_{n}-U z\right)\right]\right\| \\
\leq & \left(1-a_{n}\right)\left\|x_{n}-z\right\|+a_{n}\left\|(1-t)\left(x_{n}-z\right)+t\left(T x_{n}-T z\right)\right\|+a_{n} t\left\|U x_{n}-U z\right\|
\end{aligned}
$$

Since T is strongly Lipschitz and Lipschitz continuous, this implies that

$$
\begin{align*}
& \left\|(1-t)\left(x_{n}-z\right)+t\left(T x_{n}-T z\right)\right\|^{2}= \tag{14}\\
& \quad=(1-t)^{2}\left\|x_{n}-z\right\|^{2}+2 t(1-t)\left\langle T x_{n}-T z, x_{n}-z\right\rangle+t^{2}\left\|T x_{n}-T z\right\|^{2} \\
& \quad \leq\left[(1-t)^{2}-2 t(1-t) r+t^{2} s^{2}\right]\left\|x_{n}-z\right\|^{2}
\end{align*}
$$

Applying (14) to (13) and using the Lipschitz continuity of U, it follows that

$$
\begin{aligned}
\left\|x_{n+1}-z\right\| & \leq\left\{\left(1-a_{n}\right)+\left[\left((1-t)^{2}-2 t(1-t) r+t^{2} s^{2}\right)^{1 / 2}+t m\right] a_{n}\right\}\left\|x_{n}-z\right\| \\
& =\left[1-(1-k) a_{n}\right]\left\|x_{n}-z\right\| \\
& \leq \prod_{j=0}^{n}\left[1-(1-k) a_{j}\right]\left\|x_{0}-z\right\|
\end{aligned}
$$

where $0 \leq k=\left[\left((1-t)^{2}-2 t(1-t) r+t^{2} s^{2}\right)^{1 / 2}+t m\right]<1$ for all t such that $0<t<2(1+r-m) /\left(1+2 r+s^{2}-m^{2}\right)$ for $1+r-m>0$. Since $\sum_{j=0}^{\infty} a_{j}$ diverges and $k<1$, this implies that $\lim _{n \rightarrow \infty} \prod_{j=0}^{n}\left[1-(1-k) a_{j}\right]=0$, and consequently, $\left\{x_{n}\right\}$ converges to z, a fixed point of $S=T+U$. This completes the proof.

REFERENCES

[1] Halpern, B. - Fixed points of nonexpansive maps, Bull. Amer. Math. Soc., 73 (1967), 957-961.
[2] Kirk, W.A. and Sternfeld, Y. - The fixed point property for nonexpansive mappings in certain product spaces, Houston J. Math., 10 (1984), 207-214.
[3] Reich, S. - Approximating fixed points of nonexpansive maps, PanAmer. Math. J., 4(2) (1994), 23-28.
[4] Rhoades, B.E. - Fixed point iterations for certain nonlinear mappings, J. Math. Anal. Appl., 183 (1994), 118-120.
[5] Wittmann, R. - Approximation of fixed points of nonexpansive mappings, Arch. Math., 58 (1992), 486-491.
[6] Yao, J.C. - Applications of variational inequalities to nonlinear analysis, Appl. Math. Lett., 4 (1991), 89-92.

Ram U. Verma,
International Publications,
12046 Coed Drive, Orlando, Florida 32826 - U.S.A.
and
Istituto per la Ricerca di Base, Division of Mathematics,
I-86075 Monteroduni (IS), Molise - ITALY

