Vol. 54 Fasc. 4 - 1997

ON THE DIOPHANTINE EQUATION $D_{1} x^{2}+D_{2}^{m}=4 y^{n}$

M. Mignotte

Abstract

Consider positive integers D_{1}, D_{2} and let h be the class-number of the imaginary quadratic field $Q\left(\sqrt{-D_{1} D_{2}}\right)$. We study the equation $D_{1} x^{2}+D_{2}^{m}=4 y^{n}$ when m is an odd integer, n an odd prime number, $\operatorname{gcd}\left(D_{1} x, D_{2} y\right)=1, n \nmid h$, and also $y>1$.

Le Maohua [L] obtained the following result.
Theorem A. Let D_{1} and D_{2} be positive integers. Consider the diophantine equation

$$
\begin{equation*}
D_{1} x^{2}+D_{2}^{m}=4 y^{n} \tag{*}
\end{equation*}
$$

where m is an odd integer, n an odd prime number, $\operatorname{gcd}\left(D_{1} x, D_{2} y\right)=1, n \nmid h$, where h is the class-number of the imaginary quadratic field $Q\left(\sqrt{-D_{1} D_{2}}\right)$, and $y>1$. Then the equation (*) has a finite number of solutions $\left(D_{1}, D_{2}, x, y, m, n\right)$. Moreover, the solutions satisfy $4 y^{n}<\exp \exp 470$ and $n<8 \cdot 10^{6}$.

The aim of the present note is to sharpen the upper bound on n and, which is more important to prove that (under some extra hypothesis) for each pair $\left(D_{1}, D_{2}\right)$ there is at most one solution n. Namely, our result is the following.

Theorem 1. Consider the diophantine equation $D_{1} x^{2}+D_{2}^{m}=4 y^{n}$ with the same hypotheses as in Theorem A. Then, in the range $2 \leq y \leq 5000$ the only solutions with $n>5$ are $n=7$ for $y \in\{2,3,4,5\}$ and $n=13$ for $y=2$, and the solutions for $n=5$ are obtained for

$$
\begin{aligned}
& y \in\{2,3,4,5,7,8,11,13,18,21,29,34,47,55,76,89,123,144,199,233 \\
& 322,377,521,610,843,987,1364,1597,2207,2584,3571,4181\}
\end{aligned}
$$

[^0]For $5000<y<43000$ there is at most one solution $n \geq 5$. For $y \geq 43000$ there is at most one solution $n \geq 3$. Moreover, in all cases $n \leq 52000$.

Our proof follows rather closely Le Maohua's. It is proved in [L] that the previous hypotheses lead to a relation of the type

$$
\frac{\varepsilon^{n}-\bar{\varepsilon}^{n}}{\varepsilon-\bar{\varepsilon}}= \begin{cases} \pm n, & \text { if } m>1 \text { and } n \mid D_{2} \tag{1}\\ \pm 1, & \text { otherwise }\end{cases}
$$

where

$$
\begin{equation*}
\varepsilon=\frac{X_{1} \sqrt{D_{1}}+Y_{1} \sqrt{-D_{2}}}{2}, \quad \bar{\varepsilon}=\frac{X_{1} \sqrt{D_{1}}-Y_{1} \sqrt{-D_{2}}}{2} \tag{2}
\end{equation*}
$$

with X_{1} and Y_{1} positive and

$$
D_{1} X_{1}^{2}+D_{2} Y_{1}^{2}=4 y=4|\varepsilon|^{2}, \quad \operatorname{gcd}\left(D_{1} X_{1}, D_{2} Y_{1}\right)=1
$$

Put $\varepsilon=|\varepsilon| e^{i \theta}$ (with $\left.|\theta| \leq \pi\right)$. Notice that $\sin \theta=\frac{Y_{1} \sqrt{D_{2}}}{2|\varepsilon|}, \cos \theta=\frac{X_{1} \sqrt{D_{1}}}{2|\varepsilon|}$ so that $0<\theta<\pi / 2$, and also that (1) implies $|2 \sin (n \theta)| \leq n|\varepsilon|^{-n}|\varepsilon-\bar{\varepsilon}|$. Thus, when $2 n\left|\varepsilon^{1-n}\right| \leq 1$ the relations

$$
\left|e^{2 i n \theta}-1\right|=|2 \sin (n \theta)| \leq n|\varepsilon|^{-n}|\varepsilon-\bar{\varepsilon}| \leq 2 n|\varepsilon|^{1-n}
$$

imply $|\sin (n \theta)| \leq 1 / 2$, so that there exists an integer k^{*}, with $0 \leq k^{*}<n / 2$ (recall that n is odd) such that
$2\left|n \theta-k^{*} \pi\right| \leq 2 \arcsin (1 / 2) \times n|\varepsilon|^{1-n}|\varepsilon-\bar{\varepsilon}|<1.048 n|\varepsilon|^{-n}|\varepsilon-\bar{\varepsilon}| \leq 2.096 n|\varepsilon|^{1-n}$.
This prove that the "linear form in logs"

$$
\begin{equation*}
\Lambda=n \log \left(\frac{\varepsilon}{\bar{\varepsilon}}\right)-k i \pi=(2 n \theta-k \pi) i \tag{3}
\end{equation*}
$$

where $k=2 k^{*}$ (thus $0 \leq k<n$), satisfies

$$
\begin{equation*}
\log |\Lambda| \leq-n \log |\varepsilon|+\log (\pi n|\varepsilon-\bar{\varepsilon}| / 3) \leq-n \log |\varepsilon|+\log (2.096 n|\varepsilon|) \tag{4}
\end{equation*}
$$

if $n \geq 11$ when $y=2$, if $n \geq 7$ when $y=3$, if $n \geq 5$ when $4 \leq y \leq 6$ and for any $n \geq 3$ for $y \geq 7$.

We prove that $k \neq 0$. Indeed, if $k=0$ the relation $\Lambda=2 n \theta i$ and (4) imply $|\varepsilon|^{n-1} \leq 1.1$ which does not hold.

To get a lower bound for $|\Lambda|$ we apply $[\mathrm{L}-\mathrm{M}-\mathrm{N}]$, Th. 3, which gives (we denote by $h(\alpha)$ the logarithmic absolute height of an algebraic number)

$$
\log |\Lambda| \geq-9 a H^{2}
$$

where

$$
\begin{gathered}
a=\max \{20,12.85|\log (\varepsilon / \bar{\varepsilon})|+D h(\varepsilon / \bar{\varepsilon})\}, \quad D=[Q(\bar{\varepsilon} / \varepsilon): Q] / 2, \\
H=\max \left\{17, D \log \left(\frac{|k|}{2 a}+\frac{n}{25.7 \pi}\right)+4.6 D+3.25\right\},
\end{gathered}
$$

here

$$
h(\varepsilon / \bar{\varepsilon})=\log |\varepsilon|, \quad 0<\log (\bar{\varepsilon} / \varepsilon)<\pi,
$$

and $D=1$ since $\bar{\varepsilon} / \varepsilon$ satisfies $y(\bar{\varepsilon} / \varepsilon)^{2}-\frac{1}{2}\left(D_{1} X_{1}^{2}-D_{2} Y_{1}^{2}\right)(\varepsilon / \bar{\varepsilon})+y=0$. This gives

$$
\begin{equation*}
\log |\Lambda| \geq-9 \max \{20,25.70+\log |\varepsilon|\} \times \max \{17, \log n+4.57\}^{2} \tag{5}
\end{equation*}
$$

Comparing (4) and (5) we get the fundamental inequality

$$
\begin{align*}
n \log |\varepsilon| \leq & 9\left(\max \{20,25.7 \theta+\log |\varepsilon|\} \times \max \{17, \log n+4.57\}^{2}\right) \\
& +\log (2.096 n|\varepsilon|) \tag{6}
\end{align*}
$$

Using the inequalities $y \geq 2$ and $\theta<\pi / 2$, we get $a \leq 118.5 \log |\varepsilon|$, and (6) implies

$$
\begin{equation*}
n<683000 \tag{7}
\end{equation*}
$$

But, for larger y we get a better upper bound for n, for example

$$
\begin{equation*}
y \geq 50 \Rightarrow n \leq 110000, \quad y \geq 5000 \Rightarrow n \leq 52000 \tag{8}
\end{equation*}
$$

Also, $y>10^{4}$ implies $n<48300$ and $y>10^{500}$ implies $n<3000$.
Using the upper bound (7), a numerical verification shows that equation (1) has no solution with $n>5$ and $y \leq 50$ except $n=7$ for $y \in\{2,3,4,5\}$ and $n=13$ for $y=2$, and that the solutions for $n=5$ are obtained for $y \in\{2,3,4,5,7,8,11,13,18,21,29,34,47\}$.

Thus, we may suppose that $y>50$, in this case it is easy to verify that if n is a solution of (4) then n is a denominator of a principal convergent of the real number $2 \theta / \pi$, which permits to speed up the verification.

Using the first of inequalities (8), we have verified that equation (1) has no solution with $n>5$ in the range $50<y \leq 5000$, and that, in this range, the solutions with $n=5$ occur for

$$
\begin{aligned}
& y \in\{55,76,89,123,144,199,233,322,377,521,610 \\
& 843,987,1364,1597,2207,2584,3571,4181\}
\end{aligned}
$$

Suppose now that $y>5000$ and that n^{\prime} is a second solution to (1) with $n^{\prime}>n \geq 3$, and n^{\prime} prime. Then, by (8), we have $n^{\prime}<52000$, and there exists an even integer k^{\prime} such that $0<k^{\prime}<n^{\prime}$ and

$$
\Lambda^{\prime}=n^{\prime} \log \left(\begin{array}{l}
\frac{\varepsilon}{\bar{\varepsilon}}
\end{array}\right)-k^{\prime} i \pi
$$

satisfies

$$
\log \left|\Lambda^{\prime}\right| \leq-n^{\prime} \log |\varepsilon|+\log \left(2.096 n^{\prime}|\varepsilon|\right)
$$

Then (because $0<k<n$ and $k^{\prime} \neq 0$)
$2 \pi \leq\left|n k^{\prime}-n^{\prime} k\right| \pi=\left|n^{\prime} \Lambda-n \Lambda^{\prime}\right| \leq 2.096 n n^{\prime}|\varepsilon|^{-n+1}\left(1+|\varepsilon|^{-2}\right) \leq 2.1 n n^{\prime}|\varepsilon|^{-n+1}$.
Thus

$$
n^{\prime} \geq \pi \frac{|\varepsilon|^{n-1}}{1.05 n}
$$

This leads to a contradiction for $n \geq 5$. Thus there is at most one solution $n \geq 5$ for $y>5000$. In the same way, there is at most one solution $n \geq 3$ for $y \geq 43000$.

REFERENCES

[L] Le Maohua - On the diophantine equation $D_{1} x^{2}+D_{2}^{m}=4 y^{n}$, Mh. Math., 120 (1995), 121-125.
[L-M-N] Laurent, M., Mignotte, M. and Nesterenko, Y. - Formes linéaires en deux logarithmes et déterminants d'interpolation, J. Numb. Th., 55 (1995), 285-321.

Maurice Mignotte,
Université Louis Pasteur, Mathématique,
67084 Strasbourg - FRANCE
E-mail: mignotte@math.u-strasbg.fr

[^0]: Received: July 12, 1996; Revised: December 3, 1996.

