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NONLINEAR FUNCTIONAL INTEGRAL EQUATIONS
OF CONVOLUTION TYPE

W. Gomaa El-Sayed

Abstract: The paper presents an existence theorem of monotonic solutions for a

nonlinear functional integral equation of convolution type by using Darbo fixed point

theorem associated with the Hausdorff measure of noncompactness.

1 – Introduction

Nonlinear functional integral equations of convolution type arise very often

in applications, especially in numerous branches of mathematical physics [12].

The equations of such a kind have been investigated in several papers [2], [9],

where the equations in question have solutions in some function spaces. Also,

Banas and Knap [5] discussed the solvability of the considered equations in the

space of Lebesgue integrable functions by using the technique of measures of

weak noncompactness and the fixed point theorem due to Emmanuele [8]. In

spite of this approach gives more general result under less restrictive assumptions

than those in [2], [9], but the weak continuity condition for an operator is not

easy to be satisfied in general. In this paper, we try to overcome this difficulty

by using Darbo fixed point theorem associated with the Hausdorff measure of

noncompactness, which is a strong measure.
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2 – Notation and auxiliary facts

Let R be the field of real numbers, R+ be the interval [0,∞) and L1(I) be the

space of Lebesgue integrable functions on a measurable subset I of R, with the

standard norm

‖x‖L1(I) =

∫

I
|x(t)| dt .

The space L1(R+) will be shortly denoted by L1 and its norm ‖ · ‖, i.e.

‖x‖ =

∫ ∞

0
|x(t)| dt .

One of the most important operator studied in nonlinear functional analysis

is the so-called superposition operator [1]. Assume that a function f(t, x) = f :

I × R → R satisfies Carathéodory conditions i.e. it is measurable in t for any

x ∈ R and continuous in x for almost all t ∈ I. Then to every function x(t) being

measurable on I we may assign the function

(Fx)(t) = f(t, x(t)) , t ∈ I .

The operator F in such a way is called the superposition operator generated by

the function f . We have the following theorem due to Appell and Zabrejko [1].

Theorem 1. The superposition operator F maps continuously the space

L1(I) into itself if and only if

|f(t, x)| ≤ a(t) + b|x| ,

for all t ∈ I and x ∈ R, where a(t) ∈ L1(I) and b ≥ 0.

Next, we will mention a desired theorem concerning the compactness in mea-

sure of a subset X of L1(I) (cf. [7]).

Theorem 2. Let X be a bounded subset of L1(I) consisting of functions

which are a.e. nondecreasing (or nonincreasing) on the interval I. Then X is

compact in measure.

Furthermore, we recall a few facts about the convolution operator (cf. [11]).

Let k ∈ L1(R) be a given function. Then for any function x ∈ L1, the integral

(Kx)(t) =

∫ ∞

0
k(t− s)x(s) ds
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exists for almost every t ∈ R+. Moreover, the function (Kx)(t) belongs to the

space L1. Thus K is a linear operator which maps the space L1 into L1 and

K is also bounded since ‖Kx‖ ≤ ‖K‖L1(R)‖x‖, for every x ∈ L1; so, it will

be continuous. Hence the norm ‖K‖ of the convolution operator is majored by

‖K‖L1(R).

In the sequel, we have the following theorem due to Krzyz [10].

Theorem 3. Assume that k(t, s) = k : R2
+ → R+ is measurable on R2

+ and

such that the integral operator

(Kx)(t) =

∫ ∞

0
k(t, s)x(s) ds , t ≥ 0 ,

maps L1 into itself. Then K transforms the set of nonincreasing functions from

L1 into itself if and only if for any A > 0 the following implication is true

t1 < t2 →

∫ A

0
k(t1, s) ds ≥

∫ A

0
k(t2, s) ds .

Finally, we give a short note on measures of noncompactness and fixed point

theorem. Let E be an arbitrary Banach space with norm ‖·‖ and the zero element

θ.

Let also X be a nonempty and bounded subset of E and Br be a closed ball

in E centered at θ and radius r.

The Hausdorff measure of noncompactness χ(X) [4] is defined as

χ(X) = inf
{

r > 0: there exists a finite subset Y of E such that x ⊂ Y +Br

}

.

Another measure was defined in the space L1 [3]. For any ε > 0, let

c(X) = lim
ε→0

{

sup
x∈X

{

sup
[

∫

D
|x(t)| dt, D ⊂ R+, measD ≤ ε

]}

}

and

d(X) = lim
T→∞

{

sup
[

∫ ∞

T
|x(t)| dt : x ∈ X

]

}

,

where measD denotes the Lebesgue measure of a subset D.

Put

γ(X) = c(X) + d(X) .

Then we have the following theorem [3], which connects between the two measures

χ(x) and γ(x).
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Theorem 4. Let X be a nonempty, bounded and compact in measure subset

of L1. Then

χ(X) ≤ γ(X) ≤ 2χ(X) .

As an application of measures of noncompactness, we recall the fixed point

theorem due to Darbo [6].

Theorem 5. Let Q be a nonempty, bounded, closed and convex subset of E

and let H : Q → Q be a continuous transformation which is a contraction with

respect to the measure of noncompactness µ, i.e. there exists k ∈ [0, 1) such that

µ(HX) ≤ k µ(X) ,

for any nonempty subset X of C. Then H has at least one fixed point in the set

Q.

3 – Main result

Now the following nonlinear integral equation of convolution type will be

investigated

(1) χ(t) = f

(

t,

∫ ∞

0
k(t− s)x(ϕ(s)) ds

)

, t ≥ 0 .

For further purposes the operator

(Hx)(t) = f

(

t,

∫ ∞

0
k(t− s)x(ϕ(s)) ds

)

will be written as the product Hx = F Kx(ϕ) of the convolution operator

(Kx)(t) =

∫ ∞

0
k(t− s)x(s) ds

and the superposition operator

(Fx)(t) = f(t, x(t)) .

Thus equation (1) becomes

(2) x = Hx = F Kx(ϕ) .
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We shall treat the equation (1) under the following assumptions which are

listed below.

i) f : R+×R → R satisfies Carathéodory conditions and there are a function

a ∈ L1 and a constant b ≥ 0 such that

|f(t, x)| ≤ a(t) + b|x| ,

for all t ∈ R+ and x ∈ R. Moreover, f(t, x) ≥ 0 for x ≥ 0 and f is assumed

to be nonincreasing in the first variable and nondecreasing in the second

one;

ii) the function k : R → R+ belongs to the space L1(R) and for any A > 0

and for all t1, t2 ∈ R+, the following condition is satisfied

t1 < t2 →

∫ A

0
k(t1 − s) ds ≥

∫ A

0
k(t2 − s) ds ;

iii) ϕ : R+ → R+ is increasing, absolutely continuous and there is a constant

B > 0 with the property ϕ′(t) ≥ B for almost all t ∈ R+;

iv) b‖K‖
B

< 1.

Then we can prove the following theorem.

Theorem 6. Let the assumptions i)–iv) be satisfied. Then the equation (1)

has at least one solution x ∈ L1 being a.e. nonincreasing on R+.

Proof: First of all observe that for a given x ∈ L1 the function Hx belongs

to L1, which is a consequence of the assumptions i)–iii).

Additionally, using (2) we get

‖Hx‖ = ‖F Kx(ϕ)‖

≤

∫ ∞

0

[

a(t) + b
∣

∣

∣

∫ ∞

0
k(t− s)x(ϕ(s)) ds

∣

∣

∣

]

dt

≤ ‖a‖+ b‖Kx(ϕ)‖

≤ ‖a‖+ b‖K‖ ‖x(ϕ)‖

≤ ‖a‖+ b‖K‖

∫ ∞

0
|x(ϕ(s))| ds

≤ ‖a‖+
b‖K‖

B

∫ ∞

0
|x(ϕ(s))|ϕ′(s) ds

≤ ‖a‖+
b‖K‖

B
‖x‖ .
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From this estimate and iv) we infer that the operator H maps the ball Br

into itself, where

r =
‖a‖

1− b‖k‖B−1
.

Further, let Qr stand for the subset of Br consisting of all functions which

are a.e. positive and nonincreasing on R+. Note that Qr is nonempty, bounded,

closed and convex subset of L1. Moreover, in view of Theorem 2 the set Qr is

compact in measure.

Next, take x ∈ Qr, then x(ϕ) is a.e. positive and nonincreasing on R+ and

consequently Kx(ϕ) is also of the same type in virtue of the assumption ii)

and Theorem 3. Further, the assumption i) permits us to deduce that Hx =

F Kx(ϕ) is also a.e. positive and nonincreasing on R+. This fact, together with

the assertion H : Br → Br gives that H is a self-mapping of the set Qr.

Since the operator K is continuous (cf. section 2) and F is continuous in view

of Theorem 1, we conclude that H maps continuously Qr into Qr.

From now on assume that X is a nonempty subset of Qr and ε > 0 is fixed.

Then for an arbitrary x ∈ X and for a set D ⊂ R+, measD ≤ ε we obtain
∫

D
|(Hx)(t)| dt ≤

∫

D

[

a(t) + b
∣

∣

∣

∫ ∞

0
k(t− s)x(ϕ(s)) ds

∣

∣

∣

]

dt

= ‖a‖L1(D) + b‖Kx(ϕ)‖L1(D) .

Further, keeping in mind that the operator K transforms the space L1(D) into

itself and is continuous, we derive
∫

D
|(Hx)(t)| dt ≤ ‖a‖L1(D) + b‖K‖D ‖x(ϕ)‖L1(D) ,

where the symbol ‖K‖D denotes the norm of the operator K : L1(D)→ L1(D).

Consequently, we get

∫

D
|(Hx)(t)| dt ≤ ‖a‖L1(D) +

b‖K‖D

B

∫

D
|x(ϕ(t))|ϕ′(t) dt .

Now, applying the theorem on integration by substitution for Lebesgue inte-

gral we may write the last estimate as

∫

D
|(Hx)(t)| dt ≤ ‖a‖L1(D) +

b‖K‖D

B

∫

ϕ(D)
|χ(t)| dt .

Hence, taking into account the obvious equality

lim
ε→0

{

sup
[

∫

D
a(t) dt : D ⊂ R+, measD ≤ ε

]

}

= 0
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and the absolute continuity of the function ϕ, we obtain

(3) c(HX) ≤
b‖K‖

B
c(X) ,

where the quantity c(X) was defined before in section 2.

Furthermore, fixing T > 0 we arrive at the following estimate

∫ ∞

T
|(Hx)(t)| dt ≤

∫ ∞

T
a(t) dt+

b‖K‖

B

∫ ∞

T
|x(ϕ(t))|ϕ′(t) dt

=

∫ ∞

T
a(t) dt+

b‖K‖

B

∫ ∞

ϕ(T )
|x(t)| dt .

Since limT→∞ φ(T ) =∞ the above inequality yields

(4) d(HX) ≤
b‖K‖

B
d(X) ,

where d has been defined before in section 2.

Hence, combining (3) and (4) we get

γ(HX) ≤
b‖K‖

B
γ(X) ,

where γ denotes the measure of noncompactness defined also in section 2.

The above obtained inequality together with the properties of the operator H

and the set Qr established before and in conjunction with Theorem 4, enable us

to apply Theorem 5. This completes the proof.
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