PORTUGALIAE MATHEMATICA

Vol. 54 Fasc. 4 - 1997

ON $\varphi-\left|\bar{N}, p_{n} ; \delta\right|_{k}$ SUMMABILITY FACTORS

H. Seyhan and A. Sönmez

Abstract

In this paper a general theorem on $\varphi-\left|\bar{N}, p_{n} ; \delta\right|_{k}$ summability factors, which generalizes a result of Bor [2] on $\left|\bar{N}, p_{n}\right|_{k}$ summability factors, has been proved.

1 - Introduction

Let $\left(\varphi_{n}\right)$ be a sequence of positive real numbers and let $\sum a_{n}$ be a given infinite series with the sequence of partial sums $\left(s_{n}\right)$. Let $\left(p_{n}\right)$ be a sequence of positive real constants such that

$$
\begin{equation*}
P_{n}=\sum_{v=0}^{n} p_{v} \rightarrow \infty \quad \text { as } n \rightarrow \infty, \quad\left(P_{-i}=p_{-i}=0, i \geq 1\right) \tag{1.1}
\end{equation*}
$$

The sequence-to-sequence transformation

$$
\begin{equation*}
T_{n}=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{v} s_{v} \quad\left(P_{n} \neq 0\right) \tag{1.2}
\end{equation*}
$$

defines the sequence $\left(T_{n}\right)$ of the $\left(\bar{N}, p_{n}\right)$ means of the sequence $\left(s_{n}\right)$ generated by the sequence of coefficients $\left(p_{n}\right)$ (see [3]).

The series $\sum a_{n}$ is said to be summable $\left|\bar{N}, p_{n}\right|_{k}, k \geq 1$, if (see [1])

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|T_{n}-T_{n-1}\right|^{k}<\infty \tag{1.3}
\end{equation*}
$$

In the special case when $p_{n}=1$ for all values of n (resp. $k=1$), then $\left|\bar{N}, p_{n}\right|_{k}$ summability is the same as $|C, 1|_{k}$ (resp. $\left.\left|\bar{N}, p_{n}\right|\right)$ summability.

The series $\sum a_{n}$ is said to be summable $\varphi-\left|\bar{N}, p_{n} ; \delta\right|_{k}, k \geq 1$ and $\delta \geq 0$, if (see [5])

$$
\begin{equation*}
\sum_{n=1}^{\infty} \varphi_{n}^{\delta k+k-1}\left|T_{n}-T_{n-1}\right|^{k}<\infty . \tag{1.4}
\end{equation*}
$$

If we take $\delta=0$ and $\varphi_{n}=\frac{P_{n}}{p_{n}}$, then $\varphi-\left|\bar{N}, p_{n} ; \delta_{k}\right|$ summability is the same as $\left|\bar{N}, p_{n}\right|_{k}$ summability.

2 - The following theorem is known

Theorem A ([2]). Let $\left(p_{n}\right)$ be a sequence of positive numbers such that

$$
\begin{equation*}
P_{n}=O\left(n p_{n}\right) \quad \text { as } n \rightarrow \infty . \tag{2.1}
\end{equation*}
$$

Let $\left(X_{n}\right)$ be a positive non-decreasing sequence and let there be sequences $\left(\beta_{n}\right)$ and $\left(\lambda_{n}\right)$ such that

$$
\begin{align*}
& \left|\Delta \lambda_{n}\right| \leq \beta_{n}, \tag{2.2}\\
& \beta_{n} \rightarrow 0 \quad \text { as } n \rightarrow \infty, \tag{2.3}\\
& \lambda_{m} X_{m}=O(1) \quad \text { as } m \rightarrow \infty, \tag{2.4}\\
& \sum_{n=1}^{\infty} n X_{n}\left|\Delta \beta_{n}\right|<\infty . \tag{2.5}
\end{align*}
$$

If

$$
\begin{equation*}
\sum_{n=1}^{m} \frac{p_{n}}{P_{n}}\left|t_{n}\right|^{k}=O\left(X_{m}\right) \quad \text { as } m \rightarrow \infty \tag{2.6}
\end{equation*}
$$

then the series $\sum a_{n} \lambda_{n}$ is summable $\left|\bar{N}, p_{n}\right|_{k}, k \geq 1$.
3. The object of this paper is to generalize above theorem in the following form.

Theorem. Let $\left(p_{n}\right)$ be a sequence of positive numbers such that condition (2.1) of Theorem A is satisfied and let $\left(\varphi_{n}\right)$ be a sequence of positive real numbers

$$
\text { ON } \varphi-\left|\bar{N}, p_{n} ; \delta\right|_{k} \text { SUMMABILITY FACTORS }
$$

such that

$$
\begin{align*}
& \varphi_{n} p_{n}=O\left(P_{n}\right) \tag{3.1}\\
& \sum_{n=v+1}^{\infty} \varphi_{n}^{\delta k-1} \frac{1}{P_{n-1}}=O\left(\varphi_{v}^{\delta k} \frac{1}{P_{v}}\right) . \tag{3.2}
\end{align*}
$$

If $\left(X_{n}\right)$ is a positive non-decreasing sequence and suppose that there exist sequences $\left(\lambda_{n}\right)$ and $\left(\beta_{n}\right)$ such that conditions (2.2)-(2.5) of Theorem A are satisfied. If

$$
\begin{equation*}
\sum_{n=1}^{m} \varphi_{n}^{\delta k-1}\left|t_{n}\right|^{k}=O\left(X_{m}\right) \quad \text { as } \quad m \rightarrow \infty \tag{3.3}
\end{equation*}
$$

then the series $\sum a_{n} \lambda_{n}$ is summable $\varphi-\left|\bar{N}, p_{n} ; \delta\right|_{k}, k \geq 1$ and $0 \leq \delta k<1$.

If we take $\delta=0$ and $\varphi_{n}=\frac{P_{n}}{p_{n}}$ in this theorem, then we get Theorem A.
We need the following lemma for the proof of our theorem.
Lemma ([4]). If $\left(X_{n}\right)$ is a positive non-decreasing sequence and $\left(\beta_{n}\right)$ is a positive sequence such that (2.3) and (2.5) hold, then

$$
\begin{align*}
& n X_{n} \beta_{n}=o(1) \quad \text { as } n \rightarrow \infty \tag{3.4}\\
& \sum_{n=1}^{\infty} X_{n} \beta_{n}<\infty \tag{3.5}
\end{align*}
$$

4 - Proof of the Theorem

Let $\left(T_{n}\right)$ be the sequence of $\left(\bar{N}, p_{n}\right)$ means of the series $\sum a_{n} \lambda_{n}$. Then, by definition, we have

$$
T_{n}=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{v} \sum_{i=0}^{v} a_{i} \lambda_{i}=\frac{1}{P_{n}} \sum_{v=0}^{n}\left(P_{n}-P_{v-1}\right) a_{v} \lambda_{v}
$$

Then, for $n \geq 1$, we have

$$
T_{n}-T_{n-1}=\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n} P_{v-1} a_{v} \lambda_{v}=\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n} \frac{P_{v-1} \lambda_{v}}{v} v a_{v}
$$

Using Abel's transformation, we get

$$
\begin{aligned}
T_{n}-T_{n-1}= & \frac{(n+1)}{n P_{n}} p_{n} t_{n} \lambda_{n}-\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} p_{v} t_{v} \lambda_{v} \frac{v+1}{v} \\
& +\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} P_{v} \Delta \lambda_{v} t_{v} \frac{v+1}{v}-\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} p_{v} t_{v} \lambda_{v+1} \frac{1}{v} \\
= & T_{n, 1}+T_{n, 2}+T_{n, 3}+T_{n, 4}, \quad \text { say } .
\end{aligned}
$$

By Minkowski's inequality it is sufficient to show that

$$
\sum_{n=1}^{\infty} \varphi_{n}^{\delta k+k-1}\left|T_{n, r}\right|^{k}<\infty, \quad \text { for } \quad r=1,2,3,4
$$

Since $\lambda_{n}=O\left(1 / X_{n}\right)=O(1)$, by (2.4), we get that

$$
\begin{aligned}
\sum_{n=1}^{m} \varphi_{n}^{\delta k+k-1}\left|T_{n, 1}\right|^{k} & =\sum_{n=1}^{m}\left|\lambda_{n}\right|^{k-1}\left|\lambda_{n}\right| \varphi_{n}^{\delta k-1}\left|t_{n}\right|^{k}=O(1) \sum_{n=1}^{m}\left|\lambda_{n}\right| \varphi_{n}^{\delta k-1}\left|t_{n}\right|^{k} \\
& =O(1) \sum_{n=1}^{m-1} \Delta\left|\lambda_{n}\right| \sum_{v=1}^{n} \varphi_{v}^{\delta k-1}\left|t_{v}\right|^{k}+O(1)\left|\lambda_{m}\right| \sum_{n=1}^{m} \varphi_{n}^{\delta k-1}\left|t_{n}\right|^{k} \\
& =O(1) \sum_{n=1}^{m-1} \beta_{n} X_{n}+O(1)\left|\lambda_{m}\right| X_{m}=O(1) \quad \text { as } \quad m \rightarrow \infty
\end{aligned}
$$

by virtue of the hypotheses and the Lemma.
Now, when $k>1$, applying Hölder's inequality with indices k and k^{\prime} where $\frac{1}{k}+\frac{1}{k^{\prime}}=1$, as in $T_{n, 1}$, we have that

$$
\begin{aligned}
\sum_{n=2}^{m+1} \varphi_{n}^{\delta k+k-1}\left|T_{n, 2}\right|^{k} & =O(1) \sum_{n=2}^{m+1} \varphi_{n}^{\delta k-1} \frac{1}{P_{n-1}}\left\{\sum_{v=1}^{n-1} p_{v}\left|t_{v}\right|^{k}\left|\lambda_{v}\right|^{k}\right\}\left\{\frac{1}{P_{n-1}} \sum_{v=1}^{n-1} p_{v}\right\}^{k-1} \\
& =O(1) \sum_{v=1}^{m}\left|\lambda_{v}\right|^{k-1}\left|\lambda_{v}\right| p_{v}\left|t_{v}\right|^{k} \sum_{n=v+1}^{m+1} \varphi_{n}^{\delta k-1} \frac{1}{P_{n-1}} \\
& =O(1) \sum_{v=1}^{m}\left|\lambda_{v}\right| \varphi_{v}^{\delta k-1}\left|t_{v}\right|^{k}=O(1) \quad \text { as } m \rightarrow \infty
\end{aligned}
$$

Since $v \beta_{v}=o\left(1 / X_{v}\right)=O(1)$, by (3.4), using the fact that $P_{v}=O\left(v p_{v}\right)$, by (2.1), we have that

$$
\begin{aligned}
\sum_{n=2}^{m+1} \varphi_{n}^{\delta k+k-1}\left|T_{n, 3}\right|^{k} & =O(1) \sum_{n=2}^{m+1} \varphi_{n}^{\delta k-1} \frac{1}{P_{n-1}^{k}}\left\{\sum_{v=1}^{n-1} v p_{v} \beta_{v}\left|t_{v}\right|\right\}^{k} \\
& =O(1) \sum_{n=2}^{m+1} \varphi_{n}^{\delta k-1} \frac{1}{P_{n-1}}\left\{\sum_{v=1}^{n-1}\left(v \beta_{v}\right)^{k} p_{v}\left|t_{v}\right|^{k}\right\}\left\{\frac{1}{P_{n-1}} \sum_{v=1}^{n-1} p_{v}\right\}^{k-1} \\
& =O(1) \sum_{v=1}^{m}\left(v \beta_{v}\right)^{k-1} v \beta_{v} p_{v}\left|t_{v}\right|^{k} \sum_{n=v+1}^{m+1} \varphi_{n}^{\delta k-1} \frac{1}{P_{n-1}} \\
& =O(1) \sum_{v=1}^{m} v \beta_{v} \frac{p_{v}}{P_{v}} \varphi_{v}^{\delta k}\left|t_{v}\right|^{k}=O(1) \sum_{v=1}^{m} v \beta_{v} \varphi_{v}^{\delta k-1}\left|t_{v}\right|^{k} \\
& =O(1) \sum_{v=1}^{m-1} \Delta\left(v \beta_{v}\right) \sum_{r=1}^{v}\left|t_{r}\right|^{k} \varphi_{r}^{\delta k-1}+O(1) m \beta_{v} \sum_{v=1}^{m} \varphi_{v}^{\delta k-1}\left|t_{v}\right|^{k} \\
& =O(1) \sum_{v=1}^{m-1}\left|\Delta\left(v \beta_{v}\right)\right| X_{v}+O(1) m \beta_{m} X_{m} \\
& =O(1) \sum_{v=1}^{m-1} v\left|\Delta \beta_{v}\right| X_{v}+O(1) \sum_{v=1}^{m-1} \beta_{v+1} X_{v}+O(1) m \beta_{m} X_{m} \\
& =O(1) \text { as } m \rightarrow \infty,
\end{aligned}
$$

by virtue of the hypotheses and the Lemma.
Finally, using the fact that $P_{v}=O\left(v p_{v}\right)$, by (2.1), as in $T_{n, 1}$ and $T_{n, 2}$, we have that

$$
\begin{aligned}
\sum_{n=2}^{m+1} \varphi_{n}^{\delta k+k-1}\left|T_{n, 4}\right|^{k} & =O(1) \sum_{n=2}^{m+1} \varphi_{n}^{\delta k-1} \frac{1}{P_{n-1}^{k}}\left\{\sum_{v=1}^{n-1} p_{v}\left|t_{v}\right|\left|\lambda_{v+1}\right|\right\}^{k} \\
& =O(1) \sum_{n=2}^{m+1} \varphi_{n}^{\delta k-1} \frac{1}{P_{n-1}}\left\{\sum_{v=1}^{n-1} p_{v}\left|t_{v}\right|^{k}\left|\lambda_{v+1}\right|^{k}\right\}\left\{\frac{1}{P_{n-1}} \sum_{v=1}^{n-1} p_{v}\right\}^{k-1} \\
& =O(1) \sum_{v=1}^{m} p_{v}\left|t_{v}\right|^{k}\left|\lambda_{v+1}\right|^{k-1}\left|\lambda_{v+1}\right| \sum_{n=v+1}^{m+1} \varphi_{n}^{\delta k-1} \frac{1}{P_{n-1}} \\
& =O(1) \sum_{v=1}^{m} \varphi_{v}^{\delta k-1}\left|t_{v}\right|^{k}\left|\lambda_{v+1}\right|=O(1) \quad \text { as } m \rightarrow \infty
\end{aligned}
$$

Therefore, we get that

$$
\sum_{n=1}^{m+1} \varphi_{n}^{\delta k+k-1}\left|T_{n, r}\right|^{k}=O(1) \quad \text { as } \quad m \rightarrow \infty, \quad \text { for } r=1,2,3,4
$$

This completes the proof of the theorem.

REFERENCES

[1] Bor, H. - On two summability methods, Math. Proc. Cambridge Phil. Soc., 97 (1985), 147-149.
[2] Bor, H. - On $\left|\bar{N}, p_{n}\right|_{k}$ summability factors, Kuwait Jnl. Sci. \&3 Eng., 23 (1996), $1-5$.
[3] Hardy, G.H. - Divergent Series, Oxford Univ. Press, Oxford, 1949.
[4] Mishra, K.N. - On the absolute Nörlund summability factors of infinite series, Indian J. Pure Appl. Math., (1983), 40-43.
[5] Seyhan, H. - Ph.D. Thesis, Erciyes University, Kayseri, 1995.
H. Seyhan and A. Sönmez,

Department of Mathematics, Erciyes University,
Kayseri 38039 - TURKEY

