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Abstract: In this note we consider the L∞(0, T ;L3(Ω)) solutions of the Navier–

Stokes equations, where Ω is a domain of R3. We give a very simple proof of a sufficient

condition for regularity of solutions. This condition contains, as a quite particular case,

continuity from the left on (0, T ] with values in L3(Ω). See Theorem 2.2 below.

Introduction

The existence of regular global solutions and the uniqueness of weak solutions

to the Navier–Stokes equations are, may be, the more famous open problems in

the field of nonlinear partial differential equations. These problems are open at

least from the issuing of the celebrated J. Leray’s paper [L]. Fundamental papers

by J. Leray, E. Hopf, O.A. Ladyzhenskaya, J. Serrin, A.A. Kiselev, G. Prodi,

J.L. Lions and others, have keep alive the interest on these challenging problems.

More recently, this interest has been revived by well known papers by V. Sheffer

and by L. Caffarelli, R. Kohn and L. Nirenberg. It is from this days the work

by J. Nečas, M. Røužička and V. Šverák where these authors show that the

stationary equation (3.11) in reference [L] has no nontrivial solutions (otherwise,

singularities to the evolution Navier–Stokes equations would appear in finite time;

see [L]).
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The failure of all the attempts to giving satisfactory answers to the above

open problems has carried to a central position the investigation of sufficient

conditions for existence and uniqueness of solutions. In this direction, a main line

of research starts with the pioneering paper [P] by G. Prodi followed by J. Serrin’s

paper [S]. It consists in looking for sufficient conditions like (2.2). Many further

interesting contributions were given in this same direction. See, for instance,

[F], [FJR], [K], [M], [So], [SW], [G], [GM] and many others; an extension of the

sufficient condition (2.2) to values s ≤ 2 was obtained in reference [BV1]. Note,

however, the lack of whatever recent improvement in the direction of increasing

the critical value (the right hand side of (2.2)) beyond the value 1. A useful basis

for further developments in this direction consists in having at one’s disposal

simple proofs of the basic results, in particular by keeping all the hypotheses

within a sensible range of generality (a not severe constraint, since the presence

of the very restrictive assumption (2.2) made superfluous a wide generality on

other points). Following this point of view we assume here that n = 3 and

that the initial data and the external force fields are sufficiently general to our

purposes.

Let us now introduce the problem studied below. It is well known that a

weak solution u(t) of the Navier–Stokes equations that belongs to L∞(0, T, Ln)

is unique; see [So] and references. Moreover such a solution is regular if it is

continuous in [0, T ] with values in Ln; see [W] and also [G]. Below we introduce

a condition (called, for convenience, condition A) such that if a weak solution

belongs to L∞(0, T ;L3) and satisfies this condition it is necessarily a strong solu-

tion (a straightforward bootstrap argument shows then that the solution is more

regular provided that a, f and the boundary Γ are sufficiently smooth). Our

condition contains, as a quite particular case, continuity from the left on (0, T ]

with values in L3(Ω).

Many of the above calculation are still valid if n > 3. For that reason we

sometimes shall write n instead of 3.

We take the opportunity of referring the interested reader to [BV3] where we

introduce another approach to the problem of establishing sufficient conditions

for regularity.

Added in the press-proof: The author is grateful to Professor H. Sohr

for some bibliographical information and also for the sending of the preprint to

reference [KoS] where related results, obtained by completely different methods,

are proved. Recently (September 97) we also received the preprint [Ko] where

a condition related to the hypothesis A below is taken into consideration ([Ko],

equation (1.4)).
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1 – Preliminaries

In this section we recall some well-known definitions and results, useful in the

sequel. Ω denotes an open bounded subset of R3 with boundary Γ. We assume

that Γ is of class C0,1 and that Ω is locally located on one side of Γ. The well

known symbols D(Ω), Hm
0 (Ω), denote classical functional spaces that will be not

defined here. In the sequel we drop the symbol Ω from these notations. We denote

by ‖ · ‖p and ‖ · ‖m,p the usual norms in the spaces Lp and Wm,p respectively,

and set ‖ · ‖ = ‖ · ‖2. We will not distinguish between spaces consisting of scalar

or of vector functions. For instance, we denote (L2)3 simply by L2. The same

convention applies to norms. We denote by (·, ·) the scalar product in L2 and by

((·, ·)) that in H1
0 , namely

((u, v)) =

∫

Ω
∇u · ∇v dx ,

where

∇u · ∇v =
∑

i,j

(∂ui/∂xj) (∂vi/∂xj) .

We set

V =
{

v ∈ D(Ω): div v = 0
}

,

where v = (v1, v2, v3) and we denote by H and V the closures of V in L2 and in

H1
0 respectively.

As usual, P denotes the orthogonal projection of L2 onto H. We identify the

dual space H ′ with H. Hence V ↪→ H ≡ H ′ ↪→ V ′. All that is standard.

The symbol C(0, T ;X) denotes the space of functions v(t), continuous in the

closed interval [0, T ] with values in the Banach space X. Cw(0, T ;X) consists of

continuous functions with respect to the weak topology in X. In the sequel we

also use spaces Ls(0, T ;X), 1 ≤ s ≤ ∞.

The unbounded operator A is defined in the following standard way. We set

D(A) =
{

u ∈ V : v → ((u, v)) is continuous on V w.r.t. the H-topology
}

and define Au, for each u ∈ D(A), as being the element of H for which

(Au, v) = ((u, v)) , ∀ v ∈ V .

It is well known that −A is the generator of an analytical semigroup (see, for

instance, [DLi], pag. 379, example 3, or [LiM], pag. 24, theorem 3.2). Moreover,

if Γ is regular then D(A) = V ∩H2 and A = −P∆. This is a classical result due
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to L. Cattabriga and V.A. Solonnikov (for an elementary proof, where Γ ∈ C1,1,

see [BV2]). Actually the relation D(A) = V ∩ H2 is not essential here. In the

following it is sufficient that D(A) ↪→W 1,6 together with the estimate

(1.1) ‖∇v‖6 ≤ c0‖Av‖ , ∀ v ∈ D(A) ,

for some positive constant c0.

Next we consider the Navier–Stokes equations

(1.2)



























∂u

∂t
− µ∆u+ (u · ∇)u+∇π = f,

div u = 0 in QT ,

u = 0 on ΣT ,

u(0, x) = a(x) ,

whereQT = [0, T ]×Ω, ΣT = [0, T ]×Γ. In order to avoid inessential manipulations

we assume in the sequel that a ∈ V and f ∈ L2(0, T ;H).

For u, v, w ∈ V we define

b(u, v, w) =
3
∑

i,k=1

∫

Ω
uk

∂vi

∂xk
wi dx .

Note that b(u, v, w) = −b(u,w, v). Hence b(u, v, v) = 0. Moreover, we define

B(u, v) ∈ V ′ (the dual space of V ) by setting

(B(u, v), w) = b(u, v, w) , ∀w ∈ V .

For convenience we write B(u) = B(u, u).

We say that u is a weak solution of the Navier–Stokes equations (1.2) if u ∈

Cw(0, T ;H) ∩ L2(0, T ;V ) and, moreover,

(1.3)

∫ T

0

[

(u(t), φ′(t))− µ((u(t), φ(t)))− b(u(t), u(t), φ(t)) + (f(t), φ(t))
]

dt =

= (u(T ), φ(T ))− (a, φ(0)) ,

for all φ ∈ C1(0, T ;V ).

It is well known that there is, at least, one weak solution in [0, T ]. References

are classical.

We say that u is a strong solution of the Navier–Stokes equations (1.2) if

{

u ∈ L2(0, T ;D(A)) ∩ C(0, T ;V ),
u′ ∈ L2(0, T ;H)

(1.4)

and
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{

u′ + µAu+B(u) = f in L2(0, T ;H),
u(0) = a .

(1.5)

Clearly, a strong solution satisfies (1.3). Note that the fact that u belongs to

C(0, T ;V ) follows from the other two assumptions in (1.4), since V=[D(A),H]1/2.

As (1.1) holds, it is easily shown that

(1.6) ‖B(u, v)‖ ≤ c‖u‖V ‖v‖
1/2
V ‖v‖

1/2
D(A) .

It is not difficult (and well known) to use this last estimate in order to show (for

instance, by a fixed point argument) that there is a positive constant c such that

if

T ≤ c
(

‖a‖4V + ‖f‖4L2(0,T ;H)

)−1

then there is a (unique) strong solution u of problem (1.2) in [0, T ].

2 – Existence of the strong solutions

In this section we essentially consider weak solutions u that satisfy the as-

sumption

(2.1) u ∈ L∞(0, T ;Ln) ,

for n = 3. Since weak solutions belong to Cw(0, T ;L
2) it readily follows that

weak solutions in the class (2.1) belong to Cw(0, T ;L
n). In particular u(t) is well

defined in Ln for each t ∈ [0, T ]. It is known [So] that an uniqueness theorem

hold (even for n > 3) if there is a weak solution satisfying the assumption (2.1).

However, the following (very weak) uniqueness result is largely sufficient to our

purposes here. If there is a weak solution u1 satisfying (2.1) and a strong solution

u2 then necessarily u1 = u2. A very simple proof of this result can be done by

adapting the proof of the theorem 2.9, chap. I, in reference [Li].

The above version of the uniqueness result together with the existence of the

local strong solution yield the following (trivial) continuation property which,

for convenience, we state as a lemma. A proof is given just for the reader’s

convenience.

Lemma 2.1. Let be n = 3 and let u be a weak solution of the Navier–Stokes

equations (1.2) satisfying (2.1). Assume, moreover, that for each t ∈ (0, T ] the

function u satisfies the following additional hypothesis: “If u is a strong solution

in [0, τ ], for each τ ∈ [0, t), u belongs to C(0, t;V )”. Then u is a strong solution

in [0, T ].
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Proof: Let t denote the supremum of the set of values τ for which u is a

strong solution in [0, τ ]. The local existence theorem of a strong solution together

with the above uniqueness result show that t > 0. The additional hypothesis in

the lemma guarantees that u is a strong solution in [0, t]. If it were t < T , the

same argument used above to show that t > 0 proves here that u is a strong

solution in [0, t+ ε), for some ε > 0. Hence t = T .

It is easy to show (see below) that the additional property required in the

above lemma is necessarily satisfied if the assumption (2.1) is replaced by the

following one:

(2.2) u ∈ Ls(0, T ;Lr), where
2

s
+
n

r
= 1 and r > n

(here, n may be arbitrary). Hence, if n = 3, any weak solution satisfying (2.2) is

necessarily strong .

We point out that this last result is well known (even for arbitrarily large n)

at least if Ω is smooth (see [So] and references). But, for n = 3, a very elementary

proof can be done by exploiting the local existence of a strong solution together

with the classical manipulations developed in [P], lemma 5. Since the very short

proof helps to clarify the borderline case (2.1), we present it here (without any

claim of originality). As u ∈ L2(0, τ ;D(A)) and u′ ≡ du/dt ∈ L2(0, τ ;H) one has

(u′, Au) = (1/2) d‖u‖2V /dt. Consequently, it readily follows from equation (1.5)

that

(2.3)
1

2

d

dt
‖u‖2V + µ‖Au‖2 ≤ ‖B(u)‖ ‖Au‖+ ‖f‖ ‖Au‖

in [0, t). On the other hand, since 1/2 = 1/r + (r − 2)/2r Hölder’s inequality

shows that

‖B(u)‖ ≤ ‖(u · ∇)u‖ ≤ ‖u‖r ‖∇u‖ 2r

r−2

,

where 2r/(r − 2) = 2 if r =∞. Moreover

‖∇u‖ 2r

r−2

≤ ‖∇u‖1−
n

r ‖∇u‖
n

r

2∗ ≤ c‖u‖
1−n

r

V ‖Au‖
n

r ,

since (r − 2)/2r = (1 − n/r)/2 + (n/r)/2∗. Here 2∗ = 2n/(n − 2) is a Sobolev

embedding exponent. Consequently

(2.4) ‖B(u)‖ ‖Au‖ ≤ c‖u‖r ‖u‖
1−n

r

V ‖Au‖1+
n

r .

Thus, by Young’s inequality,

(2.5) ‖B(u)‖ ‖Au‖ ≤ c‖u‖s
r ‖u‖

2
V + (µ/4) ‖Au‖2 .



3-D NAVIER–STOKES EQUATIONS 387

From (2.3) and (2.5) we get

d

dt
‖u‖2V + µ‖Au‖2 ≤ c0‖u‖

s
r ‖u‖

2
V + (2/µ) ‖f‖2

in [0, t). In particular

(2.6) ‖u(t)‖2V ≤

(

‖a‖2V +
2

µ

∫ t

0
‖f(τ)‖2 dτ

)

· exp
{

c0‖u‖Ls(0,t;Lr)

}

,

for each t ∈ [0, t). Finally, from (2.3) we obtain an estimate for Au in L2(0, t;H)

and from (1.5) an estimate for u′ in L2(0, t;H). Hence u ∈ C(0, t;V ).

Remark 2.1. If in equation (2.4) one has r = n (i.e. if (2.2) is replaced by

(2.1)) then a smallness assumption on the norm of u in L∞(0, T ;Ln) is required

in order to get a sufficiently small coefficient for ‖Au‖2 in that same equation.

In this case the additional property in Lemma 2.1 is superfluous. Consequently,

weak solutions with a sufficiently small norm in L∞(0, T ;L3) are strong (a well

known result).

At the light of Lemma 2.1, our aim is now establishing conditions that imply

the additional property described in that lemma. For each k ≥ 0 and each

t ∈ [0, T ] we set

A(t, k) =
{

x ∈ Ω: |u(t, x)| > k
}

.

Hypothesis A. We say that u satisfies the hypothesis A at t (with respect

to the constant C) if (2.1) holds and, moreover, if there are δ > 0 and a real

nonnegative function k(t) defined and square integrable on (t− δ, t) such that

(2.7)

∫

A(t,k(t))
|u(t, x)|n dx ≤ Cn, a.e. in (t− δ, t) .

We say that u satisfies the hypothesis A in [0, T ] if it satisfies the hypothesis A

at each t ∈ (0, T ]; here δ and k(t) may depend on the particular point t.

Note that u necessarily satisfies the hypothesis A in [0, T ] with respect to its

norm in the class (2.1); in this case k ≡ 0. Below, we show that (for n = 3) weak

solutions satisfying the hypothesis A with respect to the constant C0 = µ/2c0 (see

(1.1)) are necessarily strong (hence regular). It is worth noting that continuity

from the left implies the condition A (with respect to any arbitrarily small positive

constant C and for a constant function k). In the sequel we consider a slightly

more general case.
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Proposition 2.1. Assume that a function u, that belongs to the class (2.1),

is left continuous in (0, t] with respect to the weak topology in Ln and, moreover,

that

(2.8) lim sup
t→t−0

‖u(t)‖n
n < ‖u(t)‖

n
n + 4(C/4)n .

Then the hypothesis A holds at t (with a constant function k). Hence it holds,

in particular, if u is left continuous with respect to the strong topology in Ln.

The proof of the Proposition 2.1 is postponed to the end of this chapter. Next

we state our main result.

Theorem 2.1. Let u be a weak solution of problem (1.2). Assume that

for some t ∈ (0, T ] u is a strong solution in [0, τ ] for each τ < t and, moreover,

u satisfies the hypothesis A at t with respect to the constant C0. Then u ∈

C(0, t;V ).

The above theorem shows that the additional hypothesis in the Lemma 2.1

holds if u satisfies the hypothesis A in [0, T ]. Hence, for n = 3, one has the

following result.

Theorem 2.2. Assume that n = 3, Γ ∈ C0,1, a ∈ V and f ∈ L2(0, T ;H).

Let u be a weak solution of problem (1.2) which satisfies the hypothesis A in

[0, T ] with C = C0. Then u is a strong solution in [0, T ]. In particular u is a

strong solution if (2.8) holds with C = C0, hence if u is strongly continuous from

the left in (0, T ].

Proof of Theorem 2.1: By the hypothesis A there is a t0 = t − δ and a

function k(t) in L2(t0, t) such that (2.7) holds. From (2.3) it readily follows that

(2.9)
d

dt
‖u‖2V + µ‖Au‖2 ≤

1

µ
‖B(u)‖2 + 2‖f‖ ‖Au‖ .

Moreover,

‖B(u)‖2 ≤

∫

Ω/A(t)
|u|2 |∇u|2 dx+

∫

A(t)
|u|2 |∇u|2 dx

where, for convenience, we set A(t) = A(t, k(t)). By using Hölder’s inequality it

follows that

‖B(u)‖2 ≤ k2(t)

∫

Ω
|∇u|2 dx+

(

∫

A(t)
|u|n dx

)2/n(
∫

Ω
|∇u|2

∗

dx
)2/2∗

,
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where 2∗ = 2n/(n− 2). Hence, by the hypothesis A,

‖B(u)‖2 ≤ k2(t) ‖u‖2V + C2 c20‖Au‖
2 .

This estimate together with (2.9) shows that

d

dt
‖u‖2V +

µ

4
‖Au‖2 ≤

k2(t)

µ
‖u‖2V +

2

µ
‖f‖2 a.e. in (t0, t) .

Therefore u ∈ L2(t0, t;D(A)) ∩ L∞(t0, t;V ), moreover u′ ∈ L2(t0, t;H). This

shows that u ∈ C(t0, t;V ).

Remark 2.2. It is worth noting that the hypotheses of Theorem 2.1 by

themselves do not allow us to use a compactness argument. In fact, let X be

any infinite dimensional Hilbert space. Assume that u ∈ L∞(0, T ;X) is weakly

continuous in [0, T ] and strongly continuous from the left in [0, T ) with values in

X. It does not follow from these assumptions that there is a δ > 0 such that the

set {v(t) : t ∈ (T − δ, T )} is relatively compact in X.

Proof of Proposition 2.1: Assume that the hypotheses in this proposition

hold but that (2.7) is false. Then

∫

A(t,k)
|u(t, x)|n dx ≤ Cn a.e. in (t− k−1, t)

is false for each positive integer k. Hence there is a sequence tk, t− k
−1 < tk < t,

such that
∫

A(k)
|u(tk, x)|

n dx ≥ Cn , ∀ k ∈ N ,

where Ak = A(tk, k). Set uk(x) = u(tk, x) and v = u(t). Clearly

(2.10) Cn ≤

∫

Ak

|uk|
n dx ≤ 2n−1

∫

Ak

|uk − v|n dx+ 2n−1
∫

Ak

|v|n dx .

In particular, by using Clarkson inequality, one gets

Cn ≤ 2n−1
[

2n−1
(

‖uk‖
n
n + ‖v‖n

n

)

− ‖uk + v‖n
n

]

+ 2n−1
∫

Ak

|v|n dx .

Next, by passing to the limit as k goes to infinity, by using (2.8), and by taking

into account that uk is weakly convergent in Ln to v, it readily follow that

(2.11) Cn < Cn + 2n−1 lim
k→∞

∫

Ak

|v|n dx .
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On the other hand

kn|Ak| ≤

∫

Ak

|uk|
n dx ≤ ‖u‖n

L∞(0,T ;Ln) .

Thus, |Ak| ≤ c/k−n. Hence, by the absolute continuity of the integral with

respect to the measure it follows that

lim
k→∞

∫

Ak

|v|n dx = 0 ,

which, together with (2.11), shows a contradiction.
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