PORTUGALIAE MATHEMATICA Vol. 54 Fasc. 3 – 1997

A REMARK ON PARABOLIC EQUATIONS

Alain Haraux

Abstract: If $L = L^*$ is a seif-adjoint linear operator generating a strongly continuous semi-group on a real Hilbert space H and $\alpha \in L^{\infty}(\mathbb{R}^+)$, any mild solution u of $u' = Lu + \alpha(t) u$ satisfies $(u(0), u(t)) \ge 0$ for all $t \ge 0$. On the other hand for any $\lambda > 0$ such that $(\pi/L)^2 < \lambda < 4(\pi/L)^2$, there are solutions u of the one-dimensional semilinear heat equation $u_t - u_{xx} + u^3 - \lambda u = 0$ in $\mathbb{R}^+ \times (0, L)$, u(t, 0) = u(t, L) = 0 on \mathbb{R}^+ such that $\int_{\Omega} u(0, x) u(t, x) dx < 0$ for some t > 0.

Résumé: Si $L = L^*$ est un opérateur auto-adjoint, generateur d'un semi-groupe fortement continu sur un espace de Hilbert réel H et $\alpha \in L^{\infty}(\mathbb{R}^+)$, toute solution u de $u' = Lu + \alpha(t) u$ satisfait $(u(0), u(t)) \ge 0$ pour tout $t \ge 0$. D'autre part pour tout $\lambda > 0$ tel que $(\pi/L)^2 < \lambda < 4(\pi/L)^2$, il existe des solutions u de l'équation de la chaleur à une dimension $u_t - u_{xx} + u^3 - \lambda u = 0$ dans $\mathbb{R}^+ \times (0, L)$, u(t, 0) = u(t, L) = 0 sur \mathbb{R}^+ telles que $\int_{\Omega} u(0, x) u(t, x) dx < 0$ pour un certain t > 0.

1 - A simple positivity property

Let Ω be a bounded, open subset of \mathbb{R}^N with a Lipschitz continuous boundary and let us consider the linear parabolic equation

(1.1) $u_t - \Delta u + a(t, x) u = 0 \text{ in } \mathbb{R}^+ \times \Omega, \quad u = 0 \text{ on } \mathbb{R}^+ \times \partial \Omega,$

where $a \in L^{\infty}(\mathbb{R}^+ \times \Omega)$. For any $u_0 \in L^{\infty}(\Omega)$, there is a unique global solution

$$u \in C([0,\infty); L^{\infty}(\Omega)) \cap C((0,\infty); H^1_0(\Omega))$$

of (1.1) with initial datum $u(0, x) = u_0(x)$. It is well-known that (1.1) is positivity preserving in the sense that if $u_0 \ge 0$, then $u(t, x) \ge 0$ a.e. on $\mathbb{R}^+ \times \Omega$. For more

Received: April 22, 1996.

A. HARAUX

general initial data, when a = 0 we know that the inner product $(u_0, u(t, \cdot))$ in the sense of $L^2(\Omega)$ is nonnegative (in fact, even positive if $u_0 \neq 0$) since the heat semi-group is the exponential of a self-adjoint operator. More generally we have the following

Proposition 1.1. Let $L = L^*$ be a self-adjoint linear operator on a real Hilbert space H, generating a strongly continuous semi-group on H and $\alpha \in L^{\infty}(\mathbb{R}^+)$. Then for any $u_0 \in H$, the unique mild solution $u \in C([0,\infty); H)$ of

(1.2)
$$u' = Lu + \alpha(t) u$$

such that $u(0) = u_0$ is such that $(u_0, u(t)) \ge 0$ for all $t \ge 0$.

Proof: Denoting by A(t) the primitive of $\alpha(t)$ which vanishes at 0 we have

$$u(t) = \exp(A(t)) \exp(tL) u_0$$
 for all $t \ge 0$.

The result follows immediately since $\exp(tL) = \exp[(t/2)L] \{\exp[(t/2)L]\}^* \ge 0$.

Corollary 1.2. If $a(t, x) = a_1(t) + a_2(x)$ with $a_1 \in L^{\infty}(\mathbb{R}^+)$ and $a_2 \in L^{\infty}(\Omega)$, then for any $u_0 \in L^{\infty}(\Omega)$, the unique global solution u of (1.1) with initial datum $u(0, x) = u_0(x)$ is such that $u(0) = u_0$ is such that $(u_0, u(t, \cdot))_H \ge 0$ for all $t \ge 0$, where $(,)_H$ denotes the inner product in $H = L^2(\Omega)$.

Proof: Just apply Proposition 1.2 with $L = \Delta - a_2(x)I$ with Dirichlet boundary conditions.

2 - A counterexample

In the investigation of uniqueness of anti-periodic solutions to semi-linear parabolic equations (cf. e.g. [2, 5, 7, 8]) the question naturally arises of whether an equation such as (1.1) can have a non-trivial solution u with $u(\tau, \cdot) = -u(0, \cdot)$ for some $\tau > 0$. Such a possibility would be excluded if we knew that Corollary 1.2 is valid for any potential $a \in L^{\infty}(\mathbb{R}^+ \times \Omega)$. As we shall see now, it is not the case. Consider the one-dimensional semilinear heat equation

(2.1)
$$u_t - u_{xx} + cu^3 - \lambda u = 0$$
 in $\mathbb{R}^+ \times (0, L)$, $u(t, 0) = u(t, L) = 0$ on \mathbb{R}^+ ,

with c > 0, $\lambda > 0$. All solutions of this problem are global and uniformly bounded on $\mathbb{R}^+ \times (0, L)$. For $(\pi/L)^2 = \lambda_1(0, L) < \lambda < \lambda_2(0, L) = 4(\pi/L)^2$, the stationary "elliptic problem"

(2.2)
$$\varphi \in H_0^1(0,L), \quad -\varphi_{xx} + c \,\varphi^3 - \lambda \,\varphi = 0$$

312

has exactly 3 solutions, namely 0, the positive solution φ and the negative solution $(-\varphi)$. Setting $\Omega = (0, L)$, we shall establish

Theorem 2.1. For any c > 0 and $\lambda_1 < \lambda < \lambda_2$, there is $u_0 \in L^{\infty}(\Omega)$ such that the unique global solution u of (2.1) with initial datum $u(0, x) = u_0(x)$ satisfies

(2.3)
$$\int_{\Omega} u_0(x) u(t,x) \, dx < 0$$

for some t > 0.

Proof: We proceed by contradiction. Assume, instead of (2.3), that for all $u_0 \in L^{\infty}(\Omega)$ we have

(2.4)
$$\forall t \ge 0, \quad \int_{\Omega} u_0(x) u(t,x) \, dx \ge 0.$$

Since any solution u of (2.1) is well-known (cf. e.g. [4]) to converge at infinity to one of the 3 solutions of (2.2), let us investigate first what happens if $u(t, \cdot)$ converges to φ as $t \to \infty$. From (2.4) we deduce immediately, by passing to the limit

(2.5)
$$\int_{\Omega} u_0(x) \,\varphi(x) \,dx \ge 0 \;.$$

At this stage, changing if necessary u to (-u), we have obtained the following properties:

- If $u(t, \cdot)$ converges to φ as $t \to \infty$, then $\int_{\Omega} u_0(x) \varphi(x) dx \ge 0$.

- Similarly if $u(t, \cdot)$ converges to $(-\varphi)$ as $t \to \infty$, then $\int_{\Omega} u_0(x) \varphi(x) dx \leq 0$.

To derive a contradiction, we shall prove the following

Lemma 2.2. Assuming $\int_{\Omega} u_0(x) \varphi(x) dx > 0$, we have $u(t) \to \varphi$ as $t \to \infty$, and

(2.6)
$$\forall t \ge 0, \quad \int_{\Omega} u(t,x) \varphi(x) \, dx \ge 0.$$

Proof: Since by the previous results u(t) cannot tend to $(-\varphi)$ as $t \to \infty$, we must have either $u(t) \to 0$ or $u(t) \to \varphi$ as $t \to \infty$. Now let u_{ε} be the solution of equation (2.1) such that $u_{\varepsilon}(0) = u_0 - \varepsilon \varphi$ with $\varepsilon > 0$. For $\varepsilon > 0$ small enough, we have $\int_{\Omega} (u_0(x) - \varepsilon \varphi(x)) \varphi(x) dx > 0$, and the solution u_{ε} of equation (2.1) such that $u_{\varepsilon}(0) = u_0 - \varepsilon \varphi$ also tends either to 0 or φ at infinity while $w := u - u_{\varepsilon} \ge 0$.

A. HARAUX

Now if $u(t) \to 0$ as $t \to \infty$, we also must have $u_{\varepsilon}(t)$ as $t \to \infty$, both convergences being uniform on [0, L]. Since $\lambda > \lambda_1(0, L) = (\pi/L)^2$, an immediate calculation now shows that, as a consequence of the equation

$$w_t - w_{xx} + c(u^2 + u \, u_{\varepsilon} + u_{\varepsilon}^2) \, w = \lambda w \quad \text{in } \mathbb{R}^+ \times (0, L) \,, \quad w(t, 0) = w(t, L) = 0 \quad \text{on } \mathbb{R}^+$$

there exists T > 0 and $\eta > 0$ for which

$$\forall t \ge T, \qquad \frac{d}{dt} \int_{\Omega} w(t, x) \, \psi(x) \, dx \ge \eta \int_{\Omega} w(t, x) \, \psi(x) \, dx$$

with $\psi(x) := \sin(\pi/L) x$ on [0, L]. Of course this implies that either w = 0 for $t \ge T$, excluded by backward uniqueness (cf. e.g. [1, 3]) or w is unbounded as $t \to \infty$, a contradiction. Consequently we must have $u(t) \to \varphi$ as $t \to \infty$. Then (2.6) follows from the fact that for each $\tau > 0$, $v(t, \cdot) = u(t + \tau, \cdot)$ is a solution of (2.1) with $v(t) \to \varphi$ as $t \to \infty$.

Proof of Theorem 2.1 (continued): We now turn our attention to those initial data u_0 orthogonal to φ in H, which means

(2.7)
$$\int_{\Omega} u_0(x) \varphi(x) \, dx = 0$$

Considering v_{ε} be the solution of equation (2.1) such that $v_{\varepsilon}(0) = u_0 + \varepsilon \varphi$ with $\varepsilon > 0$, we remark that as $\varepsilon \to 0$, $v_{\varepsilon}(t, \cdot)$ converges to $u(t, \cdot)$ uniformly for each $t \ge 0$ fixed. By Lemma 2.2 we have

$$\forall t \ge 0, \quad \int_{\Omega} v_{\varepsilon}(t, x) \, \varphi(x) \, dx \ge 0$$

and by letting $\varepsilon \to 0$, we deduce:

$$\forall t \ge 0, \quad \int_{\Omega} u(t,x) \varphi(x) \, dx \ge 0 \; .$$

Changing u_0 to $(-u_0)$, from (2.7) we also deduce

$$\forall t \ge 0, \quad \int_{\Omega} u(t,x) \, \varphi(x) \, dx \le 0$$

Hence finally (2.7) implies

(2.8)
$$\forall t \ge 0, \quad \int_{\Omega} u(t,x) \varphi(x) \, dx = 0 \; .$$

314

A REMARK ON PARABOLIC EQUATIONS

The fact that (2.7) implies (2.8) is contradictory with direct properties of (2.1). Since $\varphi(x)$ is not constant, there is $h(x) \in L^2(\Omega)$ such that, for instance

(2.9)
$$\int_{\Omega} h(x) \varphi(x) dx = 0, \quad \int_{\Omega} h(x) \varphi^3(x) dx > 0.$$

Let $h_n(x)$ be a sequence of C^{∞} functions with compact support converging to h in $L^2(\Omega)$. For n large we have

$$\frac{\int_{\Omega} h_n(x) \,\varphi(x) \,dx}{\int_{\Omega} \varphi^2(x) \,dx} = c_n \to 0$$

while $\int_{\Omega} (h_n(x) - c_n \varphi(x)) \varphi(x) dx = 0$ and $\int_{\Omega} (h_n(x) - c_n \varphi(x)) \varphi^3(x) dx > 0$ for *n* large. Therefore we can find $h(x) \in L^{\infty}(\Omega)$ (and even a C^{∞} function) satisfying (2.9). Picking $u_0 = \alpha h$ with $\alpha > 0$ small enough, we now find

(2.10)
$$\int_{\Omega} u_0(x) \varphi(x) \, dx = 0 \,, \quad \int_{\Omega} u_0(x) \varphi(x) \left(\varphi^2(x) - u_0^2(x)\right) \, dx > 0 \,.$$

On the other hand for t > 0 we have

$$\frac{d}{dt} \int_{\Omega} u(t,x) \varphi(x) \, dx = \int_{\Omega} u_t(t,x) \varphi(x) \, dx = \int_{\Omega} \{u_{xx} - u^3 + \lambda u\} \varphi \, dx$$
$$= \int_{\Omega} \{\varphi_{xx} + \lambda \varphi\} \, u \, dx - \int_{\Omega} u^3 \varphi \, dx = \int_{\Omega} u \, \varphi(\varphi^2 - u^2) \, dx \; .$$

By considering small values of t, we see that $\int_{\Omega} u(t, x) \varphi(x) dx$ is increasing on a small time interval [t', t'']. Since $\int_{\Omega} u_0(x) \varphi(x) dx = 0$, this contradicts (2.8). The proof of Theorem 2.1 is now complete.

Corollary 2.3. The conclusion of Corollary 1.2 is not valid for a general potential $a \in (\mathbb{R}^+ \times \Omega)$.

Proof: We choose $\Omega = (0, L)$, $u_0 \in L^{\infty}(\Omega)$ such that the unique global solution u of (2.1) with initial datum $u(0, x) = u_0(x)$ satisfies (2.3), and $a(t, x) := cu^2 - \lambda$.

REFERENCES

- [1] BARDOS, C. and TARTAR, L. Sur l'unicité rétrograde des équations paraboliques et quelques questions voisines, Arch. Rat. Mech. Anal., 59 (1973), 10–25.
- [2] BEAULIEU, A. Etude de l'unicité des solutions antipériodiques pour des équations d'évolution non linéaires, *Portugaliae Mathematica*, 49(4) (1992).

A. HARAUX

- [3] GHIDAGLIA, J.M. Some backward uniqueness results, J. Nonlinear Anal, T.M.A.
- [4] HARAUX, A. Systèmes dynamiques dissipatifs et applications, R.M.A. nº 17, Collection dirigée par P.G. Ciarlet et J.L. Lions, Masson, Paris, 1991.
- [5] HARAUX, A. Anti-periodic solutions of some nonlinear evolution equations, Manuscripta Math., 63 (1989), 479–505.
- [6] HARAUX, A. and KIRANE, M. Estimations C¹ pour des problèmes paraboliques semilinéaires, Ann. Fac. Sci. Toulouse, 5 (1983), 265–280.
- [7] OKOCHI, H. On the existence of periodic solutions to some nonlinear abstract parabolic equations, J. Math. Soc. Japan, 40 (1988), 451–553.
- [8] SOUPLET, P. Une condition optimale d'unicité pour les solutions antipériodiques d'équations d'évolution paraboliques, *CRAS Série I*, t.319, 1037–1041.

Alain Haraux, Analyse Numérique, T.55–65, 5ème étage, Université P. et M. Curie, 4, Place Jussieu, 75252 Paris Cedex 05 – FRANCE

316