A REMARK ON PARABOLIC EQUATIONS

Alain Haraux

Abstract: If $L=L^{*}$ is a seif-adjoint linear operator generating a strongly continuous semi-group on a real Hilbert space H and $\alpha \in L^{\infty}\left(\mathbb{R}^{+}\right)$, any mild solution u of $u^{\prime}=$ $L u+\alpha(t) u$ satisfies $(u(0), u(t)) \geq 0$ for all $t \geq 0$. On the other hand for any $\lambda>0$ such that $(\pi / L)^{2}<\lambda<4(\pi / L)^{2}$, there are solutions u of the one-dimensional semilinear heat equation $u_{t}-u_{x x}+u^{3}-\lambda u=0$ in $\mathbb{R}^{+} \times(0, L), u(t, 0)=u(t, L)=0$ on \mathbb{R}^{+}such that $\int_{\Omega} u(0, x) u(t, x) d x<0$ for some $t>0$.

Résumé: Si $L=L^{*}$ est un opérateur auto-adjoint, generateur d'un semi-groupe fortement continu sur un espace de Hilbert réel H et $\alpha \in L^{\infty}\left(\mathbb{R}^{+}\right)$, toute solution u de $u^{\prime}=L u+\alpha(t) u$ satisfait $(u(0), u(t)) \geq 0$ pour tout $t \geq 0$. D'autre part pour tout $\lambda>0$ tel que $(\pi / L)^{2}<\lambda<4(\pi / L)^{2}$, il existe des solutions u de l'équation de la chaleur à une dimension $u_{t}-u_{x x}+u^{3}-\lambda u=0$ dans $\mathbb{R}^{+} \times(0, L), u(t, 0)=u(t, L)=0$ sur \mathbb{R}^{+}telles que $\int_{\Omega} u(0, x) u(t, x) d x<0$ pour un certain $t>0$.

1 - A simple positivity property

Let Ω be a bounded, open subset of \mathbb{R}^{N} with a Lipschitz continuous boundary and let us consider the linear parabolic equation

$$
\begin{equation*}
u_{t}-\Delta u+a(t, x) u=0 \quad \text { in } \mathbb{R}^{+} \times \Omega, \quad u=0 \text { on } \mathbb{R}^{+} \times \partial \Omega \tag{1.1}
\end{equation*}
$$

where $a \in L^{\infty}\left(\mathbb{R}^{+} \times \Omega\right)$. For any $u_{0} \in L^{\infty}(\Omega)$, there is a unique global solution

$$
u \in C\left([0, \infty) ; L^{\infty}(\Omega)\right) \cap C\left((0, \infty) ; H_{0}^{1}(\Omega)\right)
$$

of (1.1) with initial datum $u(0, x)=u_{0}(x)$. It is well-known that (1.1) is positivity preserving in the sense that if $u_{0} \geq 0$, then $u(t, x) \geq 0$ a.e. on $\mathbb{R}^{+} \times \Omega$. For more

[^0]general initial data, when $a=0$ we know that the inner product ($u_{0}, u(t, \cdot)$) in the sense of $L^{2}(\Omega)$ is nonnegative (in fact, even positive if $u_{0} \neq 0$) since the heat semi-group is the exponential of a self-adjoint operator. More generally we have the following

Proposition 1.1. Let $L=L^{*}$ be a self-adjoint linear operator on a real Hilbert space H, generating a strongly continuous semi-group on H and $\alpha \in$ $L^{\infty}\left(\mathbb{R}^{+}\right)$. Then for any $u_{0} \in H$, the unique mild solution $u \in C([0, \infty) ; H)$ of

$$
\begin{equation*}
u^{\prime}=L u+\alpha(t) u \tag{1.2}
\end{equation*}
$$

such that $u(0)=u_{0}$ is such that $\left(u_{0}, u(t)\right) \geq 0$ for all $t \geq 0$.
Proof: Denoting by $A(t)$ the primitive of $\alpha(t)$ which vanishes at 0 we have

$$
u(t)=\exp (A(t)) \exp (t L) u_{0} \quad \text { for all } t \geq 0 .
$$

The result follows immediately since $\exp (t L)=\exp [(t / 2) L]\{\exp [(t / 2) L]\}^{*} \geq 0$.
Corollary 1.2. If $a(t, x)=a_{1}(t)+a_{2}(x)$ with $a_{1} \in L^{\infty}\left(\mathbb{R}^{+}\right)$and $a_{2} \in L^{\infty}(\Omega)$, then for any $u_{0} \in L^{\infty}(\Omega)$, the unique global solution u of (1.1) with initial datum $u(0, x)=u_{0}(x)$ is such that $u(0)=u_{0}$ is such that $\left(u_{0}, u(t, \cdot)\right)_{H} \geq 0$ for all $t \geq 0$, where $(,)_{H}$ denotes the inner product in $H=L^{2}(\Omega)$.

Proof: Just apply Proposition 1.2 with $L=\Delta-a_{2}(x) I$ with Dirichlet boundary conditions.

2 - A counterexample

In the investigation of uniqueness of anti-periodic solutions to semi-linear parabolic equations (cf. e.g. $[2,5,7,8]$) the question naturally arises of whether an equation such as (1.1) can have a non-trivial solution u with $u(\tau, \cdot)=-u(0, \cdot)$ for some $\tau>0$. Such a possibilty would be excluded if we knew that Corollary 1.2 is valid for any potential $a \in L^{\infty}\left(\mathbb{R}^{+} \times \Omega\right)$. As we shall see now, it is not the case. Consider the one-dimensional semilinear heat equation
(2.1) $u_{t}-u_{x x}+c u^{3}-\lambda u=0$ in $\mathbb{R}^{+} \times(0, L), \quad u(t, 0)=u(t, L)=0$ on \mathbb{R}^{+}, with $c>0, \lambda>0$. All solutions of this problem are global and uniformly bounded on $\mathbb{R}^{+} \times(0, L)$. For $(\pi / L)^{2}=\lambda_{1}(0, L)<\lambda<\lambda_{2}(0, L)=4(\pi / L)^{2}$, the stationary "elliptic problem"

$$
\begin{equation*}
\varphi \in H_{0}^{1}(0, L), \quad-\varphi_{x x}+c \varphi^{3}-\lambda \varphi=0 \tag{2.2}
\end{equation*}
$$

has exactly 3 solutions, namely 0 , the positive solution φ and the negative solution $(-\varphi)$. Setting $\Omega=(0, L)$, we shall establish

Theorem 2.1. For any $c>0$ and $\lambda_{1}<\lambda<\lambda_{2}$, there is $u_{0} \in L^{\infty}(\Omega)$ such that the unique global solution u of (2.1) with initial datum $u(0, x)=u_{0}(x)$ satisfies

$$
\begin{equation*}
\int_{\Omega} u_{0}(x) u(t, x) d x<0 \tag{2.3}
\end{equation*}
$$

for some $t>0$.
Proof: We proceed by contradiction. Assume, instead of (2.3), that for all $u_{0} \in L^{\infty}(\Omega)$ we have

$$
\begin{equation*}
\forall t \geq 0, \quad \int_{\Omega} u_{0}(x) u(t, x) d x \geq 0 \tag{2.4}
\end{equation*}
$$

Since any solution u of (2.1) is well-known (cf. e.g. [4]) to converge at infinity to one of the 3 solutions of (2.2), let us investigate first what happens if $u(t, \cdot)$ converges to φ as $t \rightarrow \infty$. From (2.4) we deduce immediately, by passing to the limit

$$
\begin{equation*}
\int_{\Omega} u_{0}(x) \varphi(x) d x \geq 0 . \tag{2.5}
\end{equation*}
$$

At this stage, changing if necessary u to $(-u)$, we have obtained the following properties:

- If $u(t, \cdot)$ converges to φ as $t \rightarrow \infty$, then $\int_{\Omega} u_{0}(x) \varphi(x) d x \geq 0$.
- Similarly if $u(t, \cdot)$ converges to $(-\varphi)$ as $t \rightarrow \infty$, then $\int_{\Omega} u_{0}(x) \varphi(x) d x \leq 0$.

To derive a contradiction, we shall prove the following
Lemma 2.2. Assuming $\int_{\Omega} u_{0}(x) \varphi(x) d x>0$, we have $u(t) \rightarrow \varphi$ as $t \rightarrow \infty$, and

$$
\begin{equation*}
\forall t \geq 0, \quad \int_{\Omega} u(t, x) \varphi(x) d x \geq 0 \tag{2.6}
\end{equation*}
$$

Proof: Since by the previous results $u(t)$ cannot tend to $(-\varphi)$ as $t \rightarrow \infty$, we must have either $u(t) \rightarrow 0$ or $u(t) \rightarrow \varphi$ as $t \rightarrow \infty$. Now let u_{ε} be the solution of equation (2.1) such that $u_{\varepsilon}(0)=u_{0}-\varepsilon \varphi$ with $\varepsilon>0$. For $\varepsilon>0$ small enough, we have $\int_{\Omega}\left(u_{0}(x)-\varepsilon \varphi(x)\right) \varphi(x) d x>0$, and the solution u_{ε} of equation (2.1) such that $u_{\varepsilon}(0)=u_{0}-\varepsilon \varphi$ also tends either to 0 or φ at infinity while $w:=u-u_{\varepsilon} \geq 0$.

Now if $u(t) \rightarrow 0$ as $t \rightarrow \infty$, we also must have $u_{\varepsilon}(t)$ as $t \rightarrow \infty$, both convergences being uniform on $[0, L]$. Since $\lambda>\lambda_{1}(0, L)=(\pi / L)^{2}$, an immediate calculation now shows that, as a consequence of the equation
$w_{t}-w_{x x}+c\left(u^{2}+u u_{\varepsilon}+u_{\varepsilon}^{2}\right) w=\lambda w$ in $\mathbb{R}^{+} \times(0, L), \quad w(t, 0)=w(t, L)=0 \quad$ on \mathbb{R}^{+} there exists $T>0$ and $\eta>0$ for which

$$
\forall t \geq T, \quad \frac{d}{d t} \int_{\Omega} w(t, x) \psi(x) d x \geq \eta \int_{\Omega} w(t, x) \psi(x) d x
$$

with $\psi(x):=\sin (\pi / L) x$ on $[0, L]$. Of course this implies that either $w=0$ for $t \geq T$, excluded by backward uniqueness (cf. e.g. [1, 3]) or w is unbounded as $t \rightarrow \infty$, a contradiction. Consequently we must have $u(t) \rightarrow \varphi$ as $t \rightarrow \infty$. Then (2.6) follows from the fact that for each $\tau>0, v(t, \cdot)=u(t+\tau, \cdot)$ is a solution of (2.1) with $v(t) \rightarrow \varphi$ as $t \rightarrow \infty$.

Proof of Theorem 2.1 (continued): We now turn our attention to those initial data u_{0} orthogonal to φ in H, which means

$$
\begin{equation*}
\int_{\Omega} u_{0}(x) \varphi(x) d x=0 . \tag{2.7}
\end{equation*}
$$

Considering v_{ε} be the solution of equation (2.1) such that $v_{\varepsilon}(0)=u_{0}+\varepsilon \varphi$ with $\varepsilon>0$, we remark that as $\varepsilon \rightarrow 0, v_{\varepsilon}(t, \cdot)$ converges to $u(t, \cdot)$ uniformly for each $t \geq 0$ fixed. By Lemma 2.2 we have

$$
\forall t \geq 0, \quad \int_{\Omega} v_{\varepsilon}(t, x) \varphi(x) d x \geq 0
$$

and by letting $\varepsilon \rightarrow 0$, we deduce:

$$
\forall t \geq 0, \quad \int_{\Omega} u(t, x) \varphi(x) d x \geq 0
$$

Changing u_{0} to $\left(-u_{0}\right)$, from (2.7) we also deduce

$$
\forall t \geq 0, \quad \int_{\Omega} u(t, x) \varphi(x) d x \leq 0
$$

Hence finally (2.7) implies

$$
\begin{equation*}
\forall t \geq 0, \quad \int_{\Omega} u(t, x) \varphi(x) d x=0 \tag{2.8}
\end{equation*}
$$

The fact that (2.7) implies (2.8) is contradictory with direct properties of (2.1). Since $\varphi(x)$ is not constant, there is $h(x) \in L^{2}(\Omega)$ such that, for instance

$$
\begin{equation*}
\int_{\Omega} h(x) \varphi(x) d x=0, \quad \int_{\Omega} h(x) \varphi^{3}(x) d x>0 \tag{2.9}
\end{equation*}
$$

Let $h_{n}(x)$ be a sequence of C^{∞} functions with compact support converging to h in $L^{2}(\Omega)$. For n large we have

$$
\frac{\int_{\Omega} h_{n}(x) \varphi(x) d x}{\int_{\Omega} \varphi^{2}(x) d x}=c_{n} \rightarrow 0
$$

while $\int_{\Omega}\left(h_{n}(x)-c_{n} \varphi(x)\right) \varphi(x) d x=0$ and $\int_{\Omega}\left(h_{n}(x)-c_{n} \varphi(x)\right) \varphi^{3}(x) d x>0$ for n large. Therefore we can find $h(x) \in L^{\infty}(\Omega)$ (and even a C^{∞} function) satisfying (2.9). Picking $u_{0}=\alpha h$ with $\alpha>0$ small enough, we now find

$$
\begin{equation*}
\int_{\Omega} u_{0}(x) \varphi(x) d x=0, \quad \int_{\Omega} u_{0}(x) \varphi(x)\left(\varphi^{2}(x)-u_{0}^{2}(x)\right) d x>0 \tag{2.10}
\end{equation*}
$$

On the other hand for $t>0$ we have

$$
\begin{aligned}
\frac{d}{d t} \int_{\Omega} u(t, x) \varphi(x) d x & =\int_{\Omega} u_{t}(t, x) \varphi(x) d x=\int_{\Omega}\left\{u_{x x}-u^{3}+\lambda u\right) \varphi d x \\
& =\int_{\Omega}\left\{\varphi_{x x}+\lambda \varphi\right) u d x-\int_{\Omega} u^{3} \varphi d x=\int_{\Omega} u \varphi\left(\varphi^{2}-u^{2}\right) d x
\end{aligned}
$$

By considering small values of t, we see that $\int_{\Omega} u(t, x) \varphi(x) d x$ is increasing on a small time interval $\left[t^{\prime}, t^{\prime \prime}\right]$. Since $\int_{\Omega} u_{0}(x) \varphi(x) d x=0$, this contradicts (2.8). The proof of Theorem 2.1 is now complete.

Corollary 2.3. The conclusion of Corollary 1.2 is not valid for a general potential $a \in\left(\mathbb{R}^{+} \times \Omega\right)$.

Proof: We choose $\Omega=(0, L), u_{0} \in L^{\infty}(\Omega)$ such that the unique global solution u of (2.1) with initial datum $u(0, x)=u_{0}(x)$ satisfies (2.3), and $a(t, x):=$ $c u^{2}-\lambda$.

REFERENCES

[1] Bardos, C. and Tartar, L. - Sur l'unicité rétrograde des équations paraboliques et quelques questions voisines, Arch. Rat. Mech. Anal., 59 (1973), 10-25.
[2] Beaulieu, A. - Etude de l'unicité des solutions antipériodiques pour des équations d'évolution non linéaires, Portugaliae Mathematica, 49(4) (1992).
[3] Ghidaglia, J.M. - Some backward uniqueness results, J. Nonlinear Anal, T.M.A.
[4] Haraux, A. - Systèmes dynamiques dissipatifs et applications, R.M.A. no 17, Collection dirigée par P.G. Ciarlet et J.L. Lions, Masson, Paris, 1991.
[5] Haraux, A. - Anti-periodic solutions of some nonlinear evolution equations, Manuscripta Math., 63 (1989), 479-505.
[6] Haraux, A. and Kirane, M. - Estimations C^{1} pour des problèmes paraboliques semilinéaires, Ann. Fac. Sci. Toulouse, 5 (1983), 265-280.
[7] Oкосні, H. - On the existence of periodic solutions to some nonlinear abstract parabolic equations, J. Math. Soc. Japan, 40 (1988), 451-553.
[8] Souplet, P. - Une condition optimale d'unicité pour les solutions antipériodiques d'équations d'évolution paraboliques, CRAS Série I, t.319, 1037-1041.

Alain Haraux,
Analyse Numérique, T.55-65, 5ème étage, Université P. et M. Curie, 4, Place Jussieu, 75252 Paris Cedex 05 - FRANCE

[^0]: Received: April 22, 1996.

