AXIOMS FOR INVARIANT FACTORS*

João Filipe Queiró

Abstract

We show that the invariant factors of matrices over certain types of rings are characterized by a short list of very simple properties.

1 - Introduction

An integral domain R is called an elementary divisor domain [3] if every matrix over R is equivalent to a "Smith normal form", that is, there exist U and V invertible over R such that

$$
U A V=\left[\begin{array}{ccc}
s_{1}(A) & & 0 \\
& s_{2}(A) & \\
0 & & \ddots
\end{array}\right]
$$

where $s_{1}(A)\left|s_{2}(A)\right| \ldots$ The elements $s_{1}(A), s_{2}(A), \ldots$ are the invariant factors of A and are uniquely determined (apart from units) by the matrix, as follows from the characterization

$$
s_{k}(A)=\frac{d_{k}(A)}{d_{k-1}(A)}, \quad k=1, \ldots, \operatorname{rank}(A)
$$

($d_{k}(A)$ - the k-th determinantal divisor of A - is the g.c.d. of all $k \times k$ minors of $A, d_{0} \equiv 1$). For convenience, we add a chain of 0 's to the list of invariant factors.

Examples of elementary divisor domains are Euclidean domains (like \mathbb{Z} and the rings $\mathbb{F}[\lambda], \mathbb{F}$ a field) and, more generally, principal ideal domains. One example of an elementary divisor domain which is not a principal ideal domain

[^0]is the ring $H(\Omega)$ of all complex functions holomorphic in an open connected set $\Omega \subseteq \mathbb{C}[2]$.

The determinantal divisors (and hence also the invariant factors) are invariant under equivalence. Therefore, over an elementary divisor domain, the invariant factors completely determine the equivalence orbits: two matrices are equivalent if and only if they have the same invariant factors.

The following properties of invariant factors are very simple to establish:
(I) $s_{1}(c A)=c \cdot s_{1}(A)$ for all $c \in R$;
(II) $\operatorname{gcd}\left(s_{k}(A), s_{1}(B)\right) \mid s_{k}(A+B)$ for all k, whenever $A+B$ exists;
(III) $s_{k}(A) \mid s_{k}(P A Q)$ for all k, whenever $P A Q$ exists;
$(\mathbf{I V}) k>\operatorname{rank}(A) \Rightarrow s_{k}(A)=0$;
$(\mathbf{V}) k \leq n \Rightarrow s_{k}\left(c I_{n}\right) \mid c$ for all $c \in R$.

Our main purpose in the present note is to show that this list of properties actually characterizes the chain of invariant factors.

2 - The main result

Theorem. Let R be an elementary divisor domain. Suppose that to every matrix A over R we associate a sequence $h_{1}(A)\left|h_{2}(A)\right| \ldots$ of elements of R so that the following properties are satisfied:
(I) $h_{1}(c A)=c . h_{1}(A)$ for all $c \in R$;
(II) $\operatorname{gcd}\left(h_{k}(A), h_{1}(B)\right) \mid h_{k}(A+B)$ for all k, whenever $A+B$ exists;
(III) $h_{k}(A) \mid h_{k}(P A Q)$ for all k, whenever $P A Q$ exists;
$(\mathbf{I V}) k>\operatorname{rank}(A) \Rightarrow h_{k}(A)=0$;
$(\mathbf{V}) k \leq n \Rightarrow h_{k}\left(c I_{n}\right) \mid c$ for all $c \in R$.
Then $h_{k}(A)=s_{k}(A)$ for all A and k.
Remark. In condition (I) and in the conclusion of the theorem, equality means "apart from units" (and likewise in similar situations).

The proof of the theorem consists of a sequence of claims.

Claim 1. If B is a submatrix of A, then $h_{k}(A) \mid h_{k}(B)$ for all k.
Proof: There exist P and Q such that $B=P A Q$ whence (III) gives the result.

Claim 2. If A and B are equivalent then $h_{k}(A)=h_{k}(B)$ for all k.
Proof: $B=U A V$ gives $h_{k}(A) \mid h_{k}(B) . A=U^{-1} B V^{-1}$ gives $h_{k}(B) \mid h_{k}(A)$.
Claim 3. $h_{1}(A)=s_{1}(A)$.
Proof: A is equivalent to its Smith normal form

$$
\Sigma=\left[\begin{array}{ccc}
s_{1}(A) & & 0 \\
& s_{2}(A) & \\
0 & & \ddots
\end{array}\right]=s_{1}(A) \cdot D
$$

where

$$
D=\left[\begin{array}{cccc}
1 & & & 0 \\
& \frac{s_{2}(A)}{s_{1}(A)} & & \\
& & \frac{s_{3}(A)}{s_{1}(A)} & \\
0 & & & \ddots
\end{array}\right]
$$

Since 1 is a submatrix of D, we have $h_{1}(D) \mid h_{1}(1)=1$, whence $h_{1}(D)=1$. Therefore, $h_{1}(A)=h_{1}(\Sigma)=h_{1}\left(s_{1}(A) . D\right)=s_{1}(A) h_{1}(D)=s_{1}(A)$.

Claim 4. $s_{k}(A) \mid h_{k}(A)$ for all k.
Proof: By claim 2, we may assume A is in Smith normal form. Let

$$
X=\left[\begin{array}{ccccc}
s_{1}(A) & & & & 0 \\
& \ddots & & & \\
& & s_{k-1}(A) & & \\
& & & 0 & \\
0 & & & & \ddots
\end{array}\right] \quad \text { (with the size of } A \text {). }
$$

Clearly $\operatorname{rank}(X)<k$, whence $h_{k}(X)=0$. We have

$$
\begin{aligned}
s_{1}(A-X)=h_{1}(A-X) & =\operatorname{gcd}\left(0, h_{1}(A-X)\right) \\
& =\operatorname{gcd}\left(h_{k}(X), h_{1}(A-X)\right) \mid h_{k}(X+A-X)=h_{k}(A)
\end{aligned}
$$

where we have used claim 3 and (II). But obviously $s_{1}(A-X)=s_{k}(A)$.
Claim 5. $h_{k}(A) \mid s_{k}(A)$ for all k.
Proof: It is enough to consider $k \leq \operatorname{rank}(A)$. Clearly there exist P and Q such that

$$
P A Q=\left[\begin{array}{ccc}
s_{1}(A) & & 0 \\
& \ddots & \\
0 & & s_{k}(A)
\end{array}\right]
$$

Put

$$
E=\left[\begin{array}{cccc}
\frac{s_{k}(A)}{s_{1}(A)} & & & 0 \\
& \ddots & & \\
& & \frac{s_{k}(A)}{s_{k-1}(A)} & \\
0 & & & 1
\end{array}\right]
$$

and write $Q^{\prime}=Q E$. Then $P A Q^{\prime}=s_{k}(A) \cdot I_{k}$ whence, by (III) and (V),

$$
h_{k}(A)\left|h_{k}\left(P A Q^{\prime}\right)=h_{k}\left(s_{k}(A) \cdot I_{k}\right)\right| s_{k}(A)
$$

Claims 4 and 5 prove the theorem.
Remark 1. The inspiration for this theorem came from a characterization of singular values by Pietsch [6]. In the language of matrices his result reads as follows: Suppose that to every matrix A over \mathbb{C} we associate a sequence $h_{1}(A) \geq$ $h_{2}(A) \geq \ldots$ of nonnegative numbers so that the following properties are satisfied:
(I) $h_{1}(A)=\|A\|$;
(II) $h_{k}(A)+h_{1}(B) \geq h_{k}(A+B)$ for all k, whenever $A+B$ exists;
$(\mathbf{I I I}) h_{1}(P) h_{k}(A) h_{1}(Q) \geq h_{k}(P A Q)$ for all k, whenever $P A Q$ exists;
$(\mathbf{I V}) k>\operatorname{rank}(A) \Rightarrow h_{k}(A)=0$;
$(\mathbf{V}) k \leq n \Rightarrow h_{k}\left(I_{n}\right)=1$
Then, for all $A, h_{1}(A), h_{2}(A), \ldots$ are the singular values of A.
Remark 2. Condition (V) in our theorem cannot be replaced by $k \leq n \Rightarrow$ $h_{k}\left(I_{n}\right)=1$, as the sequence of determinantal divisors would also satisfy the new axiom list.

3 - Applications

The theorem can be applied to obtain alternative characterizations of invariant factors. Denote $s_{1}(=\operatorname{gcd})$ by μ. Let $A \in R^{m \times n}$. Then, for all k, we have, among others, the following characterizations:

$$
\begin{align*}
s_{k}(A)= & \operatorname{lcm}\{\mu(A-X): \operatorname{rank}(X)<k\} \tag{1}\\
s_{k}(A)= & \operatorname{gcd}\left\{c \in R: P A Q=c I_{k}, P \in R^{k \times m}, Q \in R^{n \times k}\right\} \tag{2}\\
s_{k}(A)= & \underset{E \leq R^{n},}{\operatorname{lcm}} \underset{\substack{E \in E, \operatorname{dim} E=n-k+1}}{\operatorname{gcd}} \mu(A x), \tag{3}\\
s_{k}(A)=\underset{\substack{E \leq R^{n} \\
\operatorname{dim} E=k}}{\operatorname{gcd}} \underset{x \in E,}{\mu(x)=1} & \mu(A x) \tag{4}
\end{align*}
$$

The first of these four characterizations appeared in [7]. The third and fourth appeared in [1]. All can be proved very easily by showing that the right-hand side satisfies properties (I)-(V) of the theorem. For this, one must assume beforehand that the indicated lcm's and gcd's actually exist. This is automatic if R is, for example, a principal ideal domain (which was the situation considered in [1] and [7]).

As noted in [1] with respect to (3) and (4), each of these characterizations provides a new proof of the fact that the invariant factors are uniquely determined by the matrix, a matter approached in [5] in a different way.

The alternative characterizations can in turn be used to obtain easy proofs of known results about invariant factors. We list some of these.

Interlacing of invariant factors. If $A^{\prime} m^{\prime} \times n^{\prime}$ is a submatrix of $A m \times n$, then, for all k,

$$
s_{k}(A)\left|s_{k}\left(A^{\prime}\right)\right| s_{k+\left(m-m^{\prime}\right)+\left(n-n^{\prime}\right)}(A)
$$

(the so-called interlacing "inequalities"). The proof is trivial using characterization (1) [7]. (The original proof can be found in [8], [9].)

Invariant factors of sums. We have

$$
\operatorname{gcd}\left(s_{i}(A), s_{j}(B)\right) \mid s_{i+j-1}(A+B)
$$

for all i, j. Again the proof is trivial using characterization (1) [7]. (For the original proof, valid only for principal ideal domains, see [10].)

Invariant factors of products. This is an extensively studied problem. For $n \times n$ A and B, known relations have the form

$$
\begin{equation*}
s_{i_{1}}(A) \cdots s_{i_{t}}(A) s_{j_{1}}(B) \cdots s_{j_{t}}(B) \mid s_{k_{1}}(A B) \cdots s_{k_{t}}(A B) \tag{P}
\end{equation*}
$$

where $1 \leq t \leq n, 1 \leq i_{1}<\ldots<i_{t} \leq n, 1 \leq j_{1}<\ldots<j_{t} \leq n, 1 \leq k_{1}<\ldots<k_{t} \leq$ n. The problem is to find all the "right" sequences $\boldsymbol{i}=\left(i_{1}, \ldots, i_{t}\right), \boldsymbol{j}=\left(j_{1}, \ldots, j_{t}\right)$, $\boldsymbol{k}=\left(k_{1}, \ldots, k_{t}\right)$. A very general description of sequences $\boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k}$ for which (P) holds is due to R.C. Thompson [11]. In that work the ring must be a principal ideal domain.

An important corollary of Thompson's work is that (P) holds when $k=$ $i_{u}+j_{u}-u, 1 \leq u \leq t:$

$$
s_{i_{1}}(A) \cdots s_{i_{t}}(A) s_{j_{1}}(B) \cdots s_{j_{t}}(B) \mid s_{i_{1}+j_{1}-1}(A B) \cdots s_{i_{t}+j_{t}-t}(A B)
$$

(the "standard" inequalities). For $t=1$, this gives the well-known relation

$$
s_{i}(A) s_{j}(B) \mid s_{i+j-1}(A B)
$$

The standard inequalities can also be proved using the Carlson-Sá characterizations (3)-(4) [4]. So they hold for matrices over elementary divisor domains.

REFERENCES

[1] Carlson, D. and Marques de SÁ, E. - Generalized minimax and interlacing theorems, Linear and Multilinear Algebra, 15 (1984), 77-103.
[2] Helmer, O. - The elementary divisor theorem for certain rings without chain condition, Bulletin AMS, 49 (1943), 225-236.
[3] Kaplansky, I. - Elementary divisors and modules, Transactions AMS, 66 (1949), 464-491.
[4] Martins, R.A. and Queiró, J.F. - Spectral inequalities for generalized Rayleigh quotients, Linear Algebra and its Applications, 220 (1995), 311-320.
[5] Newman, M. - Equivalence without determinantal divisors, Linear and Multilinear Algebra, 7 (1979), 107-109.
[6] Pietsch, A. - s-Numbers of operators in Banach spaces, Studia Mathematica, 51 (1974), 201-223.
[7] Queiró, J.F. - Invariant factors as approximation numbers, Linear Algebra and its Applications, 49 (1983), 131-136.
[8] Marques de Sá, E. - Imbedding conditions for λ-matrices, Linear Algebra and its Applications, 24 (1979), 33-50.
[9] Thompson, R.C. - Interlacing inequalities for invariant factors, Linear Algebra and its Applications, 24 (1979), 1-32.
[10] Thompson, R.C. - The Smith invariants of a matrix sum, Proceedings AMS, 78 (1980), 162-164.
[11] Thompson, R.C. - Smith invariants of a product of integral matrices, in "Linear Algebra and its Role in Systems Theory", Contemporary Mathematics, 47 (1985), 401-435.

João Filipe Queiró,
Departamento de Matemática, Universidade de Coimbra, Apartado 3008, 3000 Coimbra - PORTUGAL

[^0]: Received: January 22, 1996.

 * Research supported by CMUC/JNICT and project PBIC/C/CEN/1129/92 "Representação de Grupos e Combinatória".

