PORTUGALIAE MATHEMATICA Vol. 54 Fasc. 3 – 1997

AXIOMS FOR INVARIANT FACTORS*

JOÃO FILIPE QUEIRÓ

Abstract: We show that the invariant factors of matrices over certain types of rings are characterized by a short list of very simple properties.

1 – Introduction

An integral domain R is called an *elementary divisor domain* [3] if every matrix over R is equivalent to a "Smith normal form", that is, there exist U and V invertible over R such that

$$UAV = \begin{bmatrix} s_1(A) & 0 \\ s_2(A) & \\ 0 & \ddots \end{bmatrix}$$

where $s_1(A) | s_2(A) | \dots$ The elements $s_1(A), s_2(A), \dots$ are the invariant factors of A and are uniquely determined (apart from units) by the matrix, as follows from the characterization

$$s_k(A) = \frac{d_k(A)}{d_{k-1}(A)}, \quad k = 1, ..., \operatorname{rank}(A)$$

 $(d_k(A)$ — the k-th determinantal divisor of A — is the g.c.d. of all $k \times k$ minors of A, $d_0 \equiv 1$). For convenience, we add a chain of 0's to the list of invariant factors.

Examples of elementary divisor domains are Euclidean domains (like \mathbb{Z} and the rings $\mathbb{F}[\lambda]$, \mathbb{F} a field) and, more generally, principal ideal domains. One example of an elementary divisor domain which is not a principal ideal domain

Received: January 22, 1996.

 $[\]ast$ Research supported by CMUC/JNICT and project PBIC/C/CEN/1129/92 "Representação de Grupos e Combinatória".

J.F. QUEIRÓ

is the ring $H(\Omega)$ of all complex functions holomorphic in an open connected set $\Omega \subseteq \mathbb{C}$ [2].

The determinantal divisors (and hence also the invariant factors) are invariant under equivalence. Therefore, over an elementary divisor domain, the invariant factors completely determine the equivalence orbits: two matrices are equivalent if and only if they have the same invariant factors.

The following properties of invariant factors are very simple to establish:

(I) $s_1(cA) = c.s_1(A)$ for all $c \in R$; (II) $gcd(s_k(A), s_1(B)) | s_k(A + B)$ for all k, whenever A + B exists; (III) $s_k(A) | s_k(PAQ)$ for all k, whenever PAQ exists; (IV) $k > rank(A) \Rightarrow s_k(A) = 0$; (V) $k \le n \Rightarrow s_k(cI_n) | c$ for all $c \in R$.

Our main purpose in the present note is to show that this list of properties actually characterizes the chain of invariant factors.

$\mathbf{2}$ – The main result

Theorem. Let R be an elementary divisor domain. Suppose that to every matrix A over R we associate a sequence $h_1(A) \mid h_2(A) \mid ...$ of elements of R so that the following properties are satisfied:

- (I) $h_1(cA) = c.h_1(A)$ for all $c \in R$;
- (II) $gcd(h_k(A), h_1(B)) \mid h_k(A+B)$ for all k, whenever A+B exists;
- (III) $h_k(A) \mid h_k(PAQ)$ for all k, whenever PAQ exists;
- (**IV**) $k > \operatorname{rank}(A) \Rightarrow h_k(A) = 0;$

(**V**) $k \leq n \Rightarrow h_k(cI_n) \mid c \text{ for all } c \in R.$

Then $h_k(A) = s_k(A)$ for all A and k.

Remark. In condition (I) and in the conclusion of the theorem, equality means "apart from units" (and likewise in similar situations).

The proof of the theorem consists of a sequence of claims.

264

Claim 1. If B is a submatrix of A, then $h_k(A) \mid h_k(B)$ for all k.

Proof: There exist P and Q such that B = PAQ whence (III) gives the result.

Claim 2. If A and B are equivalent then $h_k(A) = h_k(B)$ for all k.

Proof: B = UAV gives $h_k(A) \mid h_k(B)$. $A = U^{-1}BV^{-1}$ gives $h_k(B) \mid h_k(A)$.

Claim 3. $h_1(A) = s_1(A)$.

Proof: A is equivalent to its Smith normal form

$$\Sigma = \begin{bmatrix} s_1(A) & 0 \\ s_2(A) & \\ 0 & \ddots \end{bmatrix} = s_1(A).D ,$$

where

$$D = \begin{bmatrix} 1 & & & 0 \\ & \frac{s_2(A)}{s_1(A)} & & \\ & & \frac{s_3(A)}{s_1(A)} & \\ 0 & & & \ddots \end{bmatrix} .$$

Since 1 is a submatrix of *D*, we have $h_1(D) \mid h_1(1) = 1$, whence $h_1(D) = 1$. Therefore, $h_1(A) = h_1(\Sigma) = h_1(s_1(A).D) = s_1(A) h_1(D) = s_1(A)$.

Claim 4. $s_k(A) \mid h_k(A)$ for all k.

Proof: By claim 2, we may assume A is in Smith normal form. Let

$$X = \begin{bmatrix} s_1(A) & & & 0 \\ & \ddots & & & \\ & & s_{k-1}(A) & & \\ & & & 0 & \\ 0 & & & \ddots \end{bmatrix}$$
 (with the size of A) .

Clearly rank(X) < k, whence $h_k(X) = 0$. We have

$$s_1(A - X) = h_1(A - X) = \gcd(0, h_1(A - X))$$

= $\gcd(h_k(X), h_1(A - X)) \mid h_k(X + A - X) = h_k(A) ,$

J.F. QUEIRÓ

where we have used claim 3 and (II). But obviously $s_1(A - X) = s_k(A)$.

Claim 5. $h_k(A) \mid s_k(A)$ for all k.

Proof: It is enough to consider $k \leq \operatorname{rank}(A)$. Clearly there exist P and Q such that

$$PAQ = \begin{bmatrix} s_1(A) & 0 \\ & \ddots & \\ 0 & & s_k(A) \end{bmatrix}$$

Put

$$E = \begin{bmatrix} \frac{s_k(A)}{s_1(A)} & & 0\\ & \ddots & \\ & & \frac{s_k(A)}{s_{k-1}(A)} \\ 0 & & 1 \end{bmatrix}$$

and write Q' = QE. Then $PAQ' = s_k(A).I_k$ whence, by (III) and (V),

$$h_k(A) \mid h_k(PAQ') = h_k(s_k(A).I_k) \mid s_k(A) . \blacksquare$$

Claims 4 and 5 prove the theorem.

Remark 1. The inspiration for this theorem came from a characterization of singular values by Pietsch [6]. In the language of matrices his result reads as follows: Suppose that to every matrix A over \mathbb{C} we associate a sequence $h_1(A) \ge h_2(A) \ge \dots$ of nonnegative numbers so that the following properties are satisfied:

- (**I**) $h_1(A) = ||A||;$
- (II) $h_k(A) + h_1(B) \ge h_k(A+B)$ for all k, whenever A + B exists;
- (III) $h_1(P) h_k(A) h_1(Q) \ge h_k(PAQ)$ for all k, whenever PAQ exists;
- (**IV**) $k > \operatorname{rank}(A) \Rightarrow h_k(A) = 0;$

(**V**)
$$k \leq n \Rightarrow h_k(I_n) = 1.$$

Then, for all A, $h_1(A)$, $h_2(A)$, ... are the singular values of A.

Remark 2. Condition (V) in our theorem cannot be replaced by $k \leq n \Rightarrow h_k(I_n) = 1$, as the sequence of determinantal divisors would also satisfy the new axiom list.

266

AXIOMS FOR INVARIANT FACTORS

3 – Applications

The theorem can be applied to obtain alternative characterizations of invariant factors. Denote $s_1 (= \text{gcd})$ by μ . Let $A \in \mathbb{R}^{m \times n}$. Then, for all k, we have, among others, the following characterizations:

(1)
$$s_k(A) = \operatorname{lcm}\left\{\mu(A - X) \colon \operatorname{rank}(X) < k\right\},$$

(2)
$$s_k(A) = \gcd\left\{c \in R \colon PAQ = cI_k, \ P \in R^{k \times m}, \ Q \in R^{n \times k}\right\},$$

(3)
$$s_k(A) = \lim_{E \le R^n, \quad \text{gcd} \atop x \in E} \mu(Ax),$$

(3)
$$s_k(A) = \lim_{\substack{E \le R^n, \\ \dim E = n-k+1}} \gcd_{\substack{x \in E, \\ \mu(x) = 1}} \mu$$

(4)
$$s_k(A) = \gcd_{\substack{E \le R^n, \\ \dim E = k}} \lim_{\substack{x \in E, \\ \mu(x) = 1}} \mu(Ax)$$

The first of these four characterizations appeared in [7]. The third and fourth appeared in [1]. All can be proved very easily by showing that the right-hand side satisfies properties (I)–(V) of the theorem. For this, one must assume beforehand that the indicated lcm's and gcd's actually exist. This is automatic if R is, for example, a principal ideal domain (which was the situation considered in [1] and [7]).

As noted in [1] with respect to (3) and (4), each of these characterizations provides a new proof of the fact that the invariant factors are uniquely determined by the matrix, a matter approached in [5] in a different way.

The alternative characterizations can in turn be used to obtain easy proofs of known results about invariant factors. We list some of these.

Interlacing of invariant factors. If $A' m' \times n'$ is a submatrix of $A m \times n$, then, for all k,

$$s_k(A) \mid s_k(A') \mid s_{k+(m-m')+(n-n')}(A)$$

(the so-called interlacing "inequalities"). The proof is trivial using characterization (1) [7]. (The original proof can be found in [8], [9].)

Invariant factors of sums. We have

$$gcd(s_i(A), s_j(B)) | s_{i+j-1}(A+B)$$

J.F. QUEIRÓ

for all i, j. Again the proof is trivial using characterization (1) [7]. (For the original proof, valid only for principal ideal domains, see [10].)

Invariant factors of products. This is an extensively studied problem. For $n \times n$ A and B, known relations have the form

(P)
$$s_{i_1}(A) \cdots s_{i_t}(A) s_{j_1}(B) \cdots s_{j_t}(B) \mid s_{k_1}(AB) \cdots s_{k_t}(AB) ,$$

where $1 \leq t \leq n, 1 \leq i_1 < ... < i_t \leq n, 1 \leq j_1 < ... < j_t \leq n, 1 \leq k_1 < ... < k_t \leq n$. The problem is to find all the "right" sequences $\mathbf{i} = (i_1, ..., i_t), \mathbf{j} = (j_1, ..., j_t), \mathbf{k} = (k_1, ..., k_t)$. A very general description of sequences $\mathbf{i}, \mathbf{j}, \mathbf{k}$ for which (P) holds is due to R.C. Thompson [11]. In that work the ring must be a principal ideal domain.

An important corollary of Thompson's work is that (P) holds when $k = i_u + j_u - u$, $1 \le u \le t$:

$$s_{i_1}(A) \cdots s_{i_t}(A) s_{j_1}(B) \cdots s_{j_t}(B) \mid s_{i_1+j_1-1}(AB) \cdots s_{i_t+j_t-t}(AB)$$

(the "standard" inequalities). For t = 1, this gives the well-known relation

$$s_i(A) s_j(B) | s_{i+j-1}(AB)$$
.

The standard inequalities can also be proved using the Carlson–Sá characterizations (3)–(4) [4]. So they hold for matrices over elementary divisor domains.

REFERENCES

- CARLSON, D. and MARQUES DE SÁ, E. Generalized minimax and interlacing theorems, *Linear and Multilinear Algebra*, 15 (1984), 77–103.
- [2] HELMER, O. The elementary divisor theorem for certain rings without chain condition, Bulletin AMS, 49 (1943), 225–236.
- [3] KAPLANSKY, I. Elementary divisors and modules, *Transactions AMS*, 66 (1949), 464–491.
- [4] MARTINS, R.A. and QUEIRÓ, J.F. Spectral inequalities for generalized Rayleigh quotients, *Linear Algebra and its Applications*, 220 (1995), 311–320.
- [5] NEWMAN, M. Equivalence without determinantal divisors, *Linear and Multilinear Algebra*, 7 (1979), 107–109.
- [6] PIETSCH, A. s-Numbers of operators in Banach spaces, Studia Mathematica, 51 (1974), 201–223.
- [7] QUEIRÓ, J.F. Invariant factors as approximation numbers, *Linear Algebra and its Applications*, 49 (1983), 131–136.
- [8] MARQUES DE SÁ, E. Imbedding conditions for λ-matrices, Linear Algebra and its Applications, 24 (1979), 33–50.

268

AXIOMS FOR INVARIANT FACTORS

- [9] THOMPSON, R.C. Interlacing inequalities for invariant factors, *Linear Algebra* and its Applications, 24 (1979), 1–32.
- [10] THOMPSON, R.C. The Smith invariants of a matrix sum, Proceedings AMS, 78 (1980), 162–164.
- [11] THOMPSON, R.C. Smith invariants of a product of integral matrices, in "Linear Algebra and its Role in Systems Theory", *Contemporary Mathematics*, 47 (1985), 401–435.

João Filipe Queiró, Departamento de Matemática, Universidade de Coimbra, Apartado 3008, 3000 Coimbra – PORTUGAL