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COMPARISON RESULTS FOR IMPULSIVE DELAY
DIFFERENTIAL INEQUALITIES AND EQUATIONS *

Jurang Yan

Abstract: In this paper, we are dealing with first order impulsive delay differential

equations and inequalities and establish comparison theorems of existence of positive

solutions of impulsive delay differential equations and inequalities.

1 – Introduction

The theory of impulsive differential equations is emerging as an important

area of investigation, since it is a lot richer than the corresponding theory of

differential equations without impulse effects. Moreover, such equations may

exhibit several real world phenomenon in physics, biology, engineering, etc. In

the last few years the theory of the impulsive ordinary differential equations has

been studied by many authors. For example, see [5]. However, not much has

been developed in the direction of impulsive delay differential equations, see [1]

and [2]. In this paper we are dealing with first order impulsive delay differential

equations and inequalities and give some comparison results. The results relative

to the delay differential equations have been obtained, see [3] and [6].

Let 0 ≤ t0 < t1 < t2 < ..., with limk→∞ tk =∞. Consider the impulsive delay

differential equation

(1)
x′(t) +

n∑

i=1

pi(t)x(t− τi) = 0 , t 6= tk ,

x(t+k )− x(tk) = bk x(tk) , k = 1, 2, 3, ... ,
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where

(2)
pi(t) ≥ 0 (i = 1, 2, ..., n) are continuous functions
on [0,∞), τi (i = 1, 2, ..., n) are positive constants
and bk (k = 1, 2, ...) are nonpositive constants,

and the corresponding inequalities

(3)
x′(t) +

n∑

i=1

pi(t)x(t− τi) ≤ 0 , t 6= tk ,

x(t+k )− x(tk) ≤ bk x(tk) , k = 1, 2, ... .

Let τ = max1≤i≤n τi and σ = min1≤i≤n τi. Denote by PC([ t,∞), R) the set of

functions u(t) : [ t,∞)→ R which are continuous for t ≥ t and t 6= tk (k=1, 2, ...)

and may have discontinuities of the first kind at tk (k = 1, 2, ...) at which they

are continuous from the left.

By a solution of (1) (resp. (3)) we mean that a real valued function x ∈

PC([t0,∞), R) satisfies (1) (resp. (3)), that is

i) for any t ∈ [t0,∞) and t 6= tk, t 6= tk + τi (k = 1, 2, ..., i = 1, 2, ..., n),

x(t) is continuous differentiable and satisfies (1) (resp. (3));

ii) for every k, x(t+k ) and x(t−k ) exist and x(t−k ) = x(tk) and x(t+k )− x(tk) =

bk x(tk) (resp. x(t
+
k )− x(tk) ≤ bk x(tk));

iii) if t = tk + τi, t 6= tk (k = 1, 2, ..., i = 1, 2, ..., n), x(t) is continuous and

x′(t+k ) and x′(t−k ) exist.

Definition 1. A solution x(t) of (1) or (3) on [t0,∞] is called positive (resp.

negative) if x(t) > 0 (resp. x(t) < 0) for all t ≥ t0 − τ .

Definition 2. A solution of (1) is called oscillatory if it is neither eventually

positive nor eventually negative. Otherwise, it is called nonoscillatory.

Remark 1. From Definition 1, a solution x(t) of (1) is oscillatory if and only

if it satisfies at least one of the following conditions:

a) x(t) has arbitrarily large zeros, that is, for any sufficiently large T ≥ t0,

there exists t∗ ≥ t0 such that x(t
∗) = 0;

b) For any sufficiently large integer K, there exists an integer k ≥ K such

that x(t+k )x(tk) = (1 + bk)x
2(tk) ≤ 0, that is, bk ≤ −1, k = 1, 2, ... .
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2 – Main results

In order to prove our main results, we need the following fixed point theorem

of Knaster and Tarski. See [3] and [4].

Lemma 1 (Knaster–Tarski Fixed Point Theorem). Let E be a partially

ordered set with ordering ≤. Assume that inf E ∈ E and that every nonempty

subset of E has a supremum (which belongs to E). Let S : E → E be an

increasing mapping (that is, x ≤ y implies Sx ≤ Sy). Then S has a fixed point

in E.

Lemma 2. Assume that (2) holds and x(t) is a positive solution on [t0,∞]

of (3). Then

i) x(t) is nonincreasing on [t0 + τ,∞);

ii) −
∑∞

k=k1
bk x(tk) ≤ x(tk1

), k1 ≥ t0 + τ .

Proof: i) As x(t− τi) > 0 (i = 1, 2, ..., n) on [t0,∞], from (2)

x′(t) ≤ −
n∑

i=1

pi(t)x(t− τi) ≤ 0 for t ≥ t0 and t 6= tk ,

which implies that x(t) is nonincreasing on (tk, tk+1], tk ≥ t0. Also, we observe

that x(t+k )− x(tk) ≤ bk x(tk) ≤ 0. Thus x(t) is nonincreasing on [t0,∞).

ii) From (2), x′(t) ≤ 0, for t ∈ (tk, tk+1] and tk ≥ t0. This implies that

x(t+k ) ≥ x(tk+1) > 0, tk ≥ t0. Thus, by (2) there exists a k1 ≥ 1 and for any

integral m ≥ k1 such that

−
m∑

k=k1

bk x(tk) ≤
m∑

k=k1

(
x(tk)− x(t+k )

)
≤

m∑

k=k1

(
x(tk)− x(tk+1)

)
≤ x(tk1

)

which proves ii).

Theorem 1. Assume that

(4)

n∑

i=1

pi(T0 + τ) > 0 and
n∑

i=1

pi(t) is not identically zero

on any interval of the form [ t, t+σ], t ≥ T0+τ , T0 ≥ 0.

Let y(t) be a positive solution on an interval [T0,∞), T0 ≥ t0, of (3). Then

there exists a nonincreasing positive solution x(t) on [T0 + τ,∞) of (1) with

limt→∞ x(t) = 0 and such that

0 ≤ x(t) ≤ y(t) for every t ≥ T0 .
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Proof: First, from Lemma 2, y(t) is nonincreasing on [T0,∞) and we obtain

for all t, t with t ≥ t ≥ T0

y(t+) ≥ y(t) +

∫ t

t

n∑

i=1

pi(s) y(s− τi) ds−
∑

t<tk<t

bk y(tk) .

Thus, letting t→∞ and noting y(t) ≥ y(t+) we obtain

(5) y(t) ≥

∫ ∞

t

n∑

i=1

pi(s) y(s− τi) ds−
∑

t<tk<∞

bk y(tk) .

Let X be the set of all nonincreasing functions x ∈ PC([T0,∞), R) with

0 ≤ x(t) ≤ y(t) for every t ≥ T0. The set X is considered to be endowed with the

usual pointwise ordering ≤, that is, if x1 and x2 belong to X. We will say that

x1 ≤ x2 if and only if x1(t) ≤ x2(t) for t ≥ T0. Clearly X is a paritially ordered

set. Set T1 = T0 + τ and define the mapping S on X as follows:

(6) (Sx)(t)=





∫ ∞

t

n∑

i=1

pi(s)x(s− τi) ds−
∑

t<tk<∞

bk y(tk), if t ≥ T1,

∫ ∞

T1

n∑

i=1

pi(s)x(s− τi) ds−
∑

T1<tk<∞

bk y(tk) +

+

∫ T1

t

n∑

i=1

pi(s) y(s− τi) ds, if T0≤ t<T1 .

Then, by (5), we can easily verify that the formula (6) makes sense for any x in

X and that this formula defines a mapping S on X into itself. If x1, x2 ∈ X and

x1(t) ≤ x2(t) for t ≥ T0, then we also have (Sx1)(t) ≤ (Sx2)(t), for t ≥ T0, i.e. S

is an increasing mapping.

Finally, infX ∈ X, and every nonempty subset of X has a supremum that

belongs to X. Hence, all the hypotheses of Lemma 1 are satisfied, and so T has

a fixed point x ∈ X. That is

(7)

(Sx)(t) = x(t) =





∫ ∞

t

n∑

i=1

pi(t)x(t− τi) ds−
∑

t<tk<∞

bk x(tk), if t≥T1,

∫ ∞

T1

n∑

i=1

pi(s)x(s− τi) ds−
∑

T1<tk<∞

bk x(tk) +

+

∫ T1

t

n∑

i=1

pi(s) y(s− τi) ds, if T0≤ t<T1 .
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From (7) it follows that

x′(t) = −
n∑

i=1

pi(t)x(t− τi), for all t ≥ T1 and t 6= tk ,

x(t+k )− x(tk) = bk x(tk) for tk ≥ T1 ,

and hence x is a solution of (1) on [T1,∞). Also, from (7), we have that

limt→∞ x(t) = 0. Moreover, it is clear that x(t) ≤ y(t) for t ≥ T0. So, it

remains to establish that the solution x is positive on the interval [T0,∞).

By taking into account the fact that y is positive on the interval [T0 − τ, T1 − σ]

and that
∑n

i=1 pi(T1) > 0, from (7) we have for each t ∈ [T0, T1)

x(t) ≥

∫ T1

t

n∑

i=1

pi(s) y(s− τi) ds ≥
[
min

1≤i≤n
min

T0≤s≤T1

y(s− τi)
] ∫ T1

t

n∑

i=1

pi(s) ds > 0 .

So, x is positive on [T0, T1]. Next, we will show that x is also positive on [T1,∞).

Assume that t̂ > T1 is the first point satisfying x(t̂) ≤ 0 of x to the right of T0.

That is x(t) > 0 for T0 ≤ t < t̂. Then (7) gives

0 ≥ x(t̂) =

∫ ∞

t̂

n∑

i=1

pi(s)x(s− τi) ds−
∑

t̂<tk<∞

bk x(tk)

≥

∫ ∞

t̂

n∑

i=1

pi(s)x(s− τi) ds ,

which implies that
∑n

i=1 pi(s)x(s − τi) = 0 for all s ≥ t̂. Since the function∑n
i=1 pi(t) is not identically zero on [ t̂, t̂ + σ], we can choose a point t∗ with

t̂ < t∗ < t̂+ σ such that
∑n

i=1 pi(t
∗) > 0. Hence, by taking into account the fact

that x is positive on [ t̂− τ, t̂ ) we obtain

0 =
n∑

i=1

pi(t
∗)x(t∗ − τi) ≥

[
min

1≤i≤n
x(t∗ − τi)

] n∑

i=1

pi(t
∗) > 0 .

But, this is impossible. The proof of Theorem 1 is complete.

Consider the impulsive delay differential equation

(1′)
x′(t) +

n∑

i=1

pi(t)x(t− τ i) = 0 ,

x(t+k )− x(tk) = bk x(tk) , k = 1, 2, ... ,
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where

(2′)
pi ≥ 0 (i = 1, 2, ..., n) are continuous functions
on [t0,∞), τ i > 0 (i = 1, 2, ..., n) and bk ≤ 0,
k = 1, 2, ..., are constants.

We establish the following comparison result.

Theorem 2. Assume that (2) and (2′) hold and

(4′)

n∑

i=1

pi(T0 + τ) > 0 and
n∑

i=1

pi(t) is not identically zero

on any interval of the form [t̂, t̂+σ], t̂ > T0+ τ , T0 ≥ 0,

and

(8)
pi ≤ pi on [T0,∞) , τ i ≤ τi, i = 1, 2, ..., n ,

bk ≤ bk , k = 1, 2, ... .

If (1) has a positive solution on [T0,∞), then (1′) has also a positive solution on

[T0 + τ,∞).

Proof: Suppose that (1) has a positive solution x(t) on an interval [T0,∞).

Then by Lemma 2 x(t) is nonincreasing on [T0,∞). It follows from (1) and (8)

that

(3′)
x(t) +

n∑

i=1

pi(t)x(t− τ i) ≤ 0 , t 6= tk ,

x(t+k )− x(tk) ≤ bk x(tk) , k = 1, 2, ... .

By using Theorem 1 we can conclude that (1′) has also a positive solution on

[T0 + τ,∞). The proof of Theorem 2 is complete.

The following corollary is an immediate consequence of Theorem 2.

Corollary 1. Assume that (2), (2′) and (8) hold and
∑n

i=1 pi(t) > 0, for

t ≥ t0. If all solutions of (1′) are oscillatory, then all solutions of (1) are also

oscillatory.

If we compare (1) with the delay differential equation

(9) x′(t) +
n∑

i=1

pi(t)x(t− τi) = 0 ,
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from Theorem 2 the following result can easily be obtained.

Corollary 2. Assume that (2) and (4) hold and (9) has a positive solution

on [T0,∞), than (1) has a positive solution on [T0 + τ,∞).

Remark 2. In case bk > 0 (k = 1, 2, ...), the related results of Corollary 2

have been established, see [1] and [2].
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