
PORTUGALIAE MATHEMATICA

Vol. 54 Fasc. 2 – 1997

EXISTENCE OF PERIODIC ORBITS, SET OF GLOBAL
SOLUTIONS AND BEHAVIOR NEAR EQUILIBRIUM
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Ao nosso querido amigo Nelson Onuchic pelo exemplo de vida

Abstract: A “cut-off” technique for retarded functional differential equations is

applied to Volterra models of retarded type, combined with a Kurzweil’s theorem, in order

to describe global bounded solutions as solutions of an ordinary differential equation. The

existence of periodic orbits and a description of the behavior near the equilibrium are

also obtained.

1 – Introduction

In his famous book Leçons sur la théorie mathématique de la lutte pour la

vie [6] Volterra considered a system of retarded functional differential equations

(RFDE) in order to describe the hereditary interaction of n species; hereditary

here means, for instance, time of incubation or time of gestation of the female

predator. When two individuals meet and one eats the other, the population of

preys decreases immediately; on the other hand the population of predators takes

a while to increase. This delay is interpreted as a constant lag r > 0 that appears

in the system of RFDE for n species (see equations (4.1)) or the special case of

two species (equations (4.14)). In this last case, if we make δ1 = 0 and δ2 > 0

one intends to give a meaning for the instantaneous effect of predation on the

population of preys and the time lag affects only the predators’ population. Of

course δ1 > 0 and δ2 > 0 also has to be considered; these two cases were studied

with some detail along the paper.
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In Section 2 we gave emphasis to a smooth “cut-off” technique for RFDE’s.

In Section 3, for completeness, we stated Theorem 3.1, a theorem by Kurzweil that

describes, under certain hypotheses, the global solutions of a RFDE as solutions of

an ODE. In Section 4 we combined the appropriated smooth “cut-off” technique

to adapt the Volterra system (4.1) to the hypotheses of the Kurzweil’s result

and obtained Theorem 4.1; the RFDE to be considered corresponds to a small

perturbation of an ODE system. The use of Theorem 4.1 depends strongly on

the existence of a compact set Γ, invariant under the flow of the unperturbed

ODE system. Theorem 4.2 is applied to the case of two species and proves the

existence of r-periodic orbits for system (4.14), under suitable general conditions

on the parameters of the system. Remarks 4.3, 4.4 as well as Theorem 4.5 are

corollaries of Theorem 4.2. Remark 4.6 treats system (4.14) for the case δ1 = 0,

δ2 > 0 and Theorems 4.7, 4.8 show that the behavior of the flow can be better

understood looking to the other possible periodic orbits with minimum period

r/k, k > 1 integer. We finish Section 4 with an example of a system with four

species obtained as the product of two systems with two species; this procedure

leads to a RFDE on a torus T 2.

Section 5 studies the behavior of the solutions in a neighbohood of the equi-

librium in the case of two species. Theorem 5.1 shows that the equilibrium is

generically hyperbolic, Corollary 5.3 and Theorem 5.4 study the special cases

δ1 = 0, δ2 > 0 and δ1 = δ2 = δ > 0, respectively. Corollary 5.5 shows that Hopf

bifurcation occurs in this last case.

2 – “cut-off” functions

Let B1 and B2 be the closures of two bounded convex open sets in Rn with

smooth boundaries, ∂B1 ⊂ int(B2). It is well known that there exists a C∞

function Φ: Rn → R such that

(2.1) Φ(x) =

{

1 on B1,
0 on Rn\B2 , 0 ≤ Φ(x) ≤ 1, otherwise.

We easily construct Φ if B1 and B2 are choosen as closed balls centered at the

origin, with radii r1 and r2, respectively, r1 < r2. From now on B1 and B2 will

be such balls. One starts with a C∞ function α : R → R such that α(s) = 0, for

s ≥ r2 − r1, α(s) = 1, for s ≤ 0 and 0 ≤ α(s) ≤ 1, for 0 < s < r2 − r1; then we

define

(2.2) Φ(x) = α
(

|x| − r1
)

, for all x ∈ Rn .
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The smoothness of Φ follows from the smoothness of |x| for x 6= 0. This kind of

“cut-off” function is oftenly used in order to properly modify vector-fields defined

in finite dimensional manifolds.

Except for the Lipschitz case, we cannot extend the procedure above when

B1 and B2 are subsets of a general Banach manifold B because, besides the fact

that Φ is globally Lipschitz, its smoothness depends on the differentiability of the

norm.

For our purpose, B will be the Banach space C = C0(I,Rn), I = [−r, 0],
r > 0, of all continuous functions from I to Rn, with the sup norm, viewed as the

phase space of a RFDE in Rn. Since the sup norm is not differentiable, we have

to change the way of construction of smooth “cut-off” functions.

Let be given

(2.3) F : C → Rn

a smooth (at least C2) RFDE on Rn (see [2] or [3], for standard definitions,

notations and fundamental results).

Let Φ̃ : C → C defined by

(2.4) (Φ̃(ϕ))(θ) = (Φ(ϕ(θ)))ϕ(θ) , ϕ ∈ C, θ ∈ [−r, 0] ,

where Φ : Rn → R is the C∞ function (2.1). Remark that Φ̃ is C2 (indeed it is

C∞) and that

Φ̃(C) ⊂ C0(I,B2) .

Finally we define the smooth RFDE h : C → Rn by

(2.5) h = F ◦ Φ̃ that is h(ϕ) = F (Φ̃(ϕ)) , ϕ ∈ C .

The function h is smooth (at least C2) and, moreover, h and F coincide on

C0(I,B1).

A proof that Φ̃ is a C2 function can be done argüing as in [1], pp. 755-756,

using the expressions of the first and second derivatives of Φ̃:

(

(dΦ̃(ϕ))(ψ)
)

(θ) =
[

Φ′((ϕ(θ))ψ(θ)
]

ϕ(θ) +
[

Φ(ϕ(θ))
]

ψ(θ) ,(2.6)

(

d2Φ̃(ϕ)(ψ, ψ̄)
)

(θ) =
[(

Φ′′(ϕ(θ)) ψ̄(θ)
)

ψ(θ)
]

ϕ(θ)

+
[

Φ′(ϕ(θ))ψ(θ)
]

ψ̄(θ) +
[

Φ′(ϕ(θ)) ψ̄(θ)
]

ψ(θ) ,
(2.7)

where θ ∈ [−r, 0], ϕ,ψ, ψ̄ ∈ C.
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3 – A Kurzweil’s theorem

In this section, the Theorem 3.1, due to Kurzweil [5] (see also [3]), presented

here for sake of completeness, states that all global solutions (i.e. defined on R) of

a RFDE, which is sufficiently close to some ordinary differential equation (ODE),

are at the same time solutions of a suitable ODE, and vice versa.

Here Y denotes a Banach space and ω : R+ → R+ is a continuous and

nondecreasing function, ω(0) = 0. Let K > 0, k > 0. Let g : Y → Y and

h : C → Y , C = C0(I, Y ), fulfill the following conditions

(3.1) |g(x)| ≤ K for x ∈ Y , |h(y)| ≤ k for y ∈ C ,

there exist derivatives Dg, Dh and

(3.2)
|Dg(u)−Dg(v)| ≤ ω(|u− v|) for u, v ∈ Y ,

|Dh(ϕ)−Dh(ψ)| ≤ ω(|ϕ− ψ|) for ϕ,ψ ∈ C .

Remark that if h is given by (2.5) with F completely continuous together

with its derivatives up to the order two, then one can find ω : R+ → R+ as above

(indeed linear) such that the second inequality (3.2) holds.

Define q : Y → C as follows: for u ∈ Y , let z be the solution of

(3.3)
dx

dt
= g(x)

fulfilling z(0) = u. Put q(u) = z|[−r,0] (z restricted to [−r, 0]).

Theorem 3.1. There exists an ε > 0 depending on K and ω only, such that

if k ≤ ε, then there exists a C1 map p : Y → C and the following properties are

fulfilled:

(i) every solution of

(3.4)
dx

dt
= g(x) + h(p(x))

is at the same time a solution of

(3.5)
dx

dt
= g(x(t)) + h(xt) ;

(ii) every global solution of (3.5) is at the same time a solution of (3.4);

(iii) every solution of (3.5) (which is of course defined on some positive half

line) approaches exponentially some solution of (3.4) as t→∞;
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(iv) the C1-norm of p − q is small (there exists an estimate depending on k,

K and ω and tending to zero as k → 0).

4 – The Volterra equations of retarded type

In [6], chapter IV, Volterra introduced the following system of RFDE’s in Rn

to describe the hereditary interaction of n species:

(4.1)
dNi

dt
=

[

εi+
n
∑

s=1

pisNs(t)+

∫ 0

−r

n
∑

s=1

Fis(−θ)Ns(t+ θ) dθ

]

Ni(t), i=1, ..., n ,

where εi, pis are constants depending on the species and the “memory” functions

(4.2) Fis : [0, r]→ R

are continuous functions. As an example of memory functions it is usual to

consider Fis(τ) = cis exp (−kisτ), where cis ∈ R, kis ≥ 0 and τ ∈ [0, r]. It is not

clear if (4.1), with some Fis 6≡ 0, may have nontrivial periodic solutions or even

nontrivial global solutions. Later on we will analyse a special case that presents

nontrivial periodic solutions.

The system (4.1) is defined by the function G = (G1, ..., Gn) : C → Rn given

by

(4.3) Gi(ϕ)=

[

εi +
n
∑

s=1

pis ϕs(0) +

∫ 0

−r

n
∑

s=1

Fis(−θ)ϕs(θ) dθ
]

ϕi(0), i=1, ..., n ,

where ϕ = (ϕ1, ..., ϕn) ∈ C.
We will also consider the vector-field X on Rn defined by the system of ODE’s

associated to (4.1) (see [6], p. 97)

(4.4)
dNi

dt
=
[

εi +
n
∑

s=1

pisNs(t)
]

Ni(t) , i = 1, ..., n .

The system (4.4) generalizes the classical prey-predator Lotka–Volterra model

(see again [6], p. 14). The autonomous RFDE defined by G = (G1, ..., Gn) in

(4.3) is of class C∞, so it holds for it the classical results on local existence

and uniqueness of solutions of initial condition problems (see [2]). On the other

hand, if an initial condition (ϕ; t0) ∈ C × R, where ϕ = (ϕ1, ..., ϕn), is such that

ϕi(θ) > 0 for all θ ∈ [−r, 0], then the solution Ni(t;ϕ, t0), i = 1, ..., n, of initial
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condition (ϕ; t0), is defined for all t ≥ t0 and, moreover, we have Ni(t;ϕ, t0) > 0,

i = 1, ..., n, for all t ≥ t0. This means that the set

C++ =
{

ϕ = (ϕ1, ..., ϕn) ∈ C | ϕi(θ) > 0, θ ∈ [−r, 0], i = 1, ..., n
}

is positively invariant under the semi-flow of (4.1).

The continuation property and the positive invariance mentioned above were

proved by Volterra for two species, but the generalization for n > 2 species is

quite obvious (see [6], p. 191).

In our setting the RFDE (4.1) can be written as

(4.5) G(ϕ) = X(ϕ(0)) + F (ϕ)

so F = (F1, ..., Fn) : C → Rn is given by

(4.6) Fi(ϕ) = ϕi(0)

∫ 0

−r

n
∑

s=1

Fis(−θ)ϕs(θ) dθ .

It is easy to see that the function F is completely continuous. The “cut-off”

procedure of Section 2 will be used for the vector-field X and for the RFDE F

in order to adjust them to the result of Kurzweil of Section 3.

So, in the notation of Theorem 3.1, let Y = Rn and define g : Rn → Rn and

h : C → R in the following way:

g(x) = Φ(x)X(x) for x ∈ Rn ,(4.7)

h(ϕ) = F (Φ̃(ϕ)) for ϕ ∈ C ,(4.8)

where Φ: Rn → R is given by (2.1) and Φ̃ : C → C is defined in (2.4). Let K > 0

be a bound for X on the compact set B2 and k > 0 be a bound of F on C0(I,B2);

the existence of k follows from the fact that F is completely continuous and k can

be made arbitrarily small by taking the memory functions (4.2) sufficiently small.

The existence of the function ω : R+ → R+ and the inequalities (3.2) follow from

the fact that the functions Fi in (4.6) are completely continuous together with

their derivatives up to the order 2.

Define q : Rn → C as in Theorem 3.1, that is, for u ∈ Rn let z be the solution

of
dx

dt
= Φ(x)X(x)

of initial condition z(0) = u. Put

(4.9) q(u) = z|[−r,0] .
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As an application of Theorem 3.1 we have the following result:

Theorem 4.1. Let X be the vector-field on Rn defined by the ODE system

(4.4):

dNi

dt
=
[

εi +
n
∑

s=1

pisNs(t)
]

Ni(t) , i = 1, ..., n ,

and let G : C → Rn be the RFDE defined by the Volterra equations of retarded

type (4.1):

dNi

dt
=

[

εi +
n
∑

s=1

pisNs(t) +

∫ 0

−r

n
∑

s=1

Fis(−θ)Ns(t+ θ) dθ

]

Ni(t), i = 1, ..., n ,

that is, G(ϕ) = X(ϕ(0)) + F (ϕ) where the function F = (F1, ..., Fn) is given by

Fi(ϕ) = ϕi(0)
∫ 0
−r

∑n
s=1 Fis(−θ)ϕs(θ) dθ, ϕ = (ϕ1, ..., ϕn) ∈ C. Let B1 and B2

be the closures of two bounded convex open sets in Rn with smooth boundaries,

∂B1 ⊂ int(B2), and consider the “cut-off” functions Φ: Rn → R and Φ̃ : C → C

constructed in Section 2. Assume now the existence of a compact set Γ, invariant

under the flow of X, such that ∂Γ ⊂ int(B1). Under these hypotheses, there

exists an ε̄ > 0 such that if |F (ϕ)| ≤ ε̄ for all ϕ ∈ C0(I,B2), then there exists a

C1 map p : Rn → C such that p(Γ) ⊂ C0(I,B1) and the following hold:

a) Every solution x = x(t) of the ODE
dx

dt
= X(x) + F (p(x)) such that

x(0) ∈ Γ is defined for t ∈ [−r, 0] and x|[−r,0] ∈ C0([−r, 0], B1). Moreover, if

x(t) ∈ Γ for t ∈ [−r, t1), this solution is also a solution of
dx

dt
= X(x(t)) + F (xt)

for t ∈ [0, t1) with initial condition x|[−r,0], that is, is a solution of the Volterra

equations (4.1). In particular, every global solution of
dx

dt
= X(x) + F (p(x))

contained in Γ is a (global) solution of
dx

dt
= X(x(t)) + F (xt).

b) Every global solution of the Volterra equations (4.1) contained in Γ is also

a solution of the ODE
dx

dt
= X(x) + F (p(x)).

Proof: Apply Theorem 3.1 to the functions (4.7) and (4.8) and consider the

equations:

dx

dt
= Φ(x)X(x)(4.10)

dx

dt
= Φ(x(t))X(x(t)) + F (Φ̃(xt))(4.11)
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corresponding to (3.3) and (3.5), respectively. The compactness of Γ and standard

arguments of continuity of solutions of small perturbations of (4.10) imply, by

choosing properly ε̄ smaller than the number ε > 0 given by Theorem 3.1, that

the C1 map p : Rn → C satisfies p(Γ) ⊂ C0(I,B1). The conclusions a) and b)

follow now from Theorem 3.1 where (3.4) is the equation

(4.12)
dx

dt
= Φ(x)X(x) + F (Φ̃(p(x))) .

A crucial point for the application of Theorem 4.1 is the choice of a compact

set Γ, invariant under the flow of the unperturbed system
dx

dt
= X(x), in such

a way that one can obtain global solutions of
dx

dt
= X(x(t)) + F (xt) inside Γ;

then, as the theorem asserts, these solutions are global solutions of the ODE
dx

dt
= X(x) + F (p(x)).

In the sequel we will analyse the special case of system (4.1) with n = 2 species

and constant memory functions, describing a classical prey-predator model of

retarded type. In this case there are compact sets Γ invariant under the flow of

the associated Lotka-Volterra ODE

(4.13)

dN1

dt
= N1[ε1 − γ1N2] ,

dN2

dt
= N2[−ε2 + γ2N1] ,

where ε1, ε2, γ1, γ2 are positive fixed numbers. Moreover, Γ can be choosen

containing global solutions of the following Volterra system of retarded type:

(4.14)

dN1

dt
= N1(t)

[

ε1 − γ1N2(t)− δ1
∫ 0

−r
N2(t+ θ) dθ

]

,

dN2

dt
= N2(t)

[

−ε2 + γ2N1(t) + δ2

∫ 0

−r
N1(t+ θ) dθ

]

,

where r > 0 is the lag and the parameters δ1, δ2 ≥ 0 are such that δ1 + δ2 > 0.

Notice that system (4.14) with δ1 = 0, so δ2 > 0, means that the effect of

predation is instantaneous for preys and carries a time lag for predators.

The next result is a theorem of existence of periodic solution for the Volterra

retarded system (4.14).

Theorem 4.2. Assume that the parameters δ1, δ2 and the lag r, in (4.14),

satisfy the inequalities

δ1δ2 <
ε1ε2 γ1γ2

4π2
and r >

1

2α

[

β +
√

β2 + 4αγ1γ2

]

,
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where α and β are positive numbers given by α = [ε1ε2γ1γ2/(4π
2)] − δ1δ2 and

β = γ1δ2 + γ2δ1. Then the system (4.14) has a periodic solution with minimum

period r.

Proof: Assume that for a global solution (N1(t), N2(t)) of (4.14) one has

∫ 0

−r
N1(t+ θ) dθ = K1 and

∫ 0

−r
N2(t+ θ) dθ = K2

for all t ∈ R; then this solution satisfies the ODE system:

(4.15)

dN1

dt
= N1

[

(ε1 − δ1K2)− γ1N2

]

,

dN2

dt
= N2

[

−(ε2 − δ2K1) + γ2N1

]

.

It is well known that if (ε1 − δ1K2), (ε2 − δ2K1) are positive, all solutions

of (4.15) on the positive quadrant are periodic with one only equilibrium given

by ((ε2 − δ2K1)/γ2, (ε1 − δ1K2)/γ1). Moreover, for any T greater than the limit

period

(4.16) T` =
2π

√

(ε1 − δ1K2) (ε2 − δ2K1)
,

through each point on the positive quadrant passes only one periodic trajectory

of (4.15) with minimum period T (see [6], p. 19 and [4]). So, if the lag r satisfies

r > T` and the global solution (N1(t), N2(t)) is periodic with minimum period r,

we have necessarily, by the averaging conservation law([6], p. 19),

1

r
K1 =

1

r

∫ 0

−r
N1(t+ θ) dt =

ε2 − δ2K1

γ2
,

1

r
K2 =

1

r

∫ 0

−r
N2(t+ θ) dt =

ε1 − δ1K2

γ1
.

From this we get

(4.17) K1 =
r ε2

γ2 + r δ2
and K2 =

r ε1
γ1 + r δ1

.

Consider now the ODE system (4.15) with K1 and K2 given by (4.17), there-

fore,

(4.18)

ε1 − δ1K2 = ε1 −
δ1 r ε1
γ1 + r δ1

=
ε1 γ1

γ1 + r δ1
> 0 ,

ε2 − δ2K1 = ε2 −
δ2 r ε2
γ2 + r δ2

=
ε2 γ2

γ2 + r δ2
> 0 .
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Then system (4.15) with ε1 − δ1K2 and ε2 − δ2K1 given by (4.18) has all of its

periodic solutions in the positive quadrant with limit period

(4.19) T` = 2π

√

(γ1 + r δ1) (γ2 + r δ2)

ε1ε2 γ1γ2
.

If the lag r satisfies r > T`, that is,

(4.20) r > 2π

√

(γ1 + r δ1) (γ2 + r δ2)

ε1ε2 γ1γ2
,

the system (4.15), together with conditions (4.18) and (4.20), admits, through

each point of the positive quadrant, just one periodic trajectory (N̄1(t), N̄2(t))

with minimum period r that satisfies

(4.21)
1

r

∫ t

t−r
N̄1(τ) dτ =

ε2
γ2 + r δ2

and
1

r

∫ t

t−r
N̄2(τ) dτ =

ε1
γ1 + r δ1

.

This periodicity and (4.17) and (4.21) imply

(4.22) K1 =

∫ 0

−r
N̄1(t+ θ) dθ and K2 =

∫ 0

−r
N̄2(t+ θ) dθ .

Combining (4.22) and (4.15) one obtains that (N̄1(t), N̄2(t)) satisfies (4.14).

Elementary computations show that (4.20) is equivalent to the two inequalities

of the hypotheses of Theorem 4.2.

Remark 4.3. If r is greater than the limit period 2π/
√
ε1ε2 of the periodic

solutions of (4.13), it follows that (4.20) is verified for δ1, δ2 sufficiently small

and, therefore, one can obtain from Theorem 4.2 a periodic solution of (4.14)

with minimum period r.

Remark 4.4. If we have δ1 = 0 in (4.14), the hypotheses of Theorem 4.2

reduce to the inequality

r >
2π

ε1ε2 γ2

(

πδ2 +
√

π2 δ22 + ε1ε2 γ2
2

)

def
= f(δ2) .

It is easy to check that the positive function f(δ2) has the following properties:

1) f ′(δ2) > 0 and f ′′(δ2) > 0 for all δ2 > 0;

2) limδ2→0 f(δ2) = 2π/
√
ε1ε2 and limδ2→∞ f ′(δ2) = 4π2/(ε1ε2 γ2).

These properties show that if r > 2π/
√
ε1ε2, system (4.14) with δ1 = 0 has a

periodic solution with minimum period r.
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The next result will follow from a suitable combination of theorems 4.1 and

4.2 through the remark 4.3 in order to obtain a compact invariant set for the

Volterra system of retarded type (4.14).

Let us denote by γ0 the orbit of the r-periodic solution of (4.14) obtained

according to Remark 4.3. Let us choose the compact set Γ ⊂ R2, required by the

hypotheses of Theorem 4.1, as the closure of the inner points of an orbit (Jordan

curve) of (4.13) in such a way that γ0 ⊂ int(Γ).

Take B1 and B2 as closed balls in R2 centered at the origin with radii r1,

r2, respectively, r1 < r2, and such that Γ ⊂ int(B1). Then, by Theorem 4.1

applied to systems (4.13) and (4.14), γ0 is also an orbit of a certain C1 vector-

field X̄, provided δ1, δ2 are choosen sufficiently small. The vector-field X̄ is a

small perturbation of the Lotka-Volterra system (4.13); indeed, X̄ corresponds

precisely to the ODE
dx

dt
= X(x) + F (p(x)) introduced in the statement of

Theorem 4.1.

Therefore, all solutions of X̄ contained in Γ are global solutions of system

(4.14); in particular γ0 and all solutions of X̄ encircled by γ0 define in C0(I,R2)

a two-dimensional compact manifold with boundary invariant under the flow of

Volterra system (4.14).

This proves the following

Theorem 4.5. Let r > 2π/
√
ε1ε2. Then for δ1, δ2 sufficiently small there

exists in C = C0([−r, 0],R2) a two-dimensional compact manifold with boundary,

diffeomorphic to a diskD in R2, which is invariant under the flow of system (4.14).

Moreover, the flow of (4.14) restricted to D is the flow of a C1 vector-field.

Remark 4.6. If we recall Remark 4.4, that is, assume system (4.14) with

δ1 = 0 and δ2 > 0, one can argüe as in Theorem 4.5 and say that if r > 2π/
√
ε1ε2,

there is in C = C0([−r, 0],R2) a two-dimensional compact manifold with bound-

ary, diffeomorphic to a disk D in R2, which is invariant under the flow of system

(4.14) provided δ2 is sufficiently small in the interval

(4.23) 0 < δ2 ≤
ε1ε2 γ2

[

r2 − (4π2/ε1ε2)
]

4π2 r
.

Moreover, the flow of (4.14)restricted to D is the flow of a complete C1 vector-

field.

In order to understand better the flow on the two-dimensional manifold D,

considered in the Remark 4.6, we take Tk = r/k, k ∈ N, and assume that for a
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solution (N1(t), N2(t)) of (4.14) with δ1 = 0 one has:

(4.24) Ck
def
=
∫ 0

−Tk

N1(t+ θ) dθ for all t ∈ R ;

then,

(4.25) Ck =

∫ 0

−Tk

N1(t− Tk + θ) dθ =

∫ −Tk

−2Tk

N1(t+ θ) dθ =

∫ −2Tk

−3Tk

N1(t+ θ) dθ ,

and so on, one obtains

(4.26) k Ck =

∫ 0

−kTk

N1(t+ θ) dθ =

∫ 0

−r
N1(t+ θ) dθ for all t ∈ R .

If we observe the proof of Theorem 4.2 and repeat the arguments for the

system

(4.27)

dN1

dt
= N1(ε1 − γ1N2) ,

dN2

dt
= N2(−ε2 + γ2N1) +N2 δ2

∫ 0

−r
N1(t+ θ) dθ ,

we see that any solution verifying (4.24) and (4.26) satisfies the ODE system

(4.28)

dN1

dt
= N1(ε1 − γ1N2) ,

dN2

dt
= N2

[

−(ε2 − δ2 k Ck) + γ2N1

]

.

If the integer k satisfies the boundedness conditions (ε2 − δ2 k Ck) > 0 and

(4.29) Tk = r/k >
2π

√

ε1(ε2 − δ2 k Ck)
,

system (4.28) allows to write

(4.30)
Ck
Tk

=
1

Tk

∫ 0

−Tk

N1(t+ θ) dθ =
ε2 − δ2 k Ck

γ2
,

and, necessarily, one obtains:

(4.31) k Ck =
ε2 r

γ2 + δ2 r
.

If kCk is given by (4.31), according to (4.29) and (4.30) one has ε2− δ2kCk =

γ2kCk/r = ε2γ2/(γ2 + δ2r) > 0 and so the system (4.28) does not depend on k.
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Then system (4.28) has only one Tk-periodic trajectory, provided (4.29) holds,

that is, provided

(4.32) Tk =
r

k
>

2π
√
r√

ε1γ2 k Ck
=

2π
√
γ2 + δ2 r√
ε1ε2 γ2

;

moreover, this Tk-periodic trajectory is also a trajectory of (4.27). The conclu-

sion is the following: provided (4.32) holds, system (4.27) has a (r/k)-periodic

solution.

Since (4.32) is equivalent to

(4.33)
r2

k2
>

4π2 γ2 + 4π2 δ2 r

ε1ε2 γ2

and because (4.33) is equivalent to

(4.34)
r

k
> g(δ2)

def
=

2π2 k δ2 +
√

4k2 π4 δ22 + ε1ε2 γ2
2 4π

2

ε1ε2 γ2
,

one can say that: for any integer k > 1 such that (4.34) holds, system (4.27) has

a (r/k)-periodic solution. The function g(δ2) in (4.34) is increasing for δ2 > 0

and limδ2→0 g(δ2) = 2π/
√
ε1ε2.

Theorem 4.7. For any integer k > 1 such that r/k > 2π/
√
ε1ε2, system

(4.14) with δ1 = 0 has a periodic solution of minimum period r/k, for any δ2 such

that

0 < δ2 ≤
ε1ε2 γ2

[

(r/k)2 − 4π2/ε1ε2
]

4π2 r
.

Moreover, all these periodic solutions are solutions of the same ODE (4.28)

which does not depend on k.

If we use Theorem 4.7, we can state the following result that generalizes the

Remark 4.6:

Theorem 4.8. Assume r > 2π/
√
ε1ε2 and let k ≥ 1 be the greatest positive

integer such that r/k is still greater than 2π/
√
ε1ε2. Then, for any δ2 sufficiently

small, there exists in C = C0([−r, 0],R2) a two dimensional compact manifold

with boundary, diffeomorphic to a disk D in R2, which is invariant under the

flow of system (4.27). Moreover, the flow of (4.27) restricted to D is the flow

of a complete C1 vector-field that has at least k periodic orbits with minimum

periods r, r/2, . . ., r/k, the boundary ∂D being the r-periodic one.



178 W.M. OLIVA and P.Z. TÁBOAS

Another example can be constructed, using Theorem 4.8, if we consider the

product of two systems of the form (4.27), as a system in R4:

(4.35)

dN1

dt
= N1(t)

[

ε1 − γ1N1(t)
]

,

dN2

dt
= N2(t)

[

−ε2 + γ2N1(t) + δ2

∫ 0

−r
N1(t+ θ) dθ

]

,

dN3

dt
= N3(t)

[

ε3 − γ3N4(t)
]

,

dN4

dt
= N4(t)

[

−ε4 + γ4N3(t) + δ̄2

∫ 0

−r
N3(t+ θ) dθ

]

,

where, as before, εi, γi, i = 1, 2, 3, 4 are positive numbers, r > 0 is the lag and δ2,

δ̄2 are positive parameters. If we assume r > M0 = max{2π/√ε1ε2 , 2π/
√
ε3ε4},

let k ≥ 1 be the greatest integer such that r/k is still greater than M0. This

way, Theorem 4.8 can be applied to the two first equations, as well as, to the

two last equations of the Volterra system of retarded type (4.35). We obtain

two compact manifolds with boundary, both diffeomorphic to disks D and D̄ in

R2 invariant, respectively, under the first two equations and under the last two

equations of (4.35), provided δ2 and δ̄2 are sufficiently small. It is clear that D×D̄
and its boundary ∂(D× D̄) are diffeomorphic to sets invariant under the flow of

(4.35) and also we easily see that the boundary ∂(D × D̄) is homeomorphic to a

three-dimensional sphere S3 since we have

(4.36) ∂(D × D̄) = (∂D × int(D̄)) ∪ (int(D)× ∂D̄) ∪ (∂D × ∂D̄) ;

∂D× int(D̄) and int(D)×∂D̄ are solid tori with the common boundary ∂D×∂D̄,

a two dimensional torus T 2. These three components of ∂(D × D̄) in (4.36) are,

themselves diffeomorphic to sets, invariant under the flow of (4.35), that is, system

(4.35) defines a RFDE on the compact manifold (without boundary) T 2 (see [3]).

All solutions of (4.35) inside D × D̄ are solutions of a complete C1 vector-field.

Therefore, the set D × D̄ is homeomorphic to a compact invariant set contained

in the compact attractor of (4.35).

5 – Behavior near equilibrium – Planar Case

The behavior of system (4.14) in a neighborhood of the equilibrium point

(N0
1 , N

0
2 ),

(5.1) N0
1 =

ε2
γ2 + δ2 r

, N0
2 =

ε1
γ1 + δ1 r

,
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can be analysed after the change of coordinates

(5.2) q1 = N1 −N0
1 , q2 = N2 −N0

2 .

After this translation one sees that the origin (0, 0) is the only equilibrium of

the system (5.3):

(5.3)

q̇1 = q1
[

γ1 q2 +

∫ 0

−r
δ1 q2(t+ θ) dθ

]

+N0
1

[

γ1 q2 +

∫ 0

−r
δ1 q2(t+ θ) dθ

]

,

q̇2 = q2
[

γ2 q1 +

∫ 0

−r
δ2 q1(t+ θ) dθ

]

+N0
2

[

γ2 q1 +

∫ 0

−r
δ2 q1(t+ θ) dθ

]

.

The linearized system at (0, 0) is given by

(5.4)

q̇1 = N0
1

[

γ1 q2 +

∫ 0

−r
δ1 q2(t+ θ) dθ

]

,

q̇2 = N0
2

[

γ2 q1 +

∫ 0

−r
δ2 q1(t+ θ) dθ

]

,

and the characteristic equation (see [2]) is

(5.5) λ2 +N0
1N

0
2

(

γ1 + δ1

∫ 0

−r
eλθ dθ

) (

γ2 + δ2

∫ 0

−r
eλθ dθ

)

= 0 .

It is clear that λ satisfies (5.5) if and only if λ̄ satisfies (5.5). Since λ = 0 is

not a root, because N 0
1N

0
2 (γ1 + δ1r)(γ2 + δ2r) = ε1ε2 is positive, the equation

(5.5) is equivalent to (5.6) or (5.7):

λ2 +N0
1N

0
2

(

γ1 +
δ1
λ
(1− e−λr)

)(

γ2 +
δ2
λ
(1− e−λr)

)

= 0 ,(5.6)

λ4 +N0
1N

0
2

(

γ1λ+ δ1(1− e−λr)
) (

γ2λ+ δ2(1− e−λr)
)

= 0 .(5.7)

Denoting A = N0
1N

0
2 γ1γ2, B = N0

1N
0
2 (γ1δ2 + γ2δ1), C = N0

1N
0
2 δ1δ2, the

equation (5.7) can be written as

(5.8) (λ4 +Aλ2 +Bλ+ C) e2λr − (Bλ+ 2C) eλr + C = 0 .

Let us seek the pure imaginary roots, λ = bi, that is, look for b 6= 0 such that

(5.9) (b4−Ab2+Bbi+C) (cos 2br+i sin 2br)−(Bbi+2C) (cos br+i sin br)+C = 0
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and, separating real and imaginary parts:

(5.10)
(b4 −Ab2 + C) cos 2br −Bb sin 2br − 2C cos br +Bb sin br = −C ,

(b4 −Ab2 + C) sin 2br +Bb cos 2br − 2C sin br −Bb cos br = 0 .

Define in R2 the positive orthonormal basis (w(b), w⊥(b)) by

(5.11) w(b) = (cos br, sin br) , w⊥(b) = (− sin br, cos br) ;

so, system (5.10) becomes

(5.12)
(Bb, b4 −Ab2 + C) · w(2b)− (Bb, 2C) · w(b) = 0 ,

(Bb, b4 −Ab2 + C) · w⊥(2b)− (Bb, 2C) · w⊥(b) = −C .

In order to investigate better equations (5.12), we notice that if Rb is the

counterclockwise rotation by the angle br, that is Rb is given by the matrix

(5.13) Rb =

(

cos br − sin br
sin br cos br

)

,

we have v · w(b) = (Rbv) · w(2b) and v · w⊥(b) = (Rbv) · w⊥(2b), for any vector

v ∈ R2. Therefore, system (5.12) becomes equivalent to the vector equation

(5.14) (Bb, b4 −Ab2 + C)−Rb(Bb, 2C) = −Cw⊥(2b) .

We will consider only the case b > 0 in (5.14) because the solutions of (5.5) are

pairwise conjugated.

Theorem 5.1. The equilibrium point (N 0
1 , N

0
2 ) of system (4.14) is hyperbolic

except for systems with lag r > 0 such that either

(5.15) r = 2



− δ1
γ1
− δ2
γ2

+

√

(

δ1
γ1

+
δ2
γ2

)2

− 4δ1δ2
γ1γ2

+
ε1ε2
k2π2





−1

, k=1, 2, ... ,

or the following equality holds for some b0 > 0:

(5.16) (Bb0, b
4
0 −Ab20 + 2C) = 2C(− sin b0r, cos b0r) ,

where A = N0
1N

0
2 γ1γ2, B = N0

1N
0
2 (γ1δ2 + γ2δ1), C = N0

1N
0
2 δ1δ2 and N0

1 , N
0
2

given by (5.1).
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Proof: Replacing (5.13) in (5.14), a straightforward computation leads to

(5.17)
(

Bb(1− cos br), b4 −Ab2 + C −Bb sin br
)

=

= C
(

2 sin br(cos br − 1), sin2 br − cos2 br + 2 cos br
)

.

A solution of (5.17) is supplied by cos br = 1 and b4 −Ab2 = 0, that is

(5.18)

br = 2kπ , k = 1, 2, ... ,

b2 = A =
ε1ε2 γ1γ2

(γ2 + δ2 r) (γ1 + δ1 r)
.

Conditions (5.18) mean that b > 0 satisfies (5.14) if, and only if,

(5.19) b = 2kπ/r , k = 1, 2, ... ,

provided that

(5.20)
4k2π2

r2
=

ε1ε2 γ1γ2

(γ2 + δ2 r) (γ1 + δ1 r)
, k = 1, 2, ... .

Equation (5.20) is equivalent to

(5.21)

(

1

r

)2

+
γ1δ2 + γ2δ1

γ1γ2

(

1

r

)

+
δ1δ2
γ1γ2

− ε1ε2
4k2π2

= 0 .

Solving (5.21) we get (5.15) and this concludes the first part of the proof.

Let us suppose now cos br 6= 1. In this case equation (5.17) gives the equations

sin br = − B

2C
b ,(5.22)

b4 −Ab2 −Bb sin br = 2C sin2 br + 2C cos br − 2C ,(5.23)

that are equivalent to the system

(5.24)
b4 −Ab2 + 2C = 2C cos br ,

−Bb = 2C sin br .

System (5.24) can be rewritten as

(5.25) (Bb, b4 −Ab2 + 2C) = 2C(− sin br, cos br)

and this completes the second part of the proof.
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Remark 5.2. The equation (5.15) is subjected to the condition

4δ1δ2
γ1γ2

<
ε1ε2
π2

in order to define a positive r and in this case there exists only a finite number

of lags given by the values of k making r positive in (5.15).

If there exists b0 > 0 such that (5.16) defines a lag r, then there is a sequence

of lags rk = (2kπ/b0) + r, k = 1, 2, ... satisfying (5.16).

We will analyse, in the sequel, the cases δ1 = 0, δ2 > 0 and δ1 = δ2 = δ > 0.

The special case δ1 = 0, δ2 > 0 can be studied easily because C = 0, that is,

(5.14) reduces to

(5.26) (Bb, b4 −Ab2) = Rb(Bb, 0)

that means Rb = Identity and b4 −Ab2 = 0, so, from (5.26) we obtain:

(5.27)
br = 2kπ , k = 1, 2, ... ,

b2 = A = N0
1N

0
2 γ1γ2 .

Conditions (5.27) are precisely equations (5.18) with δ1 = 0. So, one can apply

Theorem 5.1 with the lag given by (5.15) where we make δ1 = 0, that is equivalent

to

(5.28) r =
2kπ

[

kπ δ2 +
√

(kπ δ2)2 + γ2
2 ε1ε2

]

γ2 ε1ε2
.

So, (5.27) and (5.28) imply

(5.29) b =
γ2 ε1ε2

kπ δ2 +
√

(kπ δ2)2 + γ2
2 ε1ε2

, k = 1, 2, ... .

These computations prove the following

Corollary 5.3. The equilibrium point (N 0
1 , N

0
2 ) of system (4.14) with δ1 = 0

and δ2 > 0 is hyperbolic except for systems with lag

r =
2kπ

[

kπ δ2 +
√

(kπ δ2)2 + γ2
2 ε1ε2

]

γ2 ε1ε2
, k = 1, 2, ... .
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Let us consider now system (4.14) with parameters δ1 = δ2 = δ > 0. Theo-

rem 5.1 applies to this case with the conditions (5.15) and (5.16) properly rewrit-

ten, respectively, as

(5.30) r = 2



−
(

δ

γ1
+
δ

γ2

)

+

√

(

δ

γ1
+
δ

γ2

)2

− 4δ2

γ1γ2
+
ε1ε2
k2π2





−1

, k=1, 2, ... ,

and, for some b0 > 0,

(5.31) (Bb0, b
4
0 −Ab20 + 2C) = 2C(− sin b0r, cos b0r) ,

where A=N0
1N

0
2 γ1γ2, B=N0

1N
0
2 δ(γ1 + γ2), C=N0

1N
0
2 δ

2, N0
1N

0
2 =

ε1ε2
(γ1+δr)(γ2+δr) .

However we can say more in this special case. The characteristic equation

(5.5) now is given by

(5.32) λ2 +N0
1N

0
2

(

γ1 + δ

∫ 0

−r
eλθ dθ

) (

γ2 + δ

∫ 0

−r
eλθ dθ

)

= 0 .

From now on, our discussion is based in considering δ as a parameter.

Theorem 5.4. Suppose r
√
ε1ε2 6= 2kπ, k = 1, 2, ... . Then for δ > 0

sufficiently small, the critical point (N 0
1 , N

0
2 ) of system (5.14) is a hyperbolic

critical point and the unstable manifold has dimension two.

Proof: Although we are interested in δ > 0, it is convenient to consider

equation (5.32) with δ varying in a neighborhood of δ = 0. Call λ = a+ ib, then

the characteristic equation gives

(5.33)

H1(δ, a, b)
def
= a2−b2 + α

[

(

γ2 + δf(a, b)
) (

γ1 + δf(a, b)
)

− δ2g2(a, b)

]

=0 ,

H2(δ, a, b)
def
= 2ab+ αδg(a, b)

[

γ1 + γ2 + 2δf(a, b)
]

= 0 ,

where

α = α(δ)
def
=

ε1ε2
(γ1 + δr) (γ2 + δr)

,

f(a, b)
def
=

∫ 0

−r
eaθ cos bθ dθ ,

g(a, b)
def
=

∫ 0

−r
eaθ sin bθ dθ .

Let us point out the following remarks:
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1) α̇(0) = −(γ1 + γ2) r ε1ε2/(γ1γ2)
2 and α(0) = ε1ε2/γ1γ2.

2) For δ = 0 we get a = 0 and b2 = ε1ε2.

Consider the map

M : (δ, a, b) ∈ R× R2 7−→
(

H1(δ, a, b), H2(δ, a, b)
)

∈ R2

where M(0, 0, b0) =M(0, 0,−b0) = 0 and b0 =
√
ε1ε2 > 0.

The jacobian determinant

det

(

∂H1/∂a ∂H1/∂b
∂H2/∂a ∂H2/∂b

)

is equal to 4ε1ε2 at the points (0, 0, b0) and (0, 0,−b0).
According to the Implicit Function Theorem applied in the neighborhood of

(0, 0, b0) and (0, 0,−b0), there are a(δ) and b(δ) for |δ| small satisfying

(5.34)
H1

(

δ, a(δ), b(δ)
)

= 0 ,

H2

(

δ, a(δ), b(δ)
)

= 0 ,

which give the solutions of (5.33) for δ > 0 small. To obtain ȧ(0) we compute

the derivative of H2(δ, a(δ), b(δ)) with respect to δ:

(5.35) 2ȧ(δ) b(δ) + 2a(δ) ḃ(δ) + α(δ) g(a(δ), b(δ))
[

γ1 + γ2 + 2δf(a(δ), b(δ))
]

+

+ δ
d

dδ

[

α(δ) g(a(δ), b(δ))
[

γ1 + γ2 + 2δf(a(δ), b(δ))
]

]

= 0

and then

(5.36) 2ȧ(0) b(0) + α(0) g(a(0), b(0)) [γ1 + γ2] = 0 .

But g(a(0), b(0)) = g(0, b0) =
∫ 0
−r sin b0θ dθ = (cos rb0 − 1)/b0. Finally

(5.37) ȧ(0) = − (ε1ε2/γ1γ2) (γ1 + γ2) (cos rb0 − 1)

2b20
.

Since b0 =
√
ε1ε2, our hypotheses give cos rb0 6= 1 and we get ȧ(0) > 0. The

theorem is, then, proved since λ = ±ib0 are simple imaginary roots. In fact, if

(5.38) h(λ, δ)
def
= λ2 +N0

1N
0
2

(

γ1 + δ

∫ 0

−r
eλθ dθ

) (

γ2 + δ

∫ 0

−r
eλθ dθ

)

,
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then, denoting with ′ the derivative with respect to λ,

(5.39)

h′(λ, δ) = 2λ+N0
1N

0
2

(

λδ

∫ 0

−r
eλθ dθ

) (

γ2 + δ

∫ 0

−r
eλθ dθ

)

+N0
1N

0
2

(

γ1 + δ

∫ 0

−r
eλθ dθ

) (

λδ

∫ 0

−r
eλθ dθ

)

and h′(ib0, 0) = 2ib0 6= 0.

Since there are no pure imaginary roots of (5.32) for δ = 0, except for

λ = ±ib0, the proof of Theorem 5.4 shows that all the hypotheses of the Hopf

Bifurcation Theorem for RFDE (see [2]) are verified. Therefore, we have the

Corollary 5.5. Under the hypotheses of Theorem 5.4, δ = 0 gives us a Hopf

bifurcation for system (4.14) with δ1 = δ2 = δ varying in a small neighborhood

of δ = 0.

Remark 5.6. If one increases δ > 0 properly, we could try, with a more

involved analysis, to use equations (5.30) and (5.31) in order to discover how the

unstable manifold increases its dimension, with other possible Hopf bifurcations.
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