PORTUGALIAE MATHEMATICA Vol. 54 Fasc. 1 – 1997

SPACE CURVES AND THEIR DUALS

F.J. CRAVEIRO DE CARVALHO and S.A. ROBERTSON

In the real projective plane P^2 , the duality between lines and points induces a map δ from the set of smooth (\mathbf{C}^{∞}) immersions $f: \mathbb{R} \to P^2$ to the set of all smooth maps $g: \mathbb{R} \to P^2$. Thus $\delta(f) = g$, where for all $s \in \mathbb{R}$, g(s) is the polar of the tangent line to f at f(s). In order that g itself be an immersion, it is necessary to restrict f to have nowhere zero geodesic curvature. The map δ is then an involution on the set of such immersions.

In this paper, we examine these ideas in the slightly broader setting of smooth immersions $f: \mathbb{R} \to E^3$ in Euclidean 3-space. In particular, suppose that M and N are smooth surfaces in E^3 such that, for any immersion $f: \mathbb{R} \to E^3$, $f(\mathbb{R}) \subset M$ implies $f_*(\mathbb{R}) \subset N$, and vice-versa, where f_* is defined in §1. Then M and N are either both spheres with centre 0 or both cones with apex 0. If M is the unit sphere S^2 or is the circular cone of apex angle $\pi/2$ then M = N. Accordingly, we concentrate attention on these cases.

1 – The dual of a space curve

Let $f: \mathbb{R} \to E^3$ be a smooth immersion. Then we can define a unit tangent vector field t along $f(\mathbb{R})$ by $t(s) = f'(s)/||f'(s)||, s \in \mathbb{R}$. The dual $\delta(f) = f_*: \mathbb{R} \to E^3$ of f is then given by

$$f_* = f \wedge t$$
.

Of course, although f_* , is smooth, it need not be an immersion. Thus $f'_* = f' \wedge t + f \wedge t' = f \wedge t'$, so f_* is an immersion iff, for all $s \in \mathbb{R}$, f(s) and t'(s) are linearly independent.

Received: October 8, 1995; Revised: June 22, 1996.

F.J. CRAVEIRO DE CARVALHO and S.A. ROBERTSON

For such an f,

$$f_{**} = (f_*)_* = f_* \wedge (f'_* / || f'_* ||)$$

= $\frac{1}{||f \wedge t'||} (f \wedge t) \wedge (f \wedge t')$
= $\frac{1}{||f \wedge t'||} (f \wedge t.t') f - (f \wedge t.f) t'$
= $-\cos \theta f$,

where θ is the angle between $f \wedge t'$ and $t, 0 \leq \theta \leq \pi$. This shows that for at least some immersions f, δ has an involutory character.

We now examine the case of immersions $f \colon \mathbb{R} \to S^2$ where $\theta = 0$ or π .

$2 - Curves on S^2$

Let $f: \mathbb{R} \to S^2$ be a smooth immersion into the unit sphere. Then f_* is a smooth immersion iff the geodesic curvature $\kappa_g(s)$ of f at s is nonzero, for all $s \in \mathbb{R}$, since $\nu(s) \kappa_g(s) = f(s).(t(s) \wedge t'(s)) \neq 0$ iff t'(s) is not perpendicular to S^2 at f(s), with $\nu(s) = ||f'(s)||$.

Suppose, then, that G denotes the set of all smooth immersions $f: \mathbb{R} \to S^2$ for which κ_g is nowhere zero. Then G is the disjoint union of G_+ and G_- where $f \in G_+$ or G_- according as $\kappa_g > 0$ or $\kappa_g < 0$. Trivially, the antipodal involution $\alpha: G \to G$, given by $\alpha(f)(s) = -f(s)$, interchanges G_+ and G_- .

Proposition 1. For all $f \in G$, $f_{**} = f$ if $f \in G_+$ and $f_{**} = -f$ if $f \in G_-$.

Proof: We have shown in §1 above that $f_{**} = (-\cos\theta) f$, where θ is the angle between $f \wedge t'$ and t. Since $\kappa_g = \frac{1}{\nu} f(t \wedge t') = -\frac{1}{\nu} (f \wedge t') \cdot t$ and $|\kappa_g| = \frac{1}{\nu} ||f \wedge t'||$, where $\nu = ||f'||$ is the velocity function as above, the result follows.

From $f_* = f \wedge t$ and $|\kappa_g| = \frac{1}{\nu} ||f \wedge t'||$, it follows immediately that $||f'_*|| = \nu |\kappa_g|$.

Corollary 1. There is a well-defined map $\delta \colon G \to G$ given by $\delta(f) = f_*$.

Proof: We want to show that $f_* \in G$ for all $f \in G$. Since $f \in G$ implies $f \wedge t'$ is nowhere zero, we know that f_* is a smooth immersion. Also $||f_*|| = ||f \wedge t|| = 1$, since f.t = 0 and ||f|| = ||t|| = 1. By Proposition 1, $f_{**} = \pm f$, so f_{**} is a smooth immersion. Hence $f_* \in G$.

Corollary 2. $\delta(G) = G_+$.

96

SPACE CURVES AND THEIR DUALS

Proof: If $f \in G_+$, then $-f \in G_-$ and if $f \in G_-$, $-f \in G_+$. Also, for any $f \in G$, $(-f)_* = f_*$. Suppose that for some $f \in G_+$, $f_* \in G_-$. Then $(f_*)_{**} = -f_* \in G_+$, by Proposition 1. But $(f_*)_{**} = (f_{**})_* = f_* \in G_-$, by hypothesis. So $f_* = -f_*$, which is a contradiction. It follows that $f_* \in G_+$, if $f \in G_+$. Likewise, if $f \in G_-$, then $-f \in G_+$ and $f_* = (-f)_* \in G_+$.

Corollary 3. $\delta | G_+$ is a fixed-point free involution.

Although $\delta | G_+$ has no fixed elements, it does map each circle of radius $\sqrt{2}/2$ to itself, and each circle of radius r_1 , $0 < r_1 < 1$ to the parallel circle of radius r_2 in the same hemisphere, where $r_1^2 + r_2^2 = 1$.

3 – Multiple points and homotopy

Let us now concentrate on smooth closed curves on S^2 . Thus we confine attention to smooth immersions $f: \mathbb{R} \to S^2$ that are periodic. Denote by C the set of all such curves that are nondegenerate in the sense of Little [1]. That is to say, $f \in C$ iff it is periodic and $f \in G$. Denote by C_+ and C_- the sets of periodic elements of G_+ and G_- . Now regard C as a subset of the space S of \mathbb{C}^2 periodic nondegenerate immersions $f: \mathbb{R} \to S^2$, with the \mathbb{C}^2 topology. Then Little showed that, with obvious notation, each of S_+ and S_- has exactly three path components. Equivalently, there are exactly three nondegenerate regular homotopy classes on S_+ and S_- . These six classes are represented by curves of the form indicated in Figure 1 for plane projection from a hemisphere of S^2 .

Let C^i_+ denote the subsets of C_+ consisting of curves in the class of types i, i = 1, 2, 3.

Proposition 2. If $f \in C^{i}_{+}$, then $f_{*} \in C^{i}_{+}$, i = 1, 2, 3.

Proof: This follows from work of Little [1], as we now explain. Let $f \in C_+$ and suppose that $s, u \in \mathbb{R}$ with $s \neq u$. Then $f_*(s) = f_*(u)$ iff $f(s) \wedge t(s) =$ $f(u) \wedge t(u)$. Thus $f_*(s) = f_*(u)$ iff the great circle that is tangent to f at f(s)and oriented in the direction of t(s) is also tangent to f at f(u) in the direction of t(u).

We may suppose without loss of generality that f is self-transverse (modulo periodicity) and that it has only doubly tangent great circles of the above type. That is, we may suppose that both f and f_* are self-transverse.

F.J. CRAVEIRO DE CARVALHO and S.A. ROBERTSON

If f has 0, 1 or 2 double points, then f_* has 0, 1 or 4 such double points, as indicated in Figure 2. A procedure explained by Little then shows that $f_* \in C^1_+$, C^2_+ or C^3_+ , respectively and the proposition follows, since δ is a homeomorphism of $C_+ \subset S_+$ to itself.

Fig. 1 – Nondegenerate regular homotopy classes of closed curves on S^2 .

Fig. 2 – Multiple points and oriented double tangents.

Similar arguments apply to $C^i_-,$ where we find that $f\in C^i_-$ implies that $f_*\in C^i_+.$ \blacksquare

98

SPACE CURVES AND THEIR DUALS

4 – Duality on a cone

The results obtained above depend to some extent on the fact that the origin O has a privileged position in relation to S^2 . Another surface where O is a centre of symmetry is a right circular cone C with apex O. For convenience, let the axis of C be the z-axis in E^3 . To make things work better, we also suppose that the apex angle of C is $\frac{1}{2}\pi$. The surface C is given, therefore, by the equation

$$x^2 + y^2 = z^2$$
, $z \neq 0$.

Let $f : \mathbb{R} \to \mathbb{C}$ be a smooth immersion. Then there are smooth functions z and θ such that, for all $s \in \mathbb{R}$,

$$f(s) = \left(z(s)\cos\theta(s), \, z(s)\sin\theta(s), \, z(s)\right)$$

 $z(s) \neq 0$. It follows that

$$f' = \left(z' \cos heta - z \, heta' \sin heta, \, z' \sin heta + z \, heta' \cos heta, \, z'
ight) \, ,$$

 \mathbf{SO}

$$||f'||^2 = 2z'^2 + z^2 \theta'^2$$

and

$$f_* = f \wedge t = \frac{1}{\|f'\|} z^2 \theta'(-\cos\theta, -\sin\theta, 1)$$

is well-defined as a smooth map $f_* \colon \mathbb{R} \to \mathbb{C}$, provided that θ' is nowhere zero.

Moreover, $f'_* = f \wedge t'$ implies that $f'_* = 0$ at $s \in \mathbb{R}$ iff f(s) and t'(s) are linearly dependent. Since we shall require that θ' is nowhere zero, f is transverse to the generators of C and hence the normal curvature of f is nowhere zero. We conclude that t'(s) is nowhere zero, so $f'_*(s) \neq 0$ for all $s \in \mathbb{R}$. Hence f_* is a smooth immersion, transverse to the generators of C.

We have now shown that there is a well-defined map $\gamma \colon K \to K$ of the set K of smooth immersions of \mathbb{R} into C, transverse to its generators, into itself, given by $\gamma(f) = f_*$.

Now C has two components or sheets C₊ and C₋ given by z > 0 and z < 0 respectively. So K may be partitioned into four disjoint subsets K_{pq} , where $p = \pm 1$ according as z > 0 or z < 0 and $q = \pm 1$ according as $\theta' > 0$ or $\theta' < 0$, for any $f \in K_{pq}$.

The following proposition is easy to establish.

Proposition 3. $\gamma(K_{++} \cup K_{-+}) \subset K_{++}$, and $\gamma(K_{--} \cup K_{+-}) \subset K_{--}$.

100 F.J. CRAVEIRO DE CARVALHO and S.A. ROBERTSON

We do not know whether either inclusion is strict.

The map γ cannot be an involution, even on, say K_{++} , as we now show.

Proposition 4. For all $f \in K$ and all $s \in \mathbb{R}$, $||f_*(s)|| \le ||f(s)||$ with equality iff z'(s) = 0.

Proof: Since $f_*(s) = f(s) \wedge t(s)$,

 $||f_*(s)|| = ||f(s)|| \, ||t(s)|| \sin \phi(s) = ||f(s)|| \sin \phi(s) ,$

where $\phi(s)$ is the angle between t(s) and f(s).

Proposition 4 shows that if $f \in K$ is such that z has a critical point at $s \in \mathbb{R}$, then with the obvious notation, $z_*(s) = z(s)$. If s is not a critical point of z, however, then $|z_*(s)| < |z(s)|$.

So if γ is a closed curve on C_+ then the range of values of z(s), $s \in \mathbb{R}$, is a compact interval [a, b], where a < b except when γ is a 'circle of latitude'. For such γ , the range of z(s) for the *n*-th iteration γ^n of γ , is $[a_n, b]$, where $a_{n+1} < a_n < a$, for sufficiently large *n*. We do not know whether $\alpha = \lim_{n \to \infty} a_n$ must be 0 or whether it can be positive.

ACKNOWLEDGEMENT – The first-named author gratefully acknowledges partial financial support from Academia das Ciências, Lisboa, and The Royal Society of London.

REFERENCES

 LITTLE, J.A. – Nondegenerate homotopies of curves on the unit 2-sphere, J. Diff. Geometry, 4 (1970), 339–348.

F.J. Craveiro de Carvalho, Departamento de Matemática, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, Apartado 3008, 3000 COIMBRA – PORTUGAL

and

S.A. Robertson, Faculty of Mathematical Studies, University of Southampton, Southampton, S017 1BJ – ENGLAND