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SPACE CURVES AND THEIR DUALS

F.J. Craveiro de Carvalho and S.A. Robertson

In the real projective plane P 2, the duality between lines and points induces

a map δ from the set of smooth (C∞) immersions f : R → P 2 to the set of all

smooth maps g : R → P 2. Thus δ(f) = g, where for all s ∈ R, g(s) is the polar
of the tangent line to f at f(s). In order that g itself be an immersion, it is

necessary to restrict f to have nowhere zero geodesic curvature. The map δ is

then an involution on the set of such immersions.

In this paper, we examine these ideas in the slightly broader setting of smooth

immersions f : R → E3 in Euclidean 3-space. In particular, suppose that M and

N are smooth surfaces in E3 such that, for any immersion f : R → E3, f(R) ⊂M

implies f∗(R) ⊂ N , and vice-versa, where f∗ is defined in §1. Then M and N are

either both spheres with centre 0 or both cones with apex 0. If M is the unit

sphere S2 or is the circular cone of apex angle π/2 then M = N . Accordingly,

we concentrate attention on these cases.

1 – The dual of a space curve

Let f : R → E3 be a smooth immersion. Then we can define a unit tangent

vector field t along f(R) by t(s) = f ′(s)/‖f ′(s)‖, s ∈ R. The dual δ(f) = f∗ :

R → E3 of f is then given by

f∗ = f ∧ t .

Of course, although f∗, is smooth, it need not be an immersion. Thus f
′
∗ =

f ′ ∧ t+ f ∧ t′ = f ∧ t′, so f∗ is an immersion iff, for all s ∈ R, f(s) and t′(s) are
linearly independent.
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For such an f ,

f∗∗ = (f∗)∗ = f∗ ∧ (f ′∗/‖f ′∗‖)

=
1

‖f ∧ t′‖ (f ∧ t) ∧ (f ∧ t
′)

=
1

‖f ∧ t′‖ (f ∧ t.t
′)f − (f ∧ t.f) t′

= − cos θ f ,

where θ is the angle between f ∧ t′ and t, 0 ≤ θ ≤ π. This shows that for at least

some immersions f , δ has an involutory character.

We now examine the case of immersions f : R → S2 where θ = 0 or π.

2 – Curves on S2

Let f : R → S2 be a smooth immersion into the unit sphere. Then f∗ is a

smooth immersion iff the geodesic curvature κg(s) of f at s is nonzero, for all

s ∈ R, since ν(s)κg(s) = f(s).(t(s)∧ t′(s)) 6= 0 iff t′(s) is not perpendicular to S2

at f(s), with ν(s) = ‖f ′(s)‖.
Suppose, then, that G denotes the set of all smooth immersions f : R → S2

for which κg is nowhere zero. Then G is the disjoint union of G+ and G− where

f ∈ G+ or G− according as κg > 0 or κg < 0. Trivially, the antipodal involution

α : G→ G, given by α(f)(s) = −f(s), interchanges G+ and G−.

Proposition 1. For all f ∈ G, f∗∗ = f if f ∈ G+ and f∗∗ = −f if f ∈ G−.

Proof: We have shown in §1 above that f∗∗ = (− cos θ) f , where θ is the angle
between f ∧ t′ and t. Since κg = 1

ν
f.(t ∧ t′) = − 1

ν
(f ∧ t′).t and |κg| = 1

ν
‖f ∧ t′‖,

where ν = ‖f ′‖ is the velocity function as above, the result follows.

From f∗ = f∧t and |κg| = 1
ν
‖f∧t′‖, it follows immediately that ‖f ′∗‖ = ν|κg|.

Corollary 1. There is a well-defined map δ : G→ G given by δ(f) = f∗.

Proof: We want to show that f∗ ∈ G for all f ∈ G. Since f ∈ G implies f ∧t′
is nowhere zero, we know that f∗ is a smooth immersion. Also ‖f∗‖ = ‖f∧t‖ = 1,
since f.t = 0 and ‖f‖ = ‖t‖ = 1. By Proposition 1, f∗∗ = ±f , so f∗∗ is a smooth
immersion. Hence f∗ ∈ G.

Corollary 2. δ(G) = G+.
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Proof: If f ∈ G+, then −f ∈ G− and if f ∈ G−, −f ∈ G+. Also, for

any f ∈ G, (−f)∗ = f∗. Suppose that for some f ∈ G+, f∗ ∈ G−. Then

(f∗)∗∗ = −f∗ ∈ G+, by Proposition 1. But (f∗)∗∗ = (f∗∗)∗ = f∗ ∈ G−, by

hypothesis. So f∗ = −f∗, which is a contradiction. It follows that f∗ ∈ G+, if

f ∈ G+. Likewise, if f ∈ G−, then −f ∈ G+ and f∗ = (−f)∗ ∈ G+.

Corollary 3. δ|G+ is a fixed-point free involution.

Although δ|G+ has no fixed elements, it does map each circle of radius
√
2/2

to itself, and each circle of radius r1, 0 < r1 < 1 to the parallel circle of radius r2
in the same hemisphere, where r2

1 + r2
2 = 1.

3 – Multiple points and homotopy

Let us now concentrate on smooth closed curves on S2. Thus we confine

attention to smooth immersions f : R → S2 that are periodic. Denote by C the

set of all such curves that are nondegenerate in the sense of Little [1]. That is

to say, f ∈ C iff it is periodic and f ∈ G. Denote by C+ and C− the sets of

periodic elements of G+ and G−. Now regard C as a subset of the space S of

C2 periodic nondegenerate immersions f : R → S2, with the C2 topology. Then

Little showed that, with obvious notation, each of S+ and S− has exactly three

path components. Equivalently, there are exactly three nondegenerate regular

homotopy classes on S+ and S−. These six classes are represented by curves of

the form indicated in Figure 1 for plane projection from a hemisphere of S2.

Let Ci
+ denote the subsets of C+ consisting of curves in the class of types i,

i = 1, 2, 3.

Proposition 2. If f ∈ Ci
+, then f∗ ∈ Ci

+, i = 1, 2, 3.

Proof: This follows from work of Little [1], as we now explain. Let f ∈ C+

and suppose that s, u ∈ R with s 6= u. Then f∗(s) = f∗(u) iff f(s) ∧ t(s) =

f(u) ∧ t(u). Thus f∗(s) = f∗(u) iff the great circle that is tangent to f at f(s)

and oriented in the direction of t(s) is also tangent to f at f(u) in the direction

of t(u).

We may suppose without loss of generality that f is self-transverse (modulo

periodicity) and that it has only doubly tangent great circles of the above type.

That is, we may suppose that both f and f∗ are self-transverse.
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If f has 0, 1 or 2 double points, then f∗ has 0, 1 or 4 such double points, as

indicated in Figure 2. A procedure explained by Little then shows that f∗ ∈ C1
+,

C2
+ or C

3
+, respectively and the proposition follows, since δ is a homeomorphism

of C+ ⊂ S+ to itself.

Fig. 1 – Nondegenerate regular homotopy classes of closed curves on S2.

Fig. 2 – Multiple points and oriented double tangents.

Similar arguments apply to C i
−, where we find that f ∈ C i

− implies that

f∗ ∈ Ci
+.
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4 – Duality on a cone

The results obtained above depend to some extent on the fact that the origin

O has a privileged position in relation to S2. Another surface where O is a centre

of symmetry is a right circular cone C with apex O. For convenience, let the axis

of C be the z-axis in E3. To make things work better, we also suppose that the

apex angle of C is 1
2
π. The surface C is given, therefore, by the equation

x2 + y2 = z2 , z 6= 0 .

Let f : R → C be a smooth immersion. Then there are smooth functions z and

θ such that, for all s ∈ R,

f(s) =
(

z(s) cos θ(s), z(s) sin θ(s), z(s)
)

,

z(s) 6= 0. It follows that

f ′ =
(

z′ cos θ − z θ′ sin θ, z′ sin θ + z θ′ cos θ, z′
)

,

so

‖f ′‖2 = 2z′2 + z2 θ′2 ,

and

f∗ = f ∧ t = 1

‖f ′‖ z
2 θ′(− cos θ,− sin θ, 1)

is well-defined as a smooth map f∗ : R → C, provided that θ′ is nowhere zero.

Moreover, f ′∗ = f ∧ t′ implies that f ′∗ = 0 at s ∈ R iff f(s) and t′(s) are

linearly dependent. Since we shall require that θ′ is nowhere zero, f is transverse

to the generators of C and hence the normal curvature of f is nowhere zero. We

conclude that t′(s) is nowhere zero, so f ′∗(s) 6= 0 for all s ∈ R. Hence f∗ is a
smooth immersion, transverse to the generators of C.

We have now shown that there is a well-defined map γ : K → K of the set K

of smooth immersions of R into C, transverse to its generators, into itself, given
by γ(f) = f∗.

Now C has two components or sheets C+ and C− given by z > 0 and z < 0

respectively. So K may be partitioned into four disjoint subsets Kpq, where

p = ±1 according as z > 0 or z < 0 and q = ±1 according as θ′ > 0 or θ′ < 0, for
any f ∈ Kpq.

The following proposition is easy to establish.

Proposition 3. γ(K++ ∪K−+) ⊂ K++, and γ(K−− ∪K+−) ⊂ K−−.
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We do not know whether either inclusion is strict.

The map γ cannot be an involution, even on, say K++, as we now show.

Proposition 4. For all f ∈ K and all s ∈ R, ‖f∗(s)‖ ≤ ‖f(s)‖ with equality

iff z′(s) = 0.

Proof: Since f∗(s) = f(s) ∧ t(s),

‖f∗(s)‖ = ‖f(s)‖ ‖t(s)‖ sinφ(s) = ‖f(s)‖ sinφ(s) ,

where φ(s) is the angle between t(s) and f(s).

Proposition 4 shows that if f ∈ K is such that z has a critical point at s ∈ R,
then with the obvious notation, z∗(s) = z(s). If s is not a critical point of z,

however, then |z∗(s)| < |z(s)|.
So if γ is a closed curve on C+ then the range of values of z(s), s ∈ R, is a

compact interval [a, b], where a < b except when γ is a ‘circle of latitude’. For such

γ, the range of z(s) for the n-th iteration γn of γ, is [an, b], where an+1 < an < a,

for sufficiently large n. We do not know whether α = limn→∞ an must be 0 or

whether it can be positive.
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