SPACE CURVES AND THEIR DUALS

F.J. Craveiro de Carvalho and S.A. Robertson

In the real projective plane P^{2}, the duality between lines and points induces a map δ from the set of smooth $\left(\mathbf{C}^{\infty}\right)$ immersions $f: \mathbb{R} \rightarrow P^{2}$ to the set of all smooth maps $g: \mathbb{R} \rightarrow P^{2}$. Thus $\delta(f)=g$, where for all $s \in \mathbb{R}, g(s)$ is the polar of the tangent line to f at $f(s)$. In order that g itself be an immersion, it is necessary to restrict f to have nowhere zero geodesic curvature. The map δ is then an involution on the set of such immersions.

In this paper, we examine these ideas in the slightly broader setting of smooth immersions $f: \mathbb{R} \rightarrow E^{3}$ in Euclidean 3 -space. In particular, suppose that M and N are smooth surfaces in E^{3} such that, for any immersion $f: \mathbb{R} \rightarrow E^{3}, f(\mathbb{R}) \subset M$ implies $f_{*}(\mathbb{R}) \subset N$, and vice-versa, where f_{*} is defined in $\S 1$. Then M and N are either both spheres with centre 0 or both cones with apex 0 . If M is the unit sphere S^{2} or is the circular cone of apex angle $\pi / 2$ then $M=N$. Accordingly, we concentrate attention on these cases.

1 - The dual of a space curve

Let $f: \mathbb{R} \rightarrow E^{3}$ be a smooth immersion. Then we can define a unit tangent vector field t along $f(\mathbb{R})$ by $t(s)=f^{\prime}(s) /\left\|f^{\prime}(s)\right\|, s \in \mathbb{R}$. The dual $\delta(f)=f_{*}$: $\mathbb{R} \rightarrow E^{3}$ of f is then given by

$$
f_{*}=f \wedge t
$$

Of course, although f_{*}, is smooth, it need not be an immersion. Thus $f_{*}^{\prime}=$ $f^{\prime} \wedge t+f \wedge t^{\prime}=f \wedge t^{\prime}$, so f_{*} is an immersion iff, for all $s \in \mathbb{R}, f(s)$ and $t^{\prime}(s)$ are linearly independent.

For such an f,

$$
\begin{aligned}
f_{* *} & =\left(f_{*}\right)_{*}=f_{*} \wedge\left(f_{*}^{\prime} /\left\|f_{*}^{\prime}\right\|\right) \\
& =\frac{1}{\left\|f \wedge t^{\prime}\right\|}(f \wedge t) \wedge\left(f \wedge t^{\prime}\right) \\
& =\frac{1}{\left\|f \wedge t^{\prime}\right\|}\left(f \wedge t . t^{\prime}\right) f-(f \wedge t . f) t^{\prime} \\
& =-\cos \theta f
\end{aligned}
$$

where θ is the angle between $f \wedge t^{\prime}$ and $t, 0 \leq \theta \leq \pi$. This shows that for at least some immersions f, δ has an involutory character.

We now examine the case of immersions $f: \mathbb{R} \rightarrow S^{2}$ where $\theta=0$ or π.

2 - Curves on S^{2}

Let $f: \mathbb{R} \rightarrow S^{2}$ be a smooth immersion into the unit sphere. Then f_{*} is a smooth immersion iff the geodesic curvature $\kappa_{g}(s)$ of f at s is nonzero, for all $s \in \mathbb{R}$, since $\nu(s) \kappa_{g}(s)=f(s) .\left(t(s) \wedge t^{\prime}(s)\right) \neq 0$ iff $t^{\prime}(s)$ is not perpendicular to S^{2} at $f(s)$, with $\nu(s)=\left\|f^{\prime}(s)\right\|$.

Suppose, then, that G denotes the set of all smooth immersions $f: \mathbb{R} \rightarrow S^{2}$ for which κ_{g} is nowhere zero. Then G is the disjoint union of G_{+}and G_{-}where $f \in G_{+}$or G_{-}according as $\kappa_{g}>0$ or $\kappa_{g}<0$. Trivially, the antipodal involution $\alpha: G \rightarrow G$, given by $\alpha(f)(s)=-f(s)$, interchanges G_{+}and G_{-}.

Proposition 1. For all $f \in G, f_{* *}=f$ if $f \in G_{+}$and $f_{* *}=-f$ if $f \in G_{-}$.
Proof: We have shown in $\S 1$ above that $f_{* *}=(-\cos \theta) f$, where θ is the angle between $f \wedge t^{\prime}$ and t. Since $\kappa_{g}=\frac{1}{\nu} f .\left(t \wedge t^{\prime}\right)=-\frac{1}{\nu}\left(f \wedge t^{\prime}\right) . t$ and $\left|\kappa_{g}\right|=\frac{1}{\nu}\left\|f \wedge t^{\prime}\right\|$, where $\nu=\left\|f^{\prime}\right\|$ is the velocity function as above, the result follows.

From $f_{*}=f \wedge t$ and $\left|\kappa_{g}\right|=\frac{1}{\nu}\left\|f \wedge t^{\prime}\right\|$, it follows immediately that $\left\|f_{*}^{\prime}\right\|=\nu\left|\kappa_{g}\right|$.
Corollary 1. There is a well-defined map $\delta: G \rightarrow G$ given by $\delta(f)=f_{*}$.
Proof: We want to show that $f_{*} \in G$ for all $f \in G$. Since $f \in G$ implies $f \wedge t^{\prime}$ is nowhere zero, we know that f_{*} is a smooth immersion. Also $\left\|f_{*}\right\|=\|f \wedge t\|=1$, since $f . t=0$ and $\|f\|=\|t\|=1$. By Proposition $1, f_{* *}= \pm f$, so $f_{* *}$ is a smooth immersion. Hence $f_{*} \in G$.

Corollary 2. $\delta(G)=G_{+}$.

Proof: If $f \in G_{+}$, then $-f \in G_{-}$and if $f \in G_{-},-f \in G_{+}$. Also, for any $f \in G,(-f)_{*}=f_{*}$. Suppose that for some $f \in G_{+}, f_{*} \in G_{-}$. Then $\left(f_{*}\right)_{* *}=-f_{*} \in G_{+}$, by Proposition 1. But $\left(f_{*}\right)_{* *}=\left(f_{* *}\right)_{*}=f_{*} \in G_{-}$, by hypothesis. So $f_{*}=-f_{*}$, which is a contradiction. It follows that $f_{*} \in G_{+}$, if $f \in G_{+}$. Likewise, if $f \in G_{-}$, then $-f \in G_{+}$and $f_{*}=(-f)_{*} \in G_{+}$.

Corollary 3. $\delta \mid G_{+}$is a fixed-point free involution.
Although $\delta \mid G_{+}$has no fixed elements, it does map each circle of radius $\sqrt{2} / 2$ to itself, and each circle of radius $r_{1}, 0<r_{1}<1$ to the parallel circle of radius r_{2} in the same hemisphere, where $r_{1}^{2}+r_{2}^{2}=1$.

3 - Multiple points and homotopy

Let us now concentrate on smooth closed curves on S^{2}. Thus we confine attention to smooth immersions $f: \mathbb{R} \rightarrow S^{2}$ that are periodic. Denote by C the set of all such curves that are nondegenerate in the sense of Little [1]. That is to say, $f \in C$ iff it is periodic and $f \in G$. Denote by C_{+}and C_{-}the sets of periodic elements of G_{+}and G_{-}. Now regard C as a subset of the space S of \mathbf{C}^{2} periodic nondegenerate immersions $f: \mathbb{R} \rightarrow S^{2}$, with the \mathbf{C}^{2} topology. Then Little showed that, with obvious notation, each of S_{+}and S_{-}has exactly three path components. Equivalently, there are exactly three nondegenerate regular homotopy classes on S_{+}and S_{-}. These six classes are represented by curves of the form indicated in Figure 1 for plane projection from a hemisphere of S^{2}.

Let C_{+}^{i} denote the subsets of C_{+}consisting of curves in the class of types i, $i=1,2,3$.

Proposition 2. If $f \in C_{+}^{i}$, then $f_{*} \in C_{+}^{i}, i=1,2,3$.
Proof: This follows from work of Little [1], as we now explain. Let $f \in C_{+}$ and suppose that $s, u \in \mathbb{R}$ with $s \neq u$. Then $f_{*}(s)=f_{*}(u)$ iff $f(s) \wedge t(s)=$ $f(u) \wedge t(u)$. Thus $f_{*}(s)=f_{*}(u)$ iff the great circle that is tangent to f at $f(s)$ and oriented in the direction of $t(s)$ is also tangent to f at $f(u)$ in the direction of $t(u)$.

We may suppose without loss of generality that f is self-transverse (modulo periodicity) and that it has only doubly tangent great circles of the above type. That is, we may suppose that both f and f_{*} are self-transverse.

If f has 0,1 or 2 double points, then f_{*} has 0,1 or 4 such double points, as indicated in Figure 2. A procedure explained by Little then shows that $f_{*} \in C_{+}^{1}$, C_{+}^{2} or C_{+}^{3}, respectively and the proposition follows, since δ is a homeomorphism of $C_{+} \subset S_{+}$to itself.
S

Fig. 1 - Nondegenerate regular homotopy classes of closed curves on S^{2}.

Fig. 2 - Multiple points and oriented double tangents.

Similar arguments apply to C_{-}^{i}, where we find that $f \in C_{-}^{i}$ implies that $f_{*} \in C_{+}^{i}$.

4 - Duality on a cone

The results obtained above depend to some extent on the fact that the origin O has a privileged position in relation to S^{2}. Another surface where O is a centre of symmetry is a right circular cone C with apex O. For convenience, let the axis of C be the z-axis in E^{3}. To make things work better, we also suppose that the apex angle of C is $\frac{1}{2} \pi$. The surface C is given, therefore, by the equation

$$
x^{2}+y^{2}=z^{2}, \quad z \neq 0 .
$$

Let $f: \mathbb{R} \rightarrow \mathrm{C}$ be a smooth immersion. Then there are smooth functions z and θ such that, for all $s \in \mathbb{R}$,

$$
f(s)=(z(s) \cos \theta(s), z(s) \sin \theta(s), z(s)),
$$

$z(s) \neq 0$. It follows that

$$
f^{\prime}=\left(z^{\prime} \cos \theta-z \theta^{\prime} \sin \theta, z^{\prime} \sin \theta+z \theta^{\prime} \cos \theta, z^{\prime}\right)
$$

so

$$
\left\|f^{\prime}\right\|^{2}=2 z^{\prime 2}+z^{2} \theta^{\prime 2}
$$

and

$$
f_{*}=f \wedge t=\frac{1}{\left\|f^{\prime}\right\|} z^{2} \theta^{\prime}(-\cos \theta,-\sin \theta, 1)
$$

is well-defined as a smooth map $f_{*}: \mathbb{R} \rightarrow \mathrm{C}$, provided that θ^{\prime} is nowhere zero.
Moreover, $f_{*}^{\prime}=f \wedge t^{\prime}$ implies that $f_{*}^{\prime}=0$ at $s \in \mathbb{R}$ iff $f(s)$ and $t^{\prime}(s)$ are linearly dependent. Since we shall require that θ^{\prime} is nowhere zero, f is transverse to the generators of C and hence the normal curvature of f is nowhere zero. We conclude that $t^{\prime}(s)$ is nowhere zero, so $f_{*}^{\prime}(s) \neq 0$ for all $s \in \mathbb{R}$. Hence f_{*} is a smooth immersion, transverse to the generators of C .

We have now shown that there is a well-defined map $\gamma: K \rightarrow K$ of the set K of smooth immersions of \mathbb{R} into C , transverse to its generators, into itself, given by $\gamma(f)=f_{*}$.

Now C has two components or sheets C_{+}and C_{-}given by $z>0$ and $z<0$ respectively. So K may be partitioned into four disjoint subsets $K_{p q}$, where $p= \pm 1$ according as $z>0$ or $z<0$ and $q= \pm 1$ according as $\theta^{\prime}>0$ or $\theta^{\prime}<0$, for any $f \in K_{p q}$.

The following proposition is easy to establish.
Proposition 3. $\gamma\left(K_{++} \cup K_{-+}\right) \subset K_{++}$, and $\gamma\left(K_{--} \cup K_{+-}\right) \subset K_{--}$.

We do not know whether either inclusion is strict.
The map γ cannot be an involution, even on, say K_{++}, as we now show.
Proposition 4. For all $f \in K$ and all $s \in \mathbb{R},\left\|f_{*}(s)\right\| \leq\|f(s)\|$ with equality iff $z^{\prime}(s)=0$.

Proof: Since $f_{*}(s)=f(s) \wedge t(s)$,

$$
\left\|f_{*}(s)\right\|=\|f(s)\|\|t(s)\| \sin \phi(s)=\|f(s)\| \sin \phi(s),
$$

where $\phi(s)$ is the angle between $t(s)$ and $f(s)$.
Proposition 4 shows that if $f \in K$ is such that z has a critical point at $s \in \mathbb{R}$, then with the obvious notation, $z_{*}(s)=z(s)$. If s is not a critical point of z, however, then $\left|z_{*}(s)\right|<|z(s)|$.

So if γ is a closed curve on C_{+}then the range of values of $z(s), s \in \mathbb{R}$, is a compact interval $[a, b]$, where $a<b$ except when γ is a 'circle of latitude'. For such γ, the range of $z(s)$ for the n-th iteration γ^{n} of γ, is $\left[a_{n}, b\right]$, where $a_{n+1}<a_{n}<a$, for sufficiently large n. We do not know whether $\alpha=\lim _{n \rightarrow \infty} a_{n}$ must be 0 or whether it can be positive.

ACKNOWLEDGEMENT - The first-named author gratefully acknowledges partial financial support from Academia das Ciências, Lisboa, and The Royal Society of London.

REFERENCES

[1] Little, J.A. - Nondegenerate homotopies of curves on the unit 2-sphere, J. Diff. Geometry, 4 (1970), 339-348.

F.J. Craveiro de Carvalho,

Departamento de Matemática, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, Apartado 3008, 3000 COIMBRA - PORTUGAL
and
S.A. Robertson,

