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ON THE SPECTRAL SET OF
A SOLVABLE LIE ALGEBRA OF OPERATORS *

Enrico Boasso

Abstract: If L is a complex solvable finite dimensional Lie Algebra of operators

acting on a Banach space E, and {xi}1≤i≤n is a Jordan–Hölder basis of L, we study the

relation between Sp(L,E) and
∏

Sp(xi), when L is a nilpotent or a solvable Lie algebra.

1 – Introduction

J.L. Taylor developed in [4] a notion of joint spectrum for a n-tuple

a = (a1, ..., an) of mutually commuting operators acting on a Banach space E,

i.e., ai ∈ L(E), the algebra of all bounded linear operators on E, and [ai, aj ] = 0,

1 ≤ i, j ≤ n. This interesting notion depends on the action of the ai on E and

extends in a natural way the classical definition of spectrum of a single opera-

tor. Taylor’s joint spectrum, which we denote by Sp(a,E), has many remarkable

properties, among then the projection property and the fact that Sp(a,E) is a

compact non empty subset of Cn. Another property, in which we are specially in-

terested, is a well known fact about Taylor’s joint spectrum, the relation between

Sp(a,E) and Sp(ai), 1 ≤ i ≤ n:

Sp(a,E) ⊆
n∏

i=1

Sp(ai) ,

where Sp(ai) denotes the spectral set of ai.

In [1] we developed a spectral theory for complex solvable finite dimensional

Lie algebras acting on a Banach space E. If L is such an algebra and Sp(L,E)
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denotes its spectrum, Sp(L,E) is a compact non empty subset of L∗ which

also satisfies the projection property for ideals, see [1]. Besides, when L is a

commutative algebra, Sp(L,E) reduces to Taylor joint spectrum in the follow-

ing sense. If dimL = n and if {ai}(1≤i≤n) is a basis of L, we consider the

n-tuple a = (a1, ..., an), then {(f(a1), ..., f(an)); f ∈ Sp(L,E)} = Sp(a,E);

i.e., Sp(L,E), in terms of the basis of L∗ dual of {ai}(1≤i≤n), coincides with the

Taylor joint spectrum of the n-tuple a. Then, the following question arises nat-

urally: if {xi}(1≤i≤n) is a basis of L, and if we consider, as above, Sp(L,E) in

terms of the basis of L∗ dual of {xi}(1≤i≤n), i.e., if we identify Sp(L,E) with its

coordinate expression {(f(x1), ..., f(xn)); f ∈ Sp(L,E)}, does Sp(L,E) satisfy

the relation:

{
(f(x1), ..., f(xn)); f ∈ Sp(L,E)

}
⊆

n∏

i=1

Sp(xi) .

The answer, even if {xi}(1≤i≤n) is a Jordan–Hölder basis of L, see Section 2,

in general is no.

In this paper we study this problem, i.e., the relation between Sp(L,E) and∏n
i=1 Sp(xi). Refining an idea of [1], we describe this relation by means of the

structure of L, in a way which generalizes the well known result of the commu-

tative case. Furthermore, when L is a nilpotent Lie algebra, in particular when

L is a commutative algebra, we reobtain the previous inclusion and, when L is a

solvable non nilpotent Lie algebra, we give an example in order to show that our

characterization can not be improved.

The paper is organized as follows. In Section 2 we review several definitions

and results of [1], and topics related to the theory of Lie algebras which we need

for our work. In Section 3 we prove our main theorems for solvable and nilpotent

Lie algebras. Finally, in Section 4 we give an example in order to show that our

characterization can not be improved.

2 – Preliminaries

We briefly recall several definitions and results related to the spectrum of

solvable Lie algebras of operators, see [1]. From now on, L denotes a complex

solvable finite dimensional Lie algebra, and E a Banach space on which L acts

as right continuous linear operators, i.e., L is a Lie subalgebra of L(E) with the

opposite product. If dim(L) = n and f is a character of L, i.e., f belongs to L∗

and f(L2) = 0, where L2 = {[x, y]; x, y ∈ L}, let us consider the following chain
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complex, (E⊗∧L, d(f)), where ∧L denotes the exterior algebra of L and dp−1(f)

is such that:

dp−1(f) : E ⊗ ∧
pL→ E ⊗ ∧p−1L ,

dp−1(f) e(x1 ∧ ... ∧ xp) =
p∑

k=1

(−1)k+1 e(xk − f(xk)) (x1 ∧ ... ∧ x̂k ∧ ... ∧ xp) +

+
∑

1≤k<l≤p

(−1)k+l e
(
[xk, xl] ∧ x1 ∧ ... ∧ x̂k ∧ ... ∧ x̂l ∧ ... ∧ xp

)
,

where ˆ means deletion, and e(x1 ∧ ... ∧ xp) denotes an element of E ⊗ ∧pL.

If p < 0 or p ≥ n, we also define dp(f) ≡ 0.

Let H∗(E ⊗ ∧L, d(f)) denote the homology of the complex (E ⊗ ∧L, d(f)).

We now state our first definition.

Definition 1. With L and f be as above, the set {f ∈ L∗, f(L2) = 0,

H∗(E ⊗∧L, d(f)) 6= 0} is the joint spectrum of L acting on E, and it is denoted

by Sp(L,E).

As we have said, in [1] we proved that Sp(L,E) is a compact non empty subset

of L∗, which reduces to Taylor joint spectrum, in the sense of the Introduction,

when L is a commutative algebra. Besides, if I is an ideal of L, and π denotes

the projection map from L∗ to I∗, then:

Sp(I, E) = π(Sp(L,E)) ,

i.e., the projection property for ideals still holds. With regard to this property,

I ought to mention the paper [3], of C. Ott, who pointed out a gap in the proof

of this result, and gave another proof of it. In any case, the projection property

remains true.

From now to the end of the paragraph, we recall several results which we need

for our main theorem. First, as in [1], we consider an n− 1 dimensional ideal, L′,

of L and we decompose E ⊗ ∧pL in the following way:

E ⊗ ∧pL = (E ⊗ ∧pL′)⊕ (E ⊗ ∧p−1L′) ∧ 〈x〉 ,

where x ∈ L and is such that L′ ⊕ 〈x〉 = L, and where 〈x〉 denotes the one

dimensional subspace of L generated by the vector x. If f̃ denotes the restriction

of f to L′, we may consider the complex (E ⊗ ∧pL′, d(f̃)) and, as L′ is an ideal

of codimension 1 of L, we may decompose the operator dp(f) as follows:

dp−1(f) : E ⊗ ∧
pL′ → E ⊗ ∧p−1L′ ,
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dp−1(f) = dp−1(f̃) ,(2)

dp−1(f) : (E ⊗ ∧
p−1L′) ∧ 〈x〉 → E ⊗ ∧p−1L′ ⊕ (E ⊗ ∧p−2L′) ∧ 〈x〉 ,

dp−1(f)(a ∧ (x)) = (−1)p+1 Lp−1(a) + (dp−2(f̃)(a)) ∧ (x) ,(3)

where a ∈ E⊗∧p−1L′, and Lp−1 is the bounded linear endomorphism defined on

E ⊗ ∧p−1L′ by:

(4) Lp−1 e(x1 ∧ ... ∧ xp−1) = e(x− f(x)) (x1 ∧ ... ∧ xp−1) +

+
∑

1≤k≤p−1

(−1)k e
(
[x, xk] ∧ x1 ∧ ... ∧ x̂k ∧ ... ∧ xp−1

)
,

where ˆ means deletion, and {xi}(1≤i≤p−1) belongs to L
′.

We use the map θ defined in [2,2]. We recall the main facts which we need

for our work. Let ad(x), x ∈ L, be the derivation of L defined by

ad(x)(y) = [x, y] , (y ∈ L) ,

then θ(x) is the derivation of ∧L which extends ad(x), and is defined by:

(5) θ(x)(x1 ∧ ... ∧ xp) =
p∑

i=1

(
x1 ∧ ... ∧ ad(x)(xi) ∧ ... ∧ xp

)
.

Observe that if we consider the map 1E ⊗ θ(x), which we still denote by θ(x),

then

(6)
Lp−1 e(x1 ∧ ... ∧ xp−1) = e(x− f(x)) (x1 ∧ ... ∧ xp−1)

− θ(x) e(x1 ∧ ... ∧ xp−1) .

Finally, as L is a complex solvable finite dimensional Lie algebra, it is well

known that there is a Jordan–Hölder sequence of ideals such that:

i) {0} = L0 ⊆ Li ⊆ Ln = L,

ii) dimLi = i,

iii) There is a k, 0 ≤ k ≤ n, such that Lk = L2 = [L,L].

As a consequence, if we consider a basis of L, {xj}(1≤j≤n), such that {xj}(1≤j≤i)
is a basis of Li, we have:

(7) [xj , xi] =
i∑

h=1

chij xh , (i < j) .

Such a basis is a Jordan–Hölder basis of L.
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In addition, if L is a nilpotent Lie algebra, we may add the condition:

iv) [L,Li] ⊆ Li−1.

Then, in terms of the previous basis, we have:

(8) [xj , xi] =
i−1∑

h=1

chij xh , (i < j) .

3 – The spectral set

First we give a definition which we need for our main theorems. We consider

for p such that 0 ≤ p ≤ n − 1, the set of p-tuples of [[1, n − 1]], Ip, defined as

follows. If p = 0,

I0 = {1} ,

and for p such that 1 ≤ p ≤ n− 1,

Ip =
{
(i1, ..., ip), 1 ≤ i1 < ... < ij < ... < ip ≤ n− 1

}
.

We observe that Ip has a natural order.

If α = (i1, ..., ip) and β = (j1, ..., jp) belong to Ip, let k = min{l, il 6= jl}, then

i) ij = jl, 1 ≤ l ≤ k − 1,

ii) ik 6= jk.

If ik < jk (resp. jk < ik) we put α < β (resp. β < α).

Now, if L, L′, x, and E are as in Section 2, let us consider a sequence

{xi}(1≤i≤n−1) of elements of L′. If α = (i1, ..., ip) belongs to Ip we denote

(xi1 ∧ ... ∧ xip) by (xα), then:

(xα) = (xi1 ∧ ... ∧ xip) ,

if p = 0 we denote (x0) by (1), then:

(x0) = (1) .

In addition, as L′ is an ideal of L, θ(x)(∧L′) ⊆ ∧L′; thus, we have a well

defined map which we still denote by θ(x):

θ(x) : E ⊗ ∧L′ → E ⊗ ∧L′ .
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Now, if (Li)(0≤i≤n) is a Jordan–Hölder sequence of L, and {xi}(1≤i≤n) is a

Jordan–Hölder basis of L associated to (Li)(0≤i≤n), we set L
′ = Ln−1 and x = xn.

In order to prove the following proposition we need to associate to each α ∈ Ip,

0 ≤ p ≤ n − 1, a number rα. If α belongs to Ip, α = (i1, ..., ip), and [xn, xik ] =∑ik
h=1 c

h
ikn

xh, we define for p such that 1 ≤ p ≤ n − 1, rα =
∑p

k=1 c
ik
ikn

, and if

p = 0, we define r1 = 0. Then a standard calculation shows that:

θ(x) e(xα) = X +
( p∑

k=1

cikikn

)
e(xα)

= X + rα e(xα) ,

where X belongs to
⊕

β<αE(xβ).

Besides, as xn acts on E, x̄n = xn ⊗ 1 − 1 ⊗ θ(xn) acts on E ⊗ ∧Ln−1 in

a natural way, where 1 denotes the identity map of the corresponding spaces.

Let us compute Sp(x̄n, E ⊗ ∧Ln−1), i.e. the spectrum of x̄n in E ⊗ ∧Ln−1.

If we decompose E ⊗ ∧Ln−1 by means of E(xα), α ∈ Ip, 0 ≤ p ≤ n − 1, we

have that E⊗∧Ln−1 =
⊕

(α∈Ip, 0≤p≤n−1) E(xα). Now, as θ(xn), acting on ∧Ln−1

has an upper triangular form with diagonal entries rα, x̄n, in the above de-

composition has an upper triangular form with diagonal entries xn − rα, thus,

Sp(x̄n, E ⊗ ∧Ln−1) = Sp(xn)− {rα, x ∈ Ip, 0 ≤ p ≤ n− 1}. Finally, we observe

that the spectrum of x̄n depends on the structure of L as Lie algebra, and that

in the commutative case, x̄n = xn ⊗ 1, and Sp(x̄n, E ⊗ ∧Ln−1) = Sp(xn).

The first step to our main theorem is Proposition 1.

Proposition 1. Let L be a complex solvable finite dimensional Lie algebra,

acting as right continuous linear operators on a Banach space E. Let (Li)(0≤i≤n)

be a Jordan–Hölder sequence of L, and {xi}(1≤i≤n) be a basis associated to this

sequence. Then, if f is a character of L such that

f(xn) /∈ Sp(x̄n, E ⊗ ∧Ln−1) ,

f does not belong to Sp(L,E).

Proof: First we decompose E ⊗ ∧pL as in Section 2:

E ⊗ ∧pL = (E ⊗ ∧pLn−1)⊕ (E ⊗ ∧p−1Ln−1) ∧ 〈xn〉 .

As Ln−1 is an ideal of L, ad(xn)(Ln−1) ⊆ Ln−1, and

θ(xn) (E ⊗ ∧
p−1Ln−1) ⊆ E ⊗ ∧p−1Ln−1 .
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Then, by (4) and (5)

Lp−1 = (xn − θ(xn))− f(xn) .

Moreover, if we decompose E ⊗ ∧p−1Ln−1 by means of E(xα), it is obvious

that:

E ⊗ ∧p−1Ln−1 =
⊕

α∈Ip−1

E(α) .

Then, by the previous considerations and the above formula, Lp−1 is an upper

triangular matrix with diagonal entries (xn − rα) − f(xn) associated to α =

(i1, ..., ip−1) ∈ Ip−1. Thus, if f satisfies the hypothesis, Lp is an invertible operator

for each p, 0 ≤ p ≤ n− 1.

We now construct a homotopy operator, (Sp)p∈Z, for the complex

(E⊗∧L, d(f)), in order to see that H∗(E⊗∧L, d(f)) = 0, which is equivalent to

f /∈ Sp(L,E).

Sp is a map from E ⊗ ∧pL to E ⊗ ∧p+1L, and we define it as follows:

Sp : E ⊗ ∧
pL → E ⊗ ∧p+1L ,

if p < 0 or p > n−1, we define Sp ≡ 0, if p is such that 0 ≤ p ≤ n−1, we consider

the decomposition of E ⊗ ∧pL set at the beginning of the proof, and we pose:

(9) Sp
(
E ⊗ ∧p−1Ln−1 ∧ 〈x〉

)
= 0 ,

and Sp restricted to E ⊗ ∧pLn−1 satisfies:

Sp(E ⊗ ∧
pLn−1) ⊆ E ⊗ ∧pLn−1 ∧ 〈xn〉 ,

Sp = (−1)p L−1
p ∧ (xn) .(10)

In order to verify that Sp is a homotopy operator we prove the following

formula:

(11) Sp dp Lp+1 = (−1)p dp ∧ (xn) .

By (2) and (3), we have

dp Lp+1 = dp
(
(dp+1 − dp ∧ (xn))

)
(−1)p+3

= (−1)p dp(dp ∧ (xn))

= (−1)p (−1)p+2 Lp dp

= Lp dp .
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Then,

dp Lp+1 = Lp dp .

Thus,

Sp dp Lp+1 = Sp Lp dp = (−1)p dp ∧ (xn) .

Now, by means of formulas (9), (10), (11), an easy calculation shows that

dp Sp + Sp−1 dp−1 = I ,

for p ∈ Z, i.e., (Sp)p∈Z is a homotopy operator.

In order to state our main theorems we consider the basis {xi}(1≤i≤n) of (7),

and we apply the definition of the beginning of the paragraph to Lj , the ideal

generated by {xi}(1≤i≤j), 1 ≤ j ≤ n. We denote by Ijp , 0 ≤ p ≤ j − 1, 1 ≤ j ≤ n,

the set of p-tuples associated to Lj and the ideal Lj−1, and if α belongs to Ijp we

denote by rjα the complex number associated to α. In addition, we observe that

in Theorem 1 and 2 below, we consider the set Sp(L,E) in terms of the basis of

L∗ dual of {xi}(1≤i≤n), i.e., we identify Sp(L,E) with its coordinate expression

in the mentioned basis: {f(x1), ..., f(xn); f ∈ Sp(L,E)}.

Now we state our main theorem.

Theorem 1. Let L be a complex solvable finite dimensional Lie algebra,

acting as right continuous linear operators on a Banach space E. Let (Li)(0≤i≤n)

be a Jordan–Hölder sequence of L, and {xi}(1≤i≤n) be a basis associated to this

sequence. Then, in terms of the basis of L∗ dual of {xi}(1≤i≤n), we have:

Sp(L,E) ⊆
∏

1≤j≤n

Sp(x̄j , E ⊗ ∧Lj−1) .

Proof: By means of an induction argument, the proof is a consequence of

Proposition 1 and Theorem 3 of [1].

In the case of a nilpotent Lie algebra, Theorem 2 extends directly the com-

mutative case.

Theorem 2. Let L be a complex nilpotent finite dimensional Lie algebra,

acting as right continuous linear operators on a Banach space E. Let (Li)(0≤i≤n)

be a Jordan–Hölder sequence of L and {xi}(1≤i≤n) be a basis associated to this

sequence. Then in terms of the basis of L∗ dual of {xi}(1≤i≤n), we have:

Sp(L,E) ⊆
n∏

i=1

Sp(xi) .
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In particular,

Sp(L,E) ⊆
{
f ∈ L∗, f(L2) = 0/ ‖f(x)‖ ≤ ‖x‖L(E), ∀x ∈ L

}
.

Proof: As L is a nilpotent Lie algebra we may consider a Jordan–Hölder

sequence of L, (Lj)(0≤j≤n), such that [L,Lj ] ⊆ Lj−1. Then for each α ∈ Ijp ,

1 ≤ j ≤ n, 0 ≤ p ≤ j − 1, we have:

rjα = 0 ,

which implies that Sp(xi) = Sp(x̄i, E ⊗ ∧Li−1). Thus, by means of Theorem 1

we conclude the proof.

4 – An example

We give an example in order to see that our Theorem 1 can not be, in general

improved. We consider the solvable Lie algebra G2 on two generators,

G2 = 〈y〉 ⊕ 〈x〉 ,

with relations [x, y] = y. Then, by Theorem 1:

Sp(G2, E) ⊆ Sp(y)×
(
Sp(x) ∪ Sp(x)− 1

)
.

Now, if E = C2, and y and x are the following matrices

y =

(
1 1
−1 −1

)
, x =

(
0 1/2

1/2 0

)
,

then, L = 〈y〉 ⊕ 〈x〉 defines a Lie subalgebra of L(C2) isomorphic to G2, and an

easy calculation shows that:

Sp(G2,C2) = {0} × {1/2,−3/2} .

However, as Sp(x) = {1/2, −1/2}, and Sp(y) = 0, Theorem 1 cannot be, in

general, improved.
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