ON DECOMPOSABLY REGULAR OPERATORS

Christoph Schmoeger

Abstract

Let X be a complex Banach space and $\mathcal{L}(X)$ the algebra of all bounded linear operators on $X . T \in \mathcal{L}(X)$ is said to be decomposably regular provided there is an operator S such that S is invertible in $\mathcal{L}(X)$ and $T S T=T$. For each $T \in \mathcal{L}(X)$ we introduce the following subset $\rho_{g r}(T)$ of the resolvent set of $T: \mu \in \rho_{g r}(T)$ if and only if there is a neighbourhood U of μ and a holomorphic function $F: U \rightarrow \mathcal{L}(X)$ such that $F(\lambda)$ is invertible for all $\lambda \in U$ and $(T-\lambda) F(\lambda)(T-\lambda)=T-\lambda$ on U. In this note we determine the interior points of the class of decomposably regular operators and we prove a spectral mapping theorem for $\mathbb{C} \backslash \rho_{g r}(T)$.

1 - Terminology

X always denotes an infinite-dimensional complex Banach space, and the Banach algebra of all bounded linear operators on X is denoted by $\mathcal{L}(X)$.

If $T \in \mathcal{L}(X)$ we denote by $N(T)$ the kernel of T and by $\alpha(T)$ the dimension of $N(T) . T(X)$ denotes the range of T, and we define $\beta(T)=\operatorname{codim} T(X)$ $(=\operatorname{dim} X / T(X))$. We write $\sigma(T)$ for the spectrum of T and $\rho(T)$ for the resolvent set $\mathbb{C} \backslash \sigma(T)$.

The maximal group of invertible elements in $\mathcal{L}(X)$ is denoted by $\mathcal{G}(X)$. Let $\mathcal{R}(X)$ denote the set of all relatively regular operators in $\mathcal{L}(X)$, that is, operators T such that $T S T=T$ for some $S \in \mathcal{L}(X)$. Observe that $T \in \mathcal{R}(X)$ if and only if T has complemented kernel and range ([1], p. 10). $T \in \mathcal{L}(X)$ is called decomposably regular if $T=T S T$ for some $S \in \mathcal{G}(X)$. Let us write $\mathcal{G} \mathcal{R}(X)$ for the class of all decomposably regular operators. In [8] decomposably regular operators are called unit regular. For a subset \mathcal{M} of $\mathcal{L}(X)$ let $\operatorname{cl} \mathcal{M}$ and $\operatorname{int} \mathcal{M}$ denote, respectively, the closure and the interior of \mathcal{M}.

[^0]
Proposition 1.1.

(1) $\mathcal{G} \mathcal{R}(X)=\mathcal{R}(X) \cap \operatorname{cl} \mathcal{G}(X)$.
(2) $T \in \mathcal{G} \mathcal{R}(X) \Leftrightarrow T \in \mathcal{R}(X), N(T)$ and $X / T(X)$ are isomorphic.

Proof: (1) [2], Theorem 1.1. (2) [3], Theorem 3.8.6.
If X is a separable Hilbert space, then part (2) of the above proposition shows that $T \in \mathcal{G \mathcal { R }}(X)$ if and only if $T(X)$ is closed and $\alpha(T)=\beta(T) . T \in \mathcal{L}(X)$ is said to be an Atkinson operator if $T \in \mathcal{R}(X)$ and at least one of $\alpha(T), \beta(T)$ is finite. $\mathcal{A}(X)$ denotes the set of Atkinson operators. For $T \in \mathcal{A}(X)$ we define the index of T by $\operatorname{ind}(T)=\alpha(T)-\beta(T)$.

We call $T \in \mathcal{L}(X)$ Fredholm operator if $\alpha(T)$ and $\beta(T)$ are both finite. Observe that a Fredholm operator is relatively regular ([6], Satz 74.4). For $n \in \mathbb{Z}$ let $\mathcal{F}_{n}(X)=\{T \in \mathcal{L}(X): T$ is Fredholm and $\operatorname{ind}(T)=n\}$. Denote by $\mathcal{F}(X)$ the set of all Fredholm operators, thus $\mathcal{F}(X)=\bigcup_{n \in \mathbb{Z}} \mathcal{F}_{n}(X)$.

It is well known that $\mathcal{A}(X), \mathcal{F}(X)$ and $\mathcal{F}_{n}(X)$ are open subsets of $\mathcal{L}(X)([6]$, Satz 82.4).

Proposition 1.2. int $\mathcal{R}(X)=\mathcal{A}(X)=\{T \in \mathcal{L}(X): T+K \in \mathcal{R}(X)$ for all compact operators K \}.

Proof: [14], Theorem 6.

Remarks.

(1) We call $T \in \mathcal{L}(X)$ a semi-Fredholm operator if $T(X)$ is closed and at least one of $\alpha(T), \beta(T)$ is finite. We have shown in [14] that

$$
\begin{aligned}
& \operatorname{int}\{T \in \mathcal{L}(X): T(X) \text { is closed }\}=\{T \in \mathcal{L}(X): T \text { is semi-Fredholm }\}= \\
&=\{T \in \mathcal{L}(X): T+K \text { has closed range for each compact } K\}
\end{aligned}
$$

(2) If X is a Hilbert space then $\mathcal{A}(X)=\{T \in \mathcal{L}(X): T$ is semi-Fredholm $\}$. In this case M. Mbekhta ([9], Théorème 2.2) has shown that int $\mathcal{R}(X)=\mathcal{A}(X)$.
(3) If X is a Hilbert space and $T \in \operatorname{int} \mathcal{R}(X)$ then there is $\delta>0$ and a meromorphic function $F:\{\lambda \in \mathbb{C}:|\lambda|<\delta\} \rightarrow \mathcal{L}(X)$ such that

$$
(T-\lambda) F(\lambda)(T-\lambda)=T-\lambda \quad \text { for } \quad|\lambda|<\delta
$$

(see [9], Corollaire 2.3).

2 - Interior points of some classes of relatively regular operators

Proposition 1.1 (2) shows that we have for a Fredholm operator $T: T \in$ $\mathcal{G} \mathcal{R}(X) \Leftrightarrow T \in \mathcal{F}_{0}(X)$. We can be more precise:

Theorem 2.1. int $\mathcal{G} \mathcal{R}(X)=\mathcal{F}_{0}(X)$.
Proof: Since $\mathcal{F}_{0}(X)$ is open and $\mathcal{F}_{0}(X) \subseteq \mathcal{G} \mathcal{R}(X)$, we only have to show that int $\mathcal{G R}(X) \subseteq \mathcal{F}_{0}(X)$.

Let $T \in \operatorname{int} \mathcal{G} \mathcal{R}(X)$, then $T \in \operatorname{int} \mathcal{R}(X)$, thus $T \in \mathcal{A}(X)$ by Proposition 1.2. We have $T \in \operatorname{cl} \mathcal{G}(X)$ (Proposition 1.1(1)), thus there is a sequence $\left(T_{n}\right)$ in $\mathcal{G}(X)$ such that $\left\|T-T_{n}\right\| \rightarrow 0(n \rightarrow \infty)$. Since $T \in \mathcal{A}(X)$ and $\mathcal{A}(X)$ is open, the stability of the index ([6], Satz 82.4) shows

$$
\operatorname{ind}(T)=\operatorname{ind}\left(T_{n}\right) \text { for } n \text { sufficiently large. }
$$

Thus $\operatorname{ind}(T)=0$. This gives $T \in \mathcal{F}_{0}$.
Let us consider some further classes of relatively regular operators: For $n \in \mathbb{Z}$ let

$$
\mathcal{F}_{n} \mathcal{R}(X)=\left\{T \in \mathcal{L}(X): T S T=T \text { for some } S \in \mathcal{F}_{n}(X)\right\} .
$$

Define $\mathcal{F} \mathcal{R}(X)=\bigcup_{n \in \mathbb{Z}} \mathcal{F}_{n} \mathcal{R}(X)$. Thus we have

$$
\mathcal{F} \mathcal{R}(X)=\{T \in \mathcal{L}(X): T S T=T \text { for some } S \in \mathcal{F}(X)\} .
$$

It is shown in [10], Theorem 3, that

$$
\mathcal{F} \mathcal{R}(X)=\mathcal{R}(X) \cap \operatorname{cl} \mathcal{F}(X) .
$$

Theorem 2.2.

(1) int $\mathcal{F}_{n} \mathcal{R}(X)=\mathcal{F}_{-n}(X)$.
(2) int $\mathcal{F R}(X)=\mathcal{F}(X)$.

Proof: (1) Take $T \in \mathcal{F}_{-n}(X)$, then T is relatively regular, hence $T=T S T$ for some $S \in \mathcal{L}(X)$. [3], Theorem 6.5.5, gives $S \in \mathcal{F}(X)$ and $\operatorname{ind}(S)=-\operatorname{ind}(T)=n$, therefore $T \in \mathcal{F}_{n} \mathcal{R}(X)$. Thus we have $\mathcal{F}_{-n}(X) \subseteq \mathcal{F}_{n} \mathcal{R}(X)$. Since $\mathcal{F}_{-n}(X)$ is open, we get $\mathcal{F}_{-n}(X) \subseteq \operatorname{int} \mathcal{F}_{n} \mathcal{R}(X)$.

Let $T \in \operatorname{int} \mathcal{F}_{n} \mathcal{R}(X)$, thus $T \in \operatorname{int} \mathcal{R}(X)=\mathcal{A}(X)$ and $T \in \mathcal{F} \mathcal{R}(X) \subseteq \operatorname{cl} \mathcal{F}(X)$. There is a sequence $\left(T_{n}\right)$ in $\mathcal{F}(X)$ such that $\left\|T-T_{n}\right\| \rightarrow 0(n \rightarrow \infty)$. Since $T \in \mathcal{A}(X)$ and $\mathcal{A}(X)$ is open, the stability of the index shows that

$$
\operatorname{ind}(T)=\operatorname{ind}\left(T_{n}\right) \text { for } n \text { sufficiently large } .
$$

Thus $\operatorname{ind}(T)$ is finite, hence $T \in \mathcal{F}(X)$. Since $T \in \mathcal{F}_{n} \mathcal{R}(X), T=T S T$ for some $S \in \mathcal{F}_{n}(X)$. As above, we see that $\operatorname{ind} T=-\operatorname{ind}(S)=-n$. This gives $T \in \mathcal{F}_{-n}(X)$.
(2) Similar.

3 - A spectral mapping theorem

In [11] and [13] we introduced the following concepts for $T \in \mathcal{L}(X)$:

$$
\begin{aligned}
\rho_{K}(T)= & \left\{\lambda \in \mathbb{C}:(T-\lambda)(X) \text { is closed, } N(T-\lambda) \subseteq \bigcap_{n=1}^{\infty}(T-\lambda)^{n}(X)\right\}, \\
\rho_{r r}(T)= & \left\{\lambda \in \rho_{K}(T): T-\lambda \in \mathcal{R}(X)\right\}, \\
& \sigma_{K}(T)=\mathbb{C} \backslash \rho_{K}(T) \quad \text { and } \quad \sigma_{r r}(T)=\mathbb{C} \backslash \rho_{r r}(T) .
\end{aligned}
$$

Write $\mathcal{H}(T)$ for the set of all complex valued functions which are analytic in some neighbourhood of $\sigma(T)$. For $f \in \mathcal{H}(T)$ let the operator $f(T) \in \mathcal{L}(X)$ be defined by the well-known analytic calculus (see [6], §99).

The following proposition lists some properties of the above defined 'essential spectra' of $T \in \mathcal{L}(X)$.

Proposition 3.1.

(1) $\partial \sigma(T) \subseteq \sigma_{K}(T) \subseteq \sigma_{r r}(T) \subseteq \sigma(T)$.
(2) $\mu \in \rho_{r r}(T) \Leftrightarrow$ there is a neighbourhood $U(\mu)$ of μ and a holomorphic function $F: U(\mu) \rightarrow \mathcal{L}(X)$ such that

$$
(T-\lambda) F(\lambda)(T-\lambda)=T-\lambda \quad \text { for all } \lambda \in U(\mu) .
$$

(3) $\rho_{r r}(T)$ and $\rho_{K}(T)$ are open.
(4) $f\left(\sigma_{K}(T)\right)=\sigma_{K}(f(T)), f\left(\sigma_{r r}(T)\right)=\sigma_{r r}(f(T))$ for all $f \in \mathcal{H}(T)$.

Proof: (1) The first inclusion is shown in [11], Satz 2. The other inclusions are clear.
(2) is shown in [12], Theorem 1.4 (in a more general context).
(3) By $(2), \rho_{r r}(T)$ is open. $\rho_{K}(T)$ is open by [7], Theorem 3.
(4) See [11] and [13].

Remark. Some of the arguments for Proposition 3.1 are also given in [4], Theorems 9.10 and in [5].

Definition 3.2. For $T \in \mathcal{L}(X)$ we define the set $\rho_{g r}(T) \subset \mathbb{C}$ by: $\mu \in \rho_{g r}(T)$ if and only if there is a neighbourhood $U(\mu)$ of μ and a holomorphic function $F: U(\mu) \rightarrow \mathcal{L}(X)$ such that

$$
\begin{aligned}
& F(\lambda) \in \mathcal{G}(X) \text { and }(T-\lambda) F(\lambda)(T-\lambda)=T-\lambda \quad \text { for all } \lambda \in U(\mu) . \\
& \quad \sigma_{g r}(T):=\mathbb{C} \backslash \rho_{g r}(T) .
\end{aligned}
$$

An operator $T \in \mathcal{L}(X)$ for which $0 \in \rho_{g r}(T)$ is called holomorphically decomposably regular. The following condition is equivalent to holomorphic decomposable regularity for $T \in \mathcal{L}(X)$ (cf. [4], Theorem 9):

There are $R \in \mathcal{G}(X)$ and sequences $\left(S_{n}\right),\left(T_{n}\right)$ in $\mathcal{G}(X)$ for which $\left\|S_{n}\right\|+\left\|T_{n}-R\right\| \rightarrow 0(n \rightarrow \infty), S_{n} T=T S_{n}$ and $\left(T-S_{n}\right) T_{n}\left(T-S_{n}\right)=T-S_{n}$.

Proposition 3.3. Let $T \in \mathcal{L}(X)$.
(1) $\mu \in \rho_{g r}(T) \Leftrightarrow \mu \in \rho_{K}(T)$ and $T-\mu \in \mathcal{G R}(X)$.
(2) $\rho_{g r}(T) \subseteq \rho_{r r}(T) \subseteq \rho_{K}(T), \sigma_{K}(T) \subseteq \sigma_{r r}(T) \subseteq \sigma_{g r}(T)$.

Proof: (1) " \Rightarrow ": Use Definition 3.2 and Proposition 3.1 (2).
" \Leftarrow ": Without loss of generality let us assume that $\mu=0$. Take $S \in \mathcal{G}(X)$ such that $T S T=T$ and define the function F by $F(\lambda)=(I-\lambda S)^{-1} S$ for $|\lambda|<\|S\|^{-1}$. Then we have $F(\lambda) \in \mathcal{G}(X)$ for $|\lambda|<\|S\|^{-1}$. [12], Corollary 1.5, shows that

$$
(T-\lambda) F(\lambda)(T-\lambda)=T-\lambda \quad \text { for } \quad|\lambda|<\|S\|^{-1} .
$$

(2) Clear.

The following example shows that in general $f\left(\sigma_{g r}(T)\right) \nsubseteq \sigma_{g r}(f(T))$ ($f \in \mathcal{H}(T)$).

Example 3.4: Let $T \in \mathcal{L}(X), k, m \in\{1,2,3, \ldots\}$ and $\xi, \eta \in \mathbb{C}$ such that $T-\xi \in \mathcal{F}_{k}(X)$ and $T-\eta \in \mathcal{F}_{-m}(X)$. We shall construct operators $T-\lambda_{0}$ and $T-\mu_{0}$, each Fredholm of positive and negative index, respectively, which also satisfy $\lambda_{0}, \mu_{0} \in \rho_{K}(T)$.

The punctured neighbourhood theorem (see [7]) shows that there exists $\delta>0$ such that

$$
T-\lambda \in \mathcal{F}_{k}(X), \quad \alpha(T-\lambda) \text { is a constant for } 0<|\lambda-\xi|<\delta
$$

and

$$
T-\mu \in \mathcal{F}_{-m}(X), \quad \alpha(T-\mu) \text { is a constant for } 0<|\mu-\eta|<\delta
$$

Fix λ_{0} and μ_{0} with $0<\left|\lambda_{0}-\xi\right|<\delta$ and $0<\left|\mu_{0}-\eta\right|<\delta$. By [7], Theorem 3 and Theorem 5, we have

$$
\lambda_{0}, \mu_{0} \in \rho_{K}(T)
$$

Define the function f by $f(\lambda)=\left(\lambda-\lambda_{0}\right)^{m}\left(\lambda-\mu_{0}\right)^{k}$. This gives $f(T)=$ $\left(T-\lambda_{0}\right)^{m}\left(T-\mu_{0}\right)^{k} \in \mathcal{F}(X)$, and the index theorem ([6], Satz 71.3) shows that

$$
\operatorname{ind}(f(T))=m \operatorname{ind}\left(T-\lambda_{0}\right)+k \operatorname{ind}\left(T-\mu_{0}\right)=m k+k(-m)=0
$$

thus $f(T) \in \mathcal{G} \mathcal{R}(X)$. The spectral mapping theorem for $\sigma_{K}(T)$ (Proposition 3.1 (4)) gives $0 \in \rho_{K}(f(T))$, since $\lambda_{0}, \mu_{0} \in \rho_{K}(T)$. Therefore $0 \in \rho_{g r}(f(T))$ by Proposition 3.3 (1). We have $\lambda_{0} \in \sigma_{g r}(T)$, since $\operatorname{ind}\left(T-\lambda_{0}\right) \neq 0$, hence $0=$ $f\left(\lambda_{0}\right) \in f\left(\sigma_{g r}(T)\right)$.

Example 3.4 also shows the failure of the analogue of part of Theorem 10 of [4]: There are $S, T \in \mathcal{L}(X)$ for which
$S T=T S$ is holomorphically decomposably regular but neither S nor T are.

Proposition 3.5. Suppose
(a) $T \in \mathcal{L}(X)$ and $g \in \mathcal{H}(T)$ has only a finite number of zeros in $\sigma(T)$,
(b) μ_{1}, \ldots, μ_{m} are the zeros of g in $\sigma(T)$ with respective orders n_{1}, \ldots, n_{m} $\left(\mu_{i} \neq \mu_{j}\right.$ for $\left.i \neq j\right)$,
(c) $\left(T-\mu_{j}\right)^{n_{j}} \in \mathcal{G} \mathcal{R}(X)$ for $j=1, \ldots, m$.

Then $g(T) \in \mathcal{G} \mathcal{R}(X)$.
Proof: [6], Satz 80.1, asserts that

$$
\begin{align*}
N\left(\prod_{j=1}^{k}\left(T-\mu_{j}\right)^{n_{j}}\right) & =N\left(\left(T-\mu_{1}\right)^{n_{1}}\right) \oplus \ldots \oplus N\left(\left(T-\mu_{k}\right)^{n_{k}}\right) \tag{1}\\
& \subseteq\left(T-\mu_{k+1}\right)^{n_{k+1}}(X)
\end{align*}
$$

for $k=1, \ldots, m-1$. There are $C_{1}, \ldots, C_{m} \in \mathcal{G}(X)$ such that

$$
\left(T-\mu_{j}\right)^{n_{j}} C_{j}\left(T-\mu_{j}\right)^{n_{j}}=\left(T-\mu_{j}\right)^{n_{j}} \quad(j=1, \ldots, m) .
$$

Put $C=C_{m} C_{m-1} \cdots C_{1}$ and $R=\prod_{j=1}^{m}\left(T-\mu_{j}\right)^{n_{j}}$. Hence $C \in \mathcal{G}(X)$. By (1) and [14], Lemma 5, we get

$$
R C R=R .
$$

There is a function $h \in \mathcal{H}(T)$ with $h(\lambda) \neq 0$ for all $\lambda \in \sigma(T)$ and $g(\lambda)=$ $\left(\prod_{j=1}^{m}\left(\lambda-\mu_{j}\right)^{n_{j}}\right) h(\lambda)$. This gives $g(T)=R h(T)$ and $h(T) \in \mathcal{G}(X)$. Put $D=$ $C h(T)^{-1}$, then we derive $D \in \mathcal{G}(X)$ and

$$
\begin{aligned}
g(T) D g(T) & =h(T) R C h(T)^{-1} h(T) R \\
& =h(T) R C R=h(T) R=g(T) .
\end{aligned}
$$

Hence $g(T) \in \mathcal{G} \mathcal{R}(X)$.
Proposition 3.5 can also be deduced from the analogue of the other half of Theorem 10 of [4]: If (cf. Lemma 3 of [4])

$$
\begin{gathered}
S, T \in \mathcal{L}(X), \quad S T=T S \quad \text { and either } \quad S=T^{n} \text { for some } n \text { or } \\
S^{\prime} S+T T^{\prime}=I \quad \text { for some } S^{\prime}, T^{\prime} \in \mathcal{L}(X)
\end{gathered}
$$

then
S, T holomorphically decomposably regular \Rightarrow
ST holomorphically decomposably regular.

Theorem 3.6. If $T \in \mathcal{L}(X)$ and $f \in \mathcal{H}(T)$ then

$$
\sigma_{g r}(f(T)) \subseteq f\left(\sigma_{g r}(T)\right)
$$

Proof: We have to show that $\mathbb{C} \backslash f\left(\sigma_{g r}(T)\right) \subseteq \rho_{g r}(f(T))$. To this end take $\lambda_{0} \notin f\left(\sigma_{g r}(T)\right)$ and put $g(\lambda)=f(\lambda)-\lambda_{0}$. This gives

$$
\begin{equation*}
0 \notin g\left(\sigma_{g r}(T)\right) \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
0 \notin g\left(\sigma_{K}(T)\right)=\sigma_{K}(g(T)) . \tag{3}
\end{equation*}
$$

Case 1: g has no zeros in $\sigma(T)$. Then $g(T)=f(T)-\lambda_{0} \in \mathcal{G}(X)$, thus $\lambda_{0} \in \rho(f(T)) \subseteq \rho_{g r}(f(T))$.

Case 2: g has zeros in $\sigma(T)$. (3) shows that g does not vanish in $\sigma_{K}(T)$. [11], Satz 3, asserts now that g has only a finite number of zeros in $\sigma(T)$. Let μ_{1}, \ldots, μ_{m} be these zeros $\left(\mu_{i} \neq \mu_{j}\right.$ for $\left.i \neq j\right)$ and n_{1}, \ldots, n_{m} their respective orders. By (2), $\mu_{1}, \ldots, \mu_{m} \in \rho_{g r}(T)$, thus for each $T-\mu_{j}$ there is an operator $S_{j} \in \mathcal{G}(X)$ with $\left(T-\mu_{j}\right) S_{j}\left(T-\mu_{j}\right)=T-\mu_{j}$. [13], Proposition 2, gives now

$$
\left(T-\mu_{j}\right)^{n_{j}} S_{j}^{n_{j}}\left(T-\mu_{j}\right)^{n_{j}}=\left(T-\mu_{j}\right)^{n_{j}} \quad(j=1, \ldots, m)
$$

Since each $S_{j}^{n_{j}}$ is invertible, it follows that

$$
\left(T-\mu_{j}\right)^{n_{j}} \in \mathcal{G} \mathcal{R}(X) \quad \text { for } \quad j=1, \ldots, m
$$

Now use Proposition 3.5 to derive $g(T) \in \mathcal{G} \mathcal{R}(X)$. (3) gives $0 \in \rho_{K}(g(T))$, thus $0 \in \rho_{g r}(g(T))$ and therefore $\lambda_{0} \in \rho_{g r}(f(T))$.

If the function $f \in \mathcal{H}(T)$ is injective, we can say more:
Theorem 3.7. If $T \in \mathcal{L}(X)$ and if $f \in \mathcal{H}(T)$ is injective, then

$$
\sigma_{g r}(f(T))=f\left(\sigma_{g r}(T)\right)
$$

Proof: We only have to show the inclusion " \supseteq ". Let $\lambda_{0} \in f\left(\sigma_{g r}(T)\right)$, thus $\lambda_{0}=f\left(\mu_{0}\right)$ for some $\mu_{0} \in \sigma_{g r}(T)$. Put $g(\lambda)=f(\lambda)-\lambda_{0}$ and

$$
h(\lambda)= \begin{cases}\frac{g(\lambda)}{\lambda-\mu_{0}}, & \lambda \neq \mu_{0} \\ f^{\prime}\left(\mu_{0}\right), & \lambda=\mu_{0}\end{cases}
$$

Since $f^{\prime}\left(\mu_{0}\right) \neq 0$, we have $h(\lambda) \neq 0$ for all $\lambda \in \sigma(T)$ and $g(\lambda)=\left(\lambda-\mu_{0}\right) h(\lambda)$. This gives $g(T)=\left(T-\mu_{0}\right) h(T)$ and $h(T) \in \mathcal{G}(X)$.

Let us assume, to the contrary, that $\lambda_{0} \in \rho_{g r}(f(T))$. Therefore $0 \in \rho_{g r}(g(T))$, hence there is an operator S in $\mathcal{G}(X)$ with $g(T) S g(T)=g(T)$. Thus

$$
\left(T-\mu_{0}\right) h(T) S h(T)\left(T-\mu_{0}\right)=\left(T-\mu_{0}\right) h(T)
$$

It follows that

$$
\left(T-\mu_{0}\right)(h(T) S)\left(T-\mu_{0}\right)=T-\mu_{0}
$$

since $h(T)$ is invertible. Hence $T-\mu_{0} \in \mathcal{G} \mathcal{R}(X)$. Furthermore, $\lambda_{0} \in \rho_{g r}(f(T))$ gives $\lambda_{0} \in \rho_{K}(f(T))$. The spectral mapping theorem for $\sigma_{K}(T)$ implies that $\mu_{0} \in \rho_{K}(T)$. Therefore we have $\mu_{0} \in \rho_{g r}(T)$, a contradiction.

We close this paper with a proposition concerning operators in $\mathcal{F} \mathcal{R}(X)$.

Proposition 3.8. Let $T \in \mathcal{L}(X)$ and $g \in \mathcal{H}(T)$ satisfy the hypotheses (a) and (b) of Proposition 3.5. If

$$
\left(T-\mu_{j}\right)^{n_{j}} \in \mathcal{F} \mathcal{R}(X) \quad \text { for } j=1, \ldots, m,
$$

then $g(T) \in \mathcal{F} \mathcal{R}(X)$. To be more precise, if $\left(T-\mu_{j}\right)^{n_{j}} \in \mathcal{F}_{k_{j}} \mathcal{R}(X)$ and $k=$ $k_{1}+\ldots+k_{m}$, then $g(T) \in \mathcal{F}_{k} \mathcal{R}(X)$.

Proof: With the notation in the proof of Proposition 3.5, there are operators C_{1}, \ldots, C_{m} with $C_{j} \in \mathcal{F}_{k_{j}}(X)$, thus $D=C_{m} C_{m-1} \cdots C_{1} h(T)^{-1} \in \mathcal{F}(X)$ and, by the index theorem,

$$
\operatorname{ind}(D)=k_{m}+\ldots+k_{1}+\underbrace{\operatorname{ind}\left(h(T)^{-1}\right)}_{=0}=k
$$

ACKNOWLEDGEMENT - The author thanks the referee, whose suggestions led to an improvement of the paper.

REFERENCES

[1] Caradus, S.R. - Generalized Inverses and Operator Theory, Queen's papers in Pure and Applied Math. No.50, 1978.
[2] Harte, R. - Regular boundary elements, Proc. Amer. Math. Soc., 99 (1987), 328-330.
[3] Harte, R. - Invertibility and singularity for bounded linear operators, Dekker, 1987.
[4] Harte, R. - Taylor exactness and Kato's jump, Proc. Amer. Math. Soc., 119 (1993), 793-801.
[5] Harte, R. - On Kato nonsingularity, Studia Math., 117 (1996), 107-114.
[6] Heuser, H. - Funktionalanalysis, 2nd ed., Teubner, 1986.
[7] Kato, T. - Perturbation theory for nullity, deficiency and other quantities of linear operators, J. Anal. Math., 6 (1958), 261-322.
[8] Krishnan, E. and Nambooripad, K.S.S. - The semigroup of Fredholm operators, Forum Math., 5 (1993), 313-368.
[9] Mbeкhta, M. - Sur la structure des composantes connexes semi-Fredholm de $B(H)$, Proc. Amer. Math. Soc., 116 (1992), 521-524.
[10] Rakočević, V. - A note on regular elements in Calkin algebras, Collect. Math., 43 (1992), 37-42.
[11] Schmoeger, Ch. - Ein Spektralabbildungssatz, Arch. Math., 55 (1990), 484-489.
[12] Schmoeger, Ch. - The punctured neighbourhood theorem in Banach algebras, Proc. R. Ir. Academy, 91A (1991), 205-218.
[13] Schmoeger, Ch. - Relatively regular operators and a spectral mapping theorem, J. Math. Anal. Appl., 175 (1993), 315-320.
[14] Schmoeger, Ch. - On operators of Saphar type, Portugaliae Math., 51 (1994), 617-628.

Christoph Schmoeger,
Mathematisches Institut I, Universität Karlsruhe,
D-76128 Karlsruhe - GERMANY

[^0]: Received: April 21, 1995; Revised: June 29, 1996.
 AMS Classification: 47A10, 47A53.
 Keywords and Phrases: Decomposably regular operators, Fredholm operators.

