PORTUGALIAE MATHEMATICA Vol. 54 Fasc. 1 – 1997

ON DECOMPOSABLY REGULAR OPERATORS

Christoph Schmoeger

Abstract: Let X be a complex Banach space and $\mathcal{L}(X)$ the algebra of all bounded linear operators on X. $T \in \mathcal{L}(X)$ is said to be decomposably regular provided there is an operator S such that S is invertible in $\mathcal{L}(X)$ and TST = T. For each $T \in \mathcal{L}(X)$ we introduce the following subset $\rho_{gr}(T)$ of the resolvent set of $T: \mu \in \rho_{gr}(T)$ if and only if there is a neighbourhood U of μ and a holomorphic function $F: U \to \mathcal{L}(X)$ such that $F(\lambda)$ is invertible for all $\lambda \in U$ and $(T - \lambda) F(\lambda) (T - \lambda) = T - \lambda$ on U. In this note we determine the interior points of the class of decomposably regular operators and we prove a spectral mapping theorem for $\mathbb{C} \setminus \rho_{gr}(T)$.

1 – Terminology

X always denotes an infinite-dimensional complex Banach space, and the Banach algebra of all bounded linear operators on X is denoted by $\mathcal{L}(X)$.

If $T \in \mathcal{L}(X)$ we denote by N(T) the kernel of T and by $\alpha(T)$ the dimension of N(T). T(X) denotes the range of T, and we define $\beta(T) = \operatorname{codim} T(X)$ $(= \dim X/T(X))$. We write $\sigma(T)$ for the spectrum of T and $\rho(T)$ for the resolvent set $\mathbb{C} \setminus \sigma(T)$.

The maximal group of invertible elements in $\mathcal{L}(X)$ is denoted by $\mathcal{G}(X)$. Let $\mathcal{R}(X)$ denote the set of all relatively regular operators in $\mathcal{L}(X)$, that is, operators T such that TST = T for some $S \in \mathcal{L}(X)$. Observe that $T \in \mathcal{R}(X)$ if and only if T has complemented kernel and range ([1], p. 10). $T \in \mathcal{L}(X)$ is called decomposably regular if T = TST for some $S \in \mathcal{G}(X)$. Let us write $\mathcal{GR}(X)$ for the class of all decomposably regular operators. In [8] decomposably regular operators are called *unit regular*. For a subset \mathcal{M} of $\mathcal{L}(X)$ let $\mathcal{I}\mathcal{M}$ and $\mathcal{I}\mathcal{M}$ denote, respectively, the closure and the interior of \mathcal{M} .

Received: April 21, 1995; Revised: June 29, 1996.

AMS Classification: 47A10, 47A53.

Keywords and Phrases: Decomposably regular operators, Fredholm operators.

Proposition 1.1.

(1) $\mathcal{GR}(X) = \mathcal{R}(X) \cap \operatorname{cl} \mathcal{G}(X).$

(2) $T \in \mathcal{GR}(X) \Leftrightarrow T \in \mathcal{R}(X), N(T) \text{ and } X/T(X) \text{ are isomorphic.}$

Proof: (1) [2], Theorem 1.1. (2) [3], Theorem 3.8.6. ■

If X is a separable Hilbert space, then part (2) of the above proposition shows that $T \in \mathcal{GR}(X)$ if and only if T(X) is closed and $\alpha(T) = \beta(T)$. $T \in \mathcal{L}(X)$ is said to be an Atkinson operator if $T \in \mathcal{R}(X)$ and at least one of $\alpha(T)$, $\beta(T)$ is finite. $\mathcal{A}(X)$ denotes the set of Atkinson operators. For $T \in \mathcal{A}(X)$ we define the index of T by $\operatorname{ind}(T) = \alpha(T) - \beta(T)$.

We call $T \in \mathcal{L}(X)$ Fredholm operator if $\alpha(T)$ and $\beta(T)$ are both finite. Observe that a Fredholm operator is relatively regular ([6], Satz 74.4). For $n \in \mathbb{Z}$ let $\mathcal{F}_n(X) = \{T \in \mathcal{L}(X) : T \text{ is Fredholm and ind}(T) = n\}$. Denote by $\mathcal{F}(X)$ the set of all Fredholm operators, thus $\mathcal{F}(X) = \bigcup_{n \in \mathbb{Z}} \mathcal{F}_n(X)$.

It is well known that $\mathcal{A}(X)$, $\mathcal{F}(X)$ and $\mathcal{F}_n(X)$ are open subsets of $\mathcal{L}(X)$ ([6], Satz 82.4).

Proposition 1.2. int $\mathcal{R}(X) = \mathcal{A}(X) = \{T \in \mathcal{L}(X) : T + K \in \mathcal{R}(X) \text{ for all compact operators } K\}.$

Proof: [14], Theorem 6. ■

Remarks.

(1) We call $T \in \mathcal{L}(X)$ a semi-Fredholm operator if T(X) is closed and at least one of $\alpha(T)$, $\beta(T)$ is finite. We have shown in [14] that

$$\operatorname{int}\left\{T \in \mathcal{L}(X) \colon T(X) \text{ is closed}\right\} = \left\{T \in \mathcal{L}(X) \colon T \text{ is semi-Fredholm}\right\} = \left\{T \in \mathcal{L}(X) \colon T + K \text{ has closed range for each compact } K\right\}.$$

(2) If X is a Hilbert space then $\mathcal{A}(X) = \{T \in \mathcal{L}(X) : T \text{ is semi-Fredholm}\}.$ In this case M. Mbekhta ([9], Théorème 2.2) has shown that int $\mathcal{R}(X) = \mathcal{A}(X)$.

(3) If X is a Hilbert space and $T \in \operatorname{int} \mathcal{R}(X)$ then there is $\delta > 0$ and a meromorphic function $F \colon \{\lambda \in \mathbb{C} \colon |\lambda| < \delta\} \to \mathcal{L}(X)$ such that

$$(T - \lambda) F(\lambda) (T - \lambda) = T - \lambda$$
 for $|\lambda| < \delta$

(see [9], Corollaire 2.3).

2 – Interior points of some classes of relatively regular operators

Proposition 1.1 (2) shows that we have for a Fredholm operator $T : T \in \mathcal{GR}(X) \Leftrightarrow T \in \mathcal{F}_0(X)$. We can be more precise:

Theorem 2.1. int $\mathcal{GR}(X) = \mathcal{F}_0(X)$.

Proof: Since $\mathcal{F}_0(X)$ is open and $\mathcal{F}_0(X) \subseteq \mathcal{GR}(X)$, we only have to show that $\operatorname{int} \mathcal{GR}(X) \subseteq \mathcal{F}_0(X)$.

Let $T \in \operatorname{int} \mathcal{GR}(X)$, then $T \in \operatorname{int} \mathcal{R}(X)$, thus $T \in \mathcal{A}(X)$ by Proposition 1.2. We have $T \in \operatorname{cl} \mathcal{G}(X)$ (Proposition 1.1(1)), thus there is a sequence (T_n) in $\mathcal{G}(X)$ such that $||T - T_n|| \to 0 \ (n \to \infty)$. Since $T \in \mathcal{A}(X)$ and $\mathcal{A}(X)$ is open, the stability of the index ([6], Satz 82.4) shows

 $\operatorname{ind}(T) = \operatorname{ind}(T_n)$ for *n* sufficiently large.

Thus $\operatorname{ind}(T) = 0$. This gives $T \in \mathcal{F}_0$.

Let us consider some further classes of relatively regular operators: For $n\in\mathbb{Z}$ let

$$\mathcal{F}_n \mathcal{R}(X) = \left\{ T \in \mathcal{L}(X) \colon TST = T \text{ for some } S \in \mathcal{F}_n(X) \right\}.$$

Define $\mathcal{FR}(X) = \bigcup_{n \in \mathbb{Z}} \mathcal{F}_n \mathcal{R}(X)$. Thus we have

$$\mathcal{FR}(X) = \left\{ T \in \mathcal{L}(X) \colon TST = T \text{ for some } S \in \mathcal{F}(X) \right\}.$$

It is shown in [10], Theorem 3, that

$$\mathcal{FR}(X) = \mathcal{R}(X) \cap \operatorname{cl} \mathcal{F}(X)$$
.

Theorem 2.2.

- (1) int $\mathcal{F}_n \mathcal{R}(X) = \mathcal{F}_{-n}(X)$.
- (2) int $\mathcal{FR}(X) = \mathcal{F}(X)$.

Proof: (1) Take $T \in \mathcal{F}_{-n}(X)$, then T is relatively regular, hence T = TST for some $S \in \mathcal{L}(X)$. [3], Theorem 6.5.5, gives $S \in \mathcal{F}(X)$ and $\operatorname{ind}(S) = -\operatorname{ind}(T) = n$, therefore $T \in \mathcal{F}_n \mathcal{R}(X)$. Thus we have $\mathcal{F}_{-n}(X) \subseteq \mathcal{F}_n \mathcal{R}(X)$. Since $\mathcal{F}_{-n}(X)$ is open, we get $\mathcal{F}_{-n}(X) \subseteq \operatorname{int} \mathcal{F}_n \mathcal{R}(X)$.

Let $T \in \operatorname{int} \mathcal{F}_n \mathcal{R}(X)$, thus $T \in \operatorname{int} \mathcal{R}(X) = \mathcal{A}(X)$ and $T \in \mathcal{F}\mathcal{R}(X) \subseteq \operatorname{cl} \mathcal{F}(X)$. There is a sequence (T_n) in $\mathcal{F}(X)$ such that $||T - T_n|| \to 0 \ (n \to \infty)$. Since $T \in \mathcal{A}(X)$ and $\mathcal{A}(X)$ is open, the stability of the index shows that

$$\operatorname{ind}(T) = \operatorname{ind}(T_n)$$
 for *n* sufficiently large.

Thus $\operatorname{ind}(T)$ is finite, hence $T \in \mathcal{F}(X)$. Since $T \in \mathcal{F}_n \mathcal{R}(X)$, T = TST for some $S \in \mathcal{F}_n(X)$. As above, we see that $\operatorname{ind} T = -\operatorname{ind}(S) = -n$. This gives $T \in \mathcal{F}_{-n}(X)$.

(2) Similar. \blacksquare

3 – A spectral mapping theorem

In [11] and [13] we introduced the following concepts for $T \in \mathcal{L}(X)$:

$$\begin{split} \rho_K(T) &= \left\{ \lambda \in \mathbb{C} \colon (T - \lambda)(X) \text{ is closed}, \ N(T - \lambda) \subseteq \bigcap_{n=1}^{\infty} (T - \lambda)^n(X) \right\} \\ \rho_{rr}(T) &= \left\{ \lambda \in \rho_K(T) \colon T - \lambda \in \mathcal{R}(X) \right\}, \\ \sigma_K(T) &= \mathbb{C} \backslash \rho_K(T) \quad \text{and} \quad \sigma_{rr}(T) = \mathbb{C} \backslash \rho_{rr}(T) \;. \end{split}$$

Write $\mathcal{H}(T)$ for the set of all complex valued functions which are analytic in some neighbourhood of $\sigma(T)$. For $f \in \mathcal{H}(T)$ let the operator $f(T) \in \mathcal{L}(X)$ be defined by the well-known analytic calculus (see [6], §99).

The following proposition lists some properties of the above defined 'essential spectra' of $T \in \mathcal{L}(X)$.

Proposition 3.1.

- (1) $\partial \sigma(T) \subseteq \sigma_K(T) \subseteq \sigma_{rr}(T) \subseteq \sigma(T)$.
- (2) $\mu \in \rho_{rr}(T) \Leftrightarrow$ there is a neighbourhood $U(\mu)$ of μ and a holomorphic function $F: U(\mu) \to \mathcal{L}(X)$ such that

$$(T - \lambda) F(\lambda) (T - \lambda) = T - \lambda$$
 for all $\lambda \in U(\mu)$.

(3) $\rho_{rr}(T)$ and $\rho_K(T)$ are open.

(4)
$$f(\sigma_K(T)) = \sigma_K(f(T)), f(\sigma_{rr}(T)) = \sigma_{rr}(f(T))$$
 for all $f \in \mathcal{H}(T)$.

Proof: (1) The first inclusion is shown in [11], Satz 2. The other inclusions are clear.

- (2) is shown in [12], Theorem 1.4 (in a more general context).
- (3) By (2), $\rho_{rr}(T)$ is open. $\rho_K(T)$ is open by [7], Theorem 3.
- (4) See [11] and [13]. ■

Remark. Some of the arguments for Proposition 3.1 are also given in [4], Theorems 9.10 and in [5].

Definition 3.2. For $T \in \mathcal{L}(X)$ we define the set $\rho_{gr}(T) \subset \mathbb{C}$ by:

 $\mu \in \rho_{gr}(T)$ if and only if there is a neighbourhood $U(\mu)$ of μ and a holomorphic function $F: U(\mu) \to \mathcal{L}(X)$ such that

$$F(\lambda) \in \mathcal{G}(X)$$
 and $(T - \lambda) F(\lambda)(T - \lambda) = T - \lambda$ for all $\lambda \in U(\mu)$.
 $\sigma_{gr}(T) := \mathbb{C} \setminus \rho_{gr}(T).$

An operator $T \in \mathcal{L}(X)$ for which $0 \in \rho_{gr}(T)$ is called *holomorphically decomposably regular*. The following condition is equivalent to holomorphic decomposable regularity for $T \in \mathcal{L}(X)$ (cf. [4], Theorem 9):

There are $R \in \mathcal{G}(X)$ and sequences (S_n) , (T_n) in $\mathcal{G}(X)$ for which $||S_n|| + ||T_n - R|| \to 0$ $(n \to \infty)$, $S_nT = TS_n$ and $(T - S_n)T_n(T - S_n) = T - S_n$.

Proposition 3.3. Let $T \in \mathcal{L}(X)$.

(1)
$$\mu \in \rho_{gr}(T) \Leftrightarrow \mu \in \rho_K(T) \text{ and } T - \mu \in \mathcal{GR}(X).$$

(2)
$$\rho_{gr}(T) \subseteq \rho_{rr}(T) \subseteq \rho_K(T), \ \sigma_K(T) \subseteq \sigma_{rr}(T) \subseteq \sigma_{gr}(T).$$

Proof: (1) " \Rightarrow ": Use Definition 3.2 and Proposition 3.1 (2).

" \Leftarrow ": Without loss of generality let us assume that $\mu = 0$. Take $S \in \mathcal{G}(X)$ such that TST = T and define the function F by $F(\lambda) = (I - \lambda S)^{-1}S$ for $|\lambda| < ||S||^{-1}$. Then we have $F(\lambda) \in \mathcal{G}(X)$ for $|\lambda| < ||S||^{-1}$. [12], Corollary 1.5, shows that

$$(T - \lambda) F(\lambda)(T - \lambda) = T - \lambda$$
 for $|\lambda| < ||S||^{-1}$.

(**2**) Clear. ■

The following example shows that in general $f(\sigma_{gr}(T)) \not\subseteq \sigma_{gr}(f(T))$ $(f \in \mathcal{H}(T)).$

Example 3.4: Let $T \in \mathcal{L}(X)$, $k, m \in \{1, 2, 3, ...\}$ and $\xi, \eta \in \mathbb{C}$ such that $T - \xi \in \mathcal{F}_k(X)$ and $T - \eta \in \mathcal{F}_{-m}(X)$. We shall construct operators $T - \lambda_0$ and $T - \mu_0$, each Fredholm of positive and negative index, respectively, which also satisfy $\lambda_0, \mu_0 \in \rho_K(T)$.

The punctured neighbourhood theorem (see [7]) shows that there exists $\delta > 0$ such that

$$T - \lambda \in \mathcal{F}_k(X)$$
, $\alpha(T - \lambda)$ is a constant for $0 < |\lambda - \xi| < \delta$

and

$$T - \mu \in \mathcal{F}_{-m}(X)$$
, $\alpha(T - \mu)$ is a constant for $0 < |\mu - \eta| < \delta$.

Fix λ_0 and μ_0 with $0 < |\lambda_0 - \xi| < \delta$ and $0 < |\mu_0 - \eta| < \delta$. By [7], Theorem 3 and Theorem 5, we have

$$\lambda_0, \mu_0 \in \rho_K(T)$$
.

Define the function f by $f(\lambda) = (\lambda - \lambda_0)^m (\lambda - \mu_0)^k$. This gives $f(T) = (T - \lambda_0)^m (T - \mu_0)^k \in \mathcal{F}(X)$, and the index theorem ([6], Satz 71.3) shows that

$$ind(f(T)) = m ind(T - \lambda_0) + k ind(T - \mu_0) = m k + k(-m) = 0,$$

thus $f(T) \in \mathcal{GR}(X)$. The spectral mapping theorem for $\sigma_K(T)$ (Proposition 3.1 (4)) gives $0 \in \rho_K(f(T))$, since $\lambda_0, \mu_0 \in \rho_K(T)$. Therefore $0 \in \rho_{gr}(f(T))$ by Proposition 3.3 (1). We have $\lambda_0 \in \sigma_{gr}(T)$, since $\operatorname{ind}(T - \lambda_0) \neq 0$, hence $0 = f(\lambda_0) \in f(\sigma_{gr}(T))$.

Example 3.4 also shows the failure of the analogue of part of Theorem 10 of [4]: There are $S, T \in \mathcal{L}(X)$ for which

ST = TS is holomorphically decomposably regular but neither S nor T are.

Proposition 3.5. Suppose

- (a) $T \in \mathcal{L}(X)$ and $g \in \mathcal{H}(T)$ has only a finite number of zeros in $\sigma(T)$,
- (b) $\mu_1, ..., \mu_m$ are the zeros of g in $\sigma(T)$ with respective orders $n_1, ..., n_m$ $(\mu_i \neq \mu_j \text{ for } i \neq j),$
- (c) $(T \mu_j)^{n_j} \in \mathcal{GR}(X)$ for j = 1, ..., m.
- Then $g(T) \in \mathcal{GR}(X)$.

Proof: [6], Satz 80.1, asserts that

(1)
$$N\left(\prod_{j=1}^{k} (T-\mu_j)^{n_j}\right) = N\left((T-\mu_1)^{n_1}\right) \oplus \dots \oplus N\left((T-\mu_k)^{n_k}\right)$$
$$\subseteq (T-\mu_{k+1})^{n_{k+1}}(X)$$

for k = 1, ..., m - 1. There are $C_1, ..., C_m \in \mathcal{G}(X)$ such that

$$(T - \mu_j)^{n_j} C_j (T - \mu_j)^{n_j} = (T - \mu_j)^{n_j} \quad (j = 1, ..., m)$$

Put $C = C_m C_{m-1} \cdots C_1$ and $R = \prod_{j=1}^m (T - \mu_j)^{n_j}$. Hence $C \in \mathcal{G}(X)$. By (1) and [14], Lemma 5, we get

$$RCR = R$$

There is a function $h \in \mathcal{H}(T)$ with $h(\lambda) \neq 0$ for all $\lambda \in \sigma(T)$ and $g(\lambda) = (\prod_{j=1}^{m} (\lambda - \mu_j)^{n_j}) h(\lambda)$. This gives g(T) = R h(T) and $h(T) \in \mathcal{G}(X)$. Put $D = C h(T)^{-1}$, then we derive $D \in \mathcal{G}(X)$ and

$$g(T) Dg(T) = h(T) R C h(T)^{-1} h(T) R$$

= $h(T) R C R = h(T) R = g(T)$.

Hence $g(T) \in \mathcal{GR}(X)$.

Proposition 3.5 can also be deduced from the analogue of the other half of Theorem 10 of [4]: If (cf. Lemma 3 of [4])

 $S, T \in \mathcal{L}(X), \quad ST = TS$ and either $S = T^n$ for some n or S'S + TT' = I for some $S', T' \in \mathcal{L}(X)$

then

S, T holomorphically decomposably regular \Rightarrow

ST holomorphically decomposably regular.

Theorem 3.6. If $T \in \mathcal{L}(X)$ and $f \in \mathcal{H}(T)$ then

$$\sigma_{gr}(f(T)) \subseteq f(\sigma_{gr}(T))$$
.

Proof: We have to show that $\mathbb{C}\setminus f(\sigma_{gr}(T)) \subseteq \rho_{gr}(f(T))$. To this end take $\lambda_0 \notin f(\sigma_{gr}(T))$ and put $g(\lambda) = f(\lambda) - \lambda_0$. This gives

- (2) $0 \notin g(\sigma_{gr}(T))$
- and

(3)
$$0 \notin g(\sigma_K(T)) = \sigma_K(g(T)) .$$

Case 1: g has no zeros in $\sigma(T)$. Then $g(T) = f(T) - \lambda_0 \in \mathcal{G}(X)$, thus $\lambda_0 \in \rho(f(T)) \subseteq \rho_{gr}(f(T))$.

Case 2: g has zeros in $\sigma(T)$. (3) shows that g does not vanish in $\sigma_K(T)$. [11], Satz 3, asserts now that g has only a finite number of zeros in $\sigma(T)$. Let $\mu_1, ..., \mu_m$ be these zeros $(\mu_i \neq \mu_j \text{ for } i \neq j)$ and $n_1, ..., n_m$ their respective orders. By (2), $\mu_1, ..., \mu_m \in \rho_{gr}(T)$, thus for each $T - \mu_j$ there is an operator $S_j \in \mathcal{G}(X)$ with $(T - \mu_j) S_j(T - \mu_j) = T - \mu_j$. [13], Proposition 2, gives now

$$(T - \mu_j)^{n_j} S_j^{n_j} (T - \mu_j)^{n_j} = (T - \mu_j)^{n_j} \quad (j = 1, ..., m)$$

Since each $S_j^{n_j}$ is invertible, it follows that

$$(T - \mu_j)^{n_j} \in \mathcal{GR}(X)$$
 for $j = 1, ..., m$.

Now use Proposition 3.5 to derive $g(T) \in \mathcal{GR}(X)$. (3) gives $0 \in \rho_K(g(T))$, thus $0 \in \rho_{gr}(g(T))$ and therefore $\lambda_0 \in \rho_{gr}(f(T))$.

If the function $f \in \mathcal{H}(T)$ is injective, we can say more:

Theorem 3.7. If $T \in \mathcal{L}(X)$ and if $f \in \mathcal{H}(T)$ is injective, then

$$\sigma_{gr}(f(T)) = f(\sigma_{gr}(T)) \; .$$

Proof: We only have to show the inclusion " \supseteq ". Let $\lambda_0 \in f(\sigma_{gr}(T))$, thus $\lambda_0 = f(\mu_0)$ for some $\mu_0 \in \sigma_{gr}(T)$. Put $g(\lambda) = f(\lambda) - \lambda_0$ and

$$h(\lambda) = \begin{cases} \frac{g(\lambda)}{\lambda - \mu_0}, & \lambda \neq \mu_0, \\ f'(\mu_0), & \lambda = \mu_0 \end{cases}$$

Since $f'(\mu_0) \neq 0$, we have $h(\lambda) \neq 0$ for all $\lambda \in \sigma(T)$ and $g(\lambda) = (\lambda - \mu_0) h(\lambda)$. This gives $g(T) = (T - \mu_0) h(T)$ and $h(T) \in \mathcal{G}(X)$.

Let us assume, to the contrary, that $\lambda_0 \in \rho_{gr}(f(T))$. Therefore $0 \in \rho_{gr}(g(T))$, hence there is an operator S in $\mathcal{G}(X)$ with g(T) Sg(T) = g(T). Thus

$$(T - \mu_0) h(T) Sh(T) (T - \mu_0) = (T - \mu_0) h(T) .$$

It follows that

$$(T - \mu_0) (h(T) S) (T - \mu_0) = T - \mu_0$$

since h(T) is invertible. Hence $T - \mu_0 \in \mathcal{GR}(X)$. Furthermore, $\lambda_0 \in \rho_{gr}(f(T))$ gives $\lambda_0 \in \rho_K(f(T))$. The spectral mapping theorem for $\sigma_K(T)$ implies that $\mu_0 \in \rho_K(T)$. Therefore we have $\mu_0 \in \rho_{gr}(T)$, a contradiction.

We close this paper with a proposition concerning operators in $\mathcal{FR}(X)$.

Proposition 3.8. Let $T \in \mathcal{L}(X)$ and $g \in \mathcal{H}(T)$ satisfy the hypotheses (a) and (b) of Proposition 3.5. If

$$(T - \mu_j)^{n_j} \in \mathcal{FR}(X)$$
 for $j = 1, ..., m$,

then $g(T) \in \mathcal{FR}(X)$. To be more precise, if $(T - \mu_j)^{n_j} \in \mathcal{F}_{k_j}\mathcal{R}(X)$ and $k = k_1 + \ldots + k_m$, then $g(T) \in \mathcal{F}_k\mathcal{R}(X)$.

Proof: With the notation in the proof of Proposition 3.5, there are operators $C_1, ..., C_m$ with $C_j \in \mathcal{F}_{k_j}(X)$, thus $D = C_m C_{m-1} \cdots C_1 h(T)^{-1} \in \mathcal{F}(X)$ and, by the index theorem,

$$\operatorname{ind}(D) = k_m + \dots + k_1 + \underbrace{\operatorname{ind}(h(T)^{-1})}_{=0} = k . \blacksquare$$

ACKNOWLEDGEMENT – The author thanks the referee, whose suggestions led to an improvement of the paper.

REFERENCES

- CARADUS, S.R. Generalized Inverses and Operator Theory, Queen's papers in Pure and Applied Math. No.50, 1978.
- [2] HARTE, R. Regular boundary elements, Proc. Amer. Math. Soc., 99 (1987), 328–330.
- [3] HARTE, R. Invertibility and singularity for bounded linear operators, Dekker, 1987.
- [4] HARTE, R. Taylor exactness and Kato's jump, Proc. Amer. Math. Soc., 119 (1993), 793–801.
- [5] HARTE, R. On Kato nonsingularity, Studia Math., 117 (1996), 107–114.
- [6] HEUSER, H. Funktionalanalysis, 2nd ed., Teubner, 1986.
- [7] KATO, T. Perturbation theory for nullity, deficiency and other quantities of linear operators, J. Anal. Math., 6 (1958), 261–322.
- [8] KRISHNAN, E. and NAMBOORIPAD, K.S.S. The semigroup of Fredholm operators, *Forum Math.*, 5 (1993), 313–368.
- [9] MBEKHTA, M. Sur la structure des composantes connexes semi-Fredholm de B(H), Proc. Amer. Math. Soc., 116 (1992), 521–524.
- [10] RAKOČEVIĆ, V. A note on regular elements in Calkin algebras, Collect. Math., 43 (1992), 37–42.
- [11] SCHMOEGER, CH. Ein Spektralabbildungssatz, Arch. Math., 55 (1990), 484–489.
- [12] SCHMOEGER, CH. The punctured neighbourhood theorem in Banach algebras, Proc. R. Ir. Academy, 91A (1991), 205–218.

- [13] SCHMOEGER, CH. Relatively regular operators and a spectral mapping theorem, J. Math. Anal. Appl., 175 (1993), 315–320.
- [14] SCHMOEGER, CH. On operators of Saphar type, Portugaliae Math., 51 (1994), 617–628.

Christoph Schmoeger, Mathematisches Institut I, Universität Karlsruhe, D-76128 Karlsruhe – GERMANY