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LOCAL CONNECTEDNESS
AND CONNECTED OPEN FUNCTIONS

J.J. Charatonik

Abstract: Localized versions are proved of some results concerning preservation

of local connectivity and related concepts under connected open functions satisfying a

condition weaker than continuity.

1 – Introduction

Recently a condition (Z) for functions between topological spaces which is

strictly weaker than continuity has been introduced and studied by Y. Zhou [9].

As a basic result of [9] it is proved that local connectedness is preserved under

a connected open surjection satisfying the condition (Z). The main purpose of

the present paper is to generalize and improve the quoted result of Y. Zhou, and

to extend these generalizations to other concepts related to local connectivity of

the space at a given point, as weak local connectedness and quasilocal connected-

ness. To do so we localize the condition (Z) as well as we apply this localization

to functions which satisfy some openness and connectivity conditions also con-

sidered locally, at a given point. In this way we obtain as corollaries a number

of known and new results concerning preservation of local connectedness and re-

lated properties under various classes of mappings. A final part of the paper is

devoted to open problems concerning some other local properties of the space

(paddedness) and of the considered functions (almost openness).
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2 – Preliminaries

Throughout this paper spaces mean topological spaces on which no separation

axioms are assumed unless explicitly stated. Let a point p of a space X be given.

The component of p in X means a maximal connected subset of X containing

p. The quasicomponent of p means the intersection of all simultaneously closed

and open subsets of X containing p. If a set A is given with p ∈ A ⊂ X, we

denote by QX(p,A) the quasicomponent of A in X containing p. See Part 1 of

[1], p. 353–354, for various interrelations of components and quasicomponents. A

neighbourhood of a point p means a set containing p in its interior.

A space X is said to be:

– locally connected at p provided that every neighbourhood of p contains an

open connected neighbourhood of p;

– weakly locally connected (also called connected “im kleinen”) at p provided

that every neighbourhood of p contains a connected neighbourhood of p;

– quasilocally connected at p provided that for every neighbourhood U of p

the quasicomponent QX(p, U) is a neighbourhood of p ([8], p. 40).

The space X is said to have any of the properties defined above if it has that

property at each of its points.

Note that a space is weakly locally connected at p if and only if for each

neighbourhood U of p the point p belongs to the interior of the component of U .

Observe that some authors (e.g. K. Kuratowski [5], p. 227, and G.T. Whyburn

[6], p. 18) use the name of “locally connected at a point” in the sense of “weakly

locally connected at a point”.

The following implications are known and none of them can be reversed.

2.1 Theorem.

i) If a space is locally connected at p, then it is weakly locally connected at

p (the converse is false – [3], p. 113).

ii) If a space is weakly locally connected at p, then it is quasilocally connected

at p (the converse is false – [1], Example 5.4, p. 363).

For an arbitrary space X let LC(X), WLC(X) and QLC(X) denote the sets

of points of X at which X is locally connected, weakly locally connected and

quasilocally connected correspondingly. Then Theorem 2.1 can be reformulated
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as follows:

(2.2) LC(X) ⊂WLC(X) ⊂ QLC(X) .

The next theorem is also a well known result (see e.g. [1], Proposition 2.4,

p. 355).

2.3 Theorem. The following conditions on a space X are equivalent:

i) X is locally connected;

ii) X is weakly locally connected;

iii) X is quasilocally connected;

iv) (quasi)components of every open subset of X are open.

Let X and Y be spaces. A function f : X → Y is said to be:

– a mapping provided that it is continuous;

– open (closed, connected) provided that for each open (closed, connected)

set A ⊂ X its image f(A) is an open (closed, connected) subset of Y ;

– open (connected, connected-open) at a point p ∈ X provided that there

exists an open set U ⊂ X containing p such that for each open (connected,

connected and open) subset A of U containing p its image f(A) is an open

(connected, connected and open) subset of Y ;

– interior at a point p ∈ X provided that for each open set U ⊂ X containing

p we have f(p) ∈ Int f(U).

We denote by Op f , Con f , Con-op f and Int f the sets of all points p ∈ X at

which the function f : X → Y is open, connected, connected-open and interior,

respectively. Further, for a given function f : X → Y we denote by Q(f) the set

of all points p ∈ X for which there exists an open set U ⊂ X containing p such

that for each subset A of U containing p we have

(2.4) f(QX(p,A)) ⊂ QY (f(p), f(A)) .

The propositions below are easy consequences of the definitions.

2.5 Proposition. For every function f : X → Y the following conditions

are equivalent:

i) f is open;

ii) f is interior at each point of its domain, i.e., Int f = X;

iii) f is open at each point of its domain, i.e., Op f = X.
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2.6 Proposition. If a function is open at a point, then it is interior at this

point, i.e., Op f ⊂ Int f .

2.7 Remark. The converse to Proposition 2.6 is not true because the well

known Cantor step mapping from the Cantor ternary set C ⊂ [0, 1] onto [0, 1] is

interior at p = 1
4 while not open at this point.

2.8 Proposition. If a function f : X → Y is connected at a point p ∈ X

and open at this point, then it is connected-open at p, but not conversely.

2.9 Proposition. If a function f : X → Y is connected, then it is connected

at each point of its domain, i.e., Con f = X.

To see that the converse implication does not hold, consider the following

example.

2.10 Example: There exist a connected space B and a function f : B →

[0, 1] of B into [0, 1] such that f is not connected, while it is connected at each

point of B.

Proof: Denote by C the Cantor ternary set in [0, 1], consider the well known

Knaster–Kuratowski biconnected set B contained in the Cantor fan F = C ×

[0, 1]/C × {0} (see e.g. [5], §46, II, Remark, p. 135) and denote by v the vertex

of F . Thus B is connected, and the components of B\{v} are singletons. Put

B0 = {(x, y) ∈ B : y ∈ [0, 1
2 ]} and B1 = B\B0. Let π : B0 → [0, 1

2 ] be the

projection defined by π(x, y) = y. Denote by Q the set of all rational numbers

and note that the sets B1 and (
1
2 , 1]\Q have the same cardinality. Thus there

exists a one-to-one correspondence γ : B1 → (12 , 1]\Q. Put

f(p) = π(p) if p ∈ B0 and f(p) = γ(p) if p ∈ B1 .

Thus f(B) = [0, 1
2 ] ∪ ((

1
2 , 1]\Q) ⊂ [0, 1]. Taking B0 as a neighbourhood U

of v and B\{v} as a neighbourhood U of each point p 6= v we see that all the

conditions of connectedness at a point are satisfied for f , while f is not connected

because the image f(B) of the connected set B is not connected.

2.11 Remark. Obviously for an arbitrary function continuity implies con-

nectedness. However, the localized version of this implication is not true, i.e.,

a function which is continuous at a point of its domain need not be connected

at this point. In fact, define f : [0, 1] → {0} ∪ { 1
n
: n ∈ IN} by f(0) = 0 and

f(x) = [x−1]−1 for x 6= 0, where [r] denotes the whole part of a real number r.
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2.12 Remark. Note that for every mapping f : X → Y inclusion (2.4) holds

true.

A function f : X → Y is said to satisfy

– the condition (Z) with respect to a point y ∈ Y provided that for every

open subset V of Y containing y we have f−1(y) ∩ Int f−1(V ) 6= ∅;

– the condition (Z) provided that it satisfies the condition (Z) with respect

to every point y ∈ Y . That is, provided that for every open subset V of Y

we have f(Int f−1(V )) = V .

Observe that if a function f satisfies the condition (Z) with respect to a point

y ∈ Y , then y ∈ f(X); therefore, if f satisfies the condition (Z), then f is a

surjection. Further, if the considered function f is continuous at a point x ∈ X,

then it obviously satisfies the condition (Z) with respect to the point f(x). The

converse implication does not hold, even for open connected functions, see [9],

Example, p. 65.

3 – Results

It is well known that local connectedness is preserved under continuous surjec-

tive functions which are open or closed ([3], Lemma 3-21, p. 125), almost open ([4],

Theorem 3.2, p. 396), quasicompact ([7], Theorem 2, p. 445), or which are arbi-

trary even, provided that the domain space is pseudocompact ([1], Theorem 4.12,

p. 361). Invariance of some other properties that are close to local connectedness

has also been studied (see e.g. [4], Theorem 3.4, and Corollaries 3.5, 3.6 and 3.7,

p. 396 and 397, and some other results mentioned in the introduction of that pa-

per, p. 393). Recently it was shown that local connectedness is preserved under

open connected functions which are strictly weaker than continuous ones, namely

which satisfy the condition (Z) ([9], Theorem 4, p. 66).

However, all these results concern preservation of local connectedness when

this property is assumed to be satisfied globally, i.e., at every point of the do-

main space. We intend to prove similar implications, but when the property of

local connectedness and related properties are considered locally, i.e., at partic-

ular points of the domain and the range spaces, and when the function satisfies

the assumed conditions of connectedness and interiority or openness also at the

considered points.

The following theorem arose from Theorem 4 of [9], p. 66 (see below, Corol-

lary 3.15).



508 J.J. CHARATONIK

3.1 Theorem. Let a surjective function f : X → Y between spaces X and

Y , and a point y ∈ Y be given. Assume that for every open subset V of Y

containing y there is a point x ∈ X such that

(3.2) x ∈ f−1(y) ∩ Int f−1(V ) .

The following three implications are true:

a) if

(3.3) x ∈ LC(X) ∩ Con-op f ,

then y ∈ LC(Y );

b) if

(3.4) x ∈WLC(X) ∩ Con f ∩ Int f ,

then y ∈WLC(Y );

c) if

(3.5) x ∈ QLC(X) ∩Q(f) ∩ Int f ,

then y ∈ QLC(Y ).

Proof: Let an open subset V of Y contain the point y, and let a point x ∈ X

satisfy (3.2).

a) By (3.3) the function f is connected-open at x, i.e., there exists an open

subset U of X containing x such that if A ⊂ U is both connected and open, then

f(A) ⊂ Y also is connected and open. Since the space X is locally connected at x

and since U∩Int f−1(V ) is an open subset of X containing x by (3.2), there exists

a connected and open set W ⊂ X such that x ∈W ⊂ U ∩ Int f−1(V ) ⊂ f−1(V ).

Therefore y = f(x) ∈ f(W ) ⊂ f(f−1(V )) ⊂ V . Since f(W ) is a connected and

open subset of V , the space Y is locally connected at y, i.e., y ∈ LC(Y ) as needed.

b) By (3.4) the function f is connected at x, i.e., there exists an open subset U

of X containing x such that if A ⊂ U is connected and contains x, then f(A) ⊂ Y

is connected. Since the space X is weakly locally connected at x by (3.4) and

since U ∩ Int f−1(V ) is an open subset of X containing x by (3.2), there exists

a connected set W in X such that x ∈ IntW ⊂ W ⊂ U ∩ Int f−1(V ) ⊂ f−1(V ).

Therefore, the function f being interior at x by (3.4), we have y = f(x) ∈

Int f(IntW ) ⊂ Int f(W ) ⊂ f(f−1(V )) ⊂ V . Since W ⊂ U is connected, we
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conclude f(W ) is connected, hence f(W ) is a connected neighbourhood of y

contained in V , and thus y ∈WLC(Y ) as needed.

c) By (3.5) we have x ∈ Q(f), i.e., there exists an open subset U of X con-

taining x such that if x ∈ A ⊂ U for a subset A, then

(3.6) f(QX(x,A)) ⊂ QY (y, f(A)) .

Since the space X is quasilocally connected at x by (3.5) and since U ∩

Int f−1(V ) is an open subset of X containing x by (3.2), we conclude

(3.7) x ∈ IntQX(x, U ∩ Int f
−1(V )) .

Since f is interior at x by (3.5), we infer from (3.7) and (3.6) that

y = f(x) ∈ Int f(IntQX(x, U ∩ Int f
−1(V ))) ⊂

⊂ Int f(QX(x, U ∩ Int f
−1(V ))) ⊂ IntQY (y, f(U ∩ Int f

−1(V ))) .

Finally, since for every G, H the inclusions y ∈ G ⊂ H imply QY (y,G) ⊂

QY (y,H) (see [1], Proposition 1.5, p. 354), we see thatQY (y, f(U∩Int f
−1(V ))) ⊂

QY (y, V ), and therefore we get y ∈ IntQY (y, V ). Thus the space Y is quasilocally

connected at y, i.e., y ∈ QLC(Y ). The proof is complete.

3.8 Corollary. Let a function f : X → Y be surjective and let B(y) be a

local base at a point y in Y . If there is a point x ∈ X such that

(3.9) x ∈ f−1(y) ∩
⋂

{

Int f−1(V ) : V ∈ B(y)
}

,

then implications a), b) and c) of Theorem 3.1 hold true.

3.10 Remark. By Proposition 2.8 condition (3.3) of implication a) in The-

orem 3.1 can be replaced by

(3.11) x ∈ LC(X) ∩ Con f ∩Op f .

3.12 Remark. Observe that if for every open subset V of Y containing the

point y ∈ Y there is a point x ∈ X such that (3.2) holds, or if (3.9) is satisfied,

then the function f satisfies the condition (Z) with respect to y.

The following corollaries are immediate consequences of implications a), b)

and c) of Theorem 3.1.
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3.13 Corollary. Let a function f : X → Y satisfying the condition (Z) be

open and connected, and let a point x ∈ X be given. If for every open subset

V of Y containing the point f(x) there is a point x0 ∈ f−1(f(x)) ∩ Int f−1(V )

at which the domain X is a) locally connected or b) weakly locally connected,

then the range Y at the point f(x) is a) locally connected or b) weakly locally

connected, respectively.

3.14 Corollary. Let a function f : X → Y satisfying the condition (Z) be

open, and let a point x ∈ X be given. If for every open subset V of Y containing

the point f(x) there is a point

x0 ∈ f−1(f(x)) ∩ Int f−1(V ) ∩Q(f)

at which the domain X is quasilocally connected, then the range Y is quasilocally

connected at the point f(x).

3.15 Corollary ([9], Theorem 4, p. 66). Let a connected, open function

f : X → Y satisfy the condition (Z). If X is locally connected, then so is Y .

3.16 Corollary. Let a surjective mapping f : X → Y between spaces X

and Y be open (interior, interior) at a point x ∈ X. If the domain X is locally

connected (weakly locally connected, quasilocally connected) at x, then the range

Y is locally connected (weakly locally connected, quasilocally connected) at f(x).

As the next corollary we have the following known result (compare e.g. [2],

Chapter VI, 3.5, p. 125, and 1.4, p. 121).

3.17 Corollary. Let a surjective mapping f : X → Y be open. If X is

locally connected, then so is Y .

The following example (which is due to the referee) shows that the assumption

of openness of the function f at the point x in the implication a) of Theorem 3.1

(see condition (3.3) and compare condition (3.11) of Remark 3.10) cannot be

weakened to the assumption of interiority of f at x (Proposition 2.6). Recall that

a compact connected Hausdorff space is called a continuum. A space is said to

be arcwise connected provided that any two of its points can be joined by an arc

contained in the space.

3.18 Example: There exists an arcwise connected continuum Y in the plane,

a point y ∈ Y and a surjective function f : [0, 1] → Y such that for every open
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subset V of Y containing y there is a point x ∈ [0, 1] satisfying

x ∈ f−1(y) ∩ Int f−1(V ) ∩ LC([0, 1]) ∩ Con f ∩ Int f\Op f ,

while y /∈ LC(Y ).

Proof: In the Euclidean plane IR2 let ab denote the straight line segment

joining a with b. For every m ∈ IN and n ∈ {0} ∪ IN put

y = (0, 0) , vn = (2
1−n, 0) = un+1,0 and un,m = (2

−n, 2−(m+n)) .

Then define

Bn,m = vn+1 un+1,m for m,n ∈ {0} ∪ IN , Bn =
⋃

{

Bn,m : m ∈ {0} ∪ IN
}

,

and

Y = {y} ∪
⋃

{

Bn : n ∈ {0} ∪ IN
}

.

Note that for each n ∈ {0} ∪ IN the set Bn is the cone with the vertex vn+1

over the (noncompact) set {un+1,m : m ∈ IN}. For a picture of a continuum

homeomorphic to Y see [3], Fig. 3–9, p. 113.

Further, for every m,n ∈ {0}∪ IN define subintervals An and An,m of [0, 1] as

follows:

An = (2
−(n+1), 2−n] and An,m =

[

2−(n+1)(1 + 2−(m+1)), 2−(n+1)(1 + 2−m)
]

.

Note that the intervals An are mutually disjoint,

An =
⋃

{An,m : m ∈ {0} ∪ IN} for each n ∈ {0} ∪ IN ,

and that

[0, 1] = {0} ∪
⋃

{

An : n ∈ {0} ∪ IN
}

.

Now, for each n ∈ {0} ∪ IN, let fn : An → Bn be defined by the conditions:

fn|An,0 : An,0 → Bn,0 is a linear, surjective mapping with fn(2
−n) = vn = un+1,0,

and fn(2
−(n+1)(32)) = vn+1; and for each k ∈ IN the partial functions

fn|An,2k−1 : An,2k−1 → Bn,k and fn|An,2k : An,2k → Bn,k

are linear surjections with

fn

(

2−(n+1)(1 + 21−2k)
)

= vn+1 and fn

(

2−(n+1)(1 + 2−2k)
)

= un+1,k
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(i.e., the right end point of An,2k−1 which coincides with the left one of An,2k is

mapped onto the end point vn+1 of Bn,k while the left end point of An,2k−1 which

coincides with the right one of An,2k is mapped onto the other end point un+1,k

of Bn,k). Thus for each n ∈ {0} ∪ IN, the function fn : An → Bn is a continuous

surjection.

Finally we define f : [0, 1] → Y putting f(0) = (0, 0) and f(t) = fn(t) if

t ∈ An for some n ∈ {0}∪ IN. Then f is a surjective but not continuous function,

and it has the needed properties for x = 0. In particular, any neighbourhood U

of x contains the interval A = [0, 2−n] for some sufficiently large n ∈ IN whose

image f(A) is not open in Y .

4 – Problems

In this chapter we shall discuss implications similar to a), b) or c) of Theo-

rem 3.1 for two other concepts, one of which is related to the spaces X and Y ,

and the other is related to the function f : X → Y . First, the condition of local

connectivity of the space at a point will be replaced by paddedness of the space

at the point. Second, an openness or interiority condition of the function at a

considered point will be replaced by a weaker one, of almost openness of f at the

point.

A space X is said to be padded at a point p ∈ X provided that for every

neighbourhood U of p there exist open sets W1 and W2 such that p ∈ W1 ⊂

W 1 ⊂ W2 ⊂ U and W2\W 1 has only finitely many components. The space X

is said to be padded provided it is padded at each of its points (see [1], p. 355;

see also [6], p. 19, where the name of a semilocally connected space is used for

a connected space with the same property). For an arbitrary space X let P (X)

denote the set of all points of X at which the space X is padded. Below we recall

some known facts about the concept of paddedness.

4.1 Proposition ([1], Proposition 2.3, p. 355). If a connected space is

padded at a point p, then it is locally connected at p, i.e., if X is connected, then

P (X) ⊂ LC(X) (the converse is false – [1], Example 5.1, p. 361).

A space X is said to be rim-compact at a point p ∈ X provided that every

neighbourhood of p contains an open neighbourhood of p with compact boundary.

Clearly every locally compact space is rim-compact. We quote the following

result.
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4.2 Theorem ([1], Theorem 3.3, p. 356). If X is a continuum, or — more

generally — a rim-compact connected Hausdorff space, then the following condi-

tions are equivalent:

i) X is locally connected;

ii) X is padded;

iii) components and quasicomponents of every open subset of X coincide.

4.3 Problem. Let a surjective function f : X → Y between spaces X and

Y , and a point y ∈ Y be given. Assume that for every open subset V of Y

containing y there is a point x ∈ X such that

(3.2) x ∈ f−1(y) ∩ Int f−1(V ) ,

and that the domain X is padded at x, i.e., x ∈ P (X). Under what condi-

tions concerning the behaviour of f locally at x (i.e., in an open subset U of X

containing x) and/or the space X it follows that y ∈ P (Y )?

The above discussed Theorem 4 of [9], p. 66 (quoted here as Corollary 3.15)

has even been extended to a wider class of almost open functions in place of

open ones — see Theorem 8 of [9], p. 67. In the light of this theorem a natural

problem arises concerning a possibility of generalizing the results of the previous

chapter — in particular of Theorem 3.1 — to almost open functions if this notion

is considered locally, at a given point. Therefore let us accept the following

definition.

A function f : X → Y between spaces X and Y is said to be almost open at a

point p ∈ X provided that there exists an open set U ⊂ X containing p such that

for each open subset A of U containing p its image f(A) satisfies the inclusion

(4.4) f(A) ⊂ Int f(A) .

A function f : X → Y is said to be almost open provided that (4.4) holds

for each open subset A of X (see [4], p. 394, where an equivalent condition is

taken as a definition of this concept). Denote by Al-op f the set of all points

p ∈ X at which the function f : X → Y is almost open. Thus the inclusion of

Proposition 2.6 can be supplied as follows:

(4.5) Op f ⊂ Int f ⊂ Al-op f .

4.6 Problems. Can the assumption x ∈ Con-op f in (3.3) of implication a)

of Theorem 3.1 be relaxed to the following:
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(4.7) There exists an open subset U of X containing x such that for each

connected open subset A of U containing x inclusion (4.4) holds true?

4.8 Problems. Can the assumption x ∈ Int f in (3.4) and (3.5) of implica-

tions b) and c) of Theorem 3.1 respectively be relaxed to x ∈ Al-op f?
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