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TOPOLOGY IN A CATEGORY: COMPACTNESS
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Dedicated to Guillaume Brümmer on the occasion of his sixtieth birthday

Abstract: In a category with a subobject structure and a closure operator, we

provide a categorical theory of compactness and perfectness which yields a number of

classical results of general topology as special cases, including the product theorems

by Tychonoff and Froĺık, the existence of Stone–Čech compactifications, both for spaces

and maps, and the Henriksen–Isbell characterization of perfect maps of Tychonoff spaces.

Applications to other categories yield, among other things, an alternative proof for the

productivity of categorically compact groups.

0 – Introduction

Already the title of Hausdorff’s book “Grundzüge der Mengenlehre” indicates

that the development of General Topology was intimately linked to progress in

Set Theory. In fact the two fields continued to interact throughout this century

to such an extent that it is widely believed that fundamental notions and results

can only be formulated and obtained in a set-theoretic setting. In this article we

wish to present quite a different approach, showing that the topological themes

of Hausdorff separation and of compactness and perfectness allow for a purely

categorical treatment which covers the basic elements of the theory in a most
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economical fashion. Topologically-motivated ideas may therefore be applied di-

rectly to categories of other branches of mathematics, but we hope that even

readers only interested in point-set topology may benefit from implementing the

categorical approach.

It has been observed by several authors that the Kuratowski–Mrówka charac-

terization [30], [32] of compact topological spaces as those spaces X with closed

projection X ×X → Y for every other space Y opens the way for a categorical

treatment of compactness (see, for example, Manes [31] and Herrlich, Salicrup

and Strecker [22]). Our approach follows this line but distinguishes itself from its

predecessors in at least three essential aspects.

First of all, we combine the topologically-oriented setting of [31] (having sub-

objects and closures as the basic structure) with the generality of [22] (working

in an arbitrary category) while avoiding the unnecessary restrictions of these pa-

pers (being Set-based in the case of [31], and dealing only with closed subobjects

rather than with arbitrary subobjects in the case of [22], thus losing much of

the topological intuition). In fact, we surpass the generality and applicability

of [22] substantially since we do not assume the existence of a (dense, closed)-

factorization structure a priori but work with an arbitrary closure operator in the

sense of [9].

Secondly, the categorical theory presented here includes Tychonoff’s crucial

product theorem, which then allows us to construct the Stone–Čech compactifi-

cation of Hausdorff objects. The proof given here improves the first categorical

proof presented in [6] since it allows for a clearer explanation of the choice-based

topological result and the choice-free localic theorem as given by [27]. (For a

thorough investigation of the role of the Axiom of Choice and compactness in

topology we refer to the recent paper [19].)

Thirdly and most importantly, by passing from the given category to its

“slices”, we are able to take full advantage of the categorical approach and obtain

a theory of compact morphisms (also perfect [13] or proper morphisms [2]) almost

for free, just by re-interpreting the compactness results for objects in the comma

categories of the given category. In particular,

• the Froĺık–Bourbaki product theorem [16], [2] for compact maps is in fact

just a “sliced” Tychonoff Theorem;

• the existence of a Stone–Čech compactification of a morphism (see [33])

is obtained exactly as its object-counterpart and leads to the (antiperfect,

perfect)-factorization studied by [21], [35] and others at different levels of

generality;
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• the Henriksen–Isbell characterization [24], [23] of perfect maps between Ty-

chonoff spaces is fully available in our general setting, but its proof has

become almost a triviality. In fact, the statement that a compact map can-

not be extended to any proper dense Hausdorff extension is just the “sliced

version” of the easily established categorical fact that any morphism from

a compact object to a Hausdorff object must preserve the closure. Like-

wise, the characteristic property that the extension of the given map to

the Stone–Čech compactification of its domain and codomain preserves the

remainders becomes an easy categorical observation.

The categorical theory presented here therefore leads to a much shorter pre-

sentation of the key elements on compactness and perfectness even if we restrict

our attention only to topological spaces. On the other hand, the generality of

the categorical approach allows for a variety of interesting applications, only few

of which we can mention here. One of them is the observation that the cate-

gorical Tychonoff Theorem leads to a new result in the category of topological

groups which was established independently with non-categorical methods only

recently by Dikranjan and Uspenskij [12]. For further applications we refer to [8]

(topology) and to [14] and [7] (algebra).

1 – Subobjects and surjections

1.1. For simplicity, throughout the paper, we consider a complete category

X with a proper (E ,M)-factorization system for morphisms (cf. [15]). Hence E

is a class of epimorphisms and M is a class of monomorphisms in X , both con-

taining the isomorphisms of X , such that every morphism in X has an (E ,M)-

factorization and the (E ,M)-diagonalization property holds. Of the resulting

properties for M (and dually for E), we mention that M is closed under com-

position and under limits; it contains the regular monomorphisms of X and is

stable under pullback and left-cancelable (so that m · n ∈M implies n ∈M).

For every object X, the class sub(X) of M-morphisms with codomain X is

preordered by

n ≤ n ⇔ (∃ j) n · j = m ;

we write m ∼= n if m ≤ n and n ≤ m. Under the given assumptions, sub(X)

has all set-indexed infima, given by multiple pullback in X . But since sub(X)

may be large, one often assumes X to have multiple pullbacks of arbitrarily

large families of morphisms in M with common codomain, with the pullbacks
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belonging to M. In the terminology of [36], this means that X is M-complete

or, equivalently, that the (E ,M)-factorization system for morphisms extends to

an (IE,M)-factorization system for arbitrarily large sinks (cf. [1]). In particu-

lar, sub(X) then has all infima and suprema, with the latter being obtained by

(IE,M)-factoring the given sink of M-morphisms.

We frequently refer to sub(X) as the subobject lattice of X (although only

sub(X)/ ∼= actually has the structure of a meet-semilattice). Note that X is

automatically M-complete when X is M-wellpowered, i.e., if each subobject

lattice has a small skeleton.

1.2. Every morphism f : X → Y in X induces a pair of adjoint functors

f(−) a f−1(−) : sub(Y )→ sub(X) ,

with f−1(n) the pullback of n ∈ sub(Y ) along f , and with f(m) the M-part of

the (E ,M)-factorization of f ·m for m ∈ sub(X); in case f ∈M, f(m) is simply

the composite f ·m. One always has m ≤ f−1(f(m)), with “∼=” holding in case

f ∈ M, as well as f(f−1(n)) ≤ n, with “∼=” holding in case f ∈ E and E stable

under pullback along M-morphisms. More precisely, one has:

1.3 Proposition. The following conditions are equivalent:

(1) For every morphism f : X → Y in E and all n ∈ sub(Y ), f(f−1(n)) ∼= n.

(2) E is stable under pullback along M-morphisms.

(3) The Frobenius Reciprocity Law holds, that is:

f(m ∧ f−1(n)) ∼= f(m) ∧ n

for all f : X → Y in X , m ∈ sub(X) and n ∈ sub(Y ).

Proof: (1)⇒(2) is obvious.

(2)⇒(3): In the diagram below, all the left, the right and the back face are

pullback diagrams, hence the front face is a pullback diagram. Consequently, by

hypothesis, f ′ belongs to E , which implies the derived formula.
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(3)⇒(1): For f ∈ E one has f(1X) ∼= 1Y . Hence one applies the Frobenius

Reciprocity Law in case m ∼= 1X .

1.4. The (E ,M)-factorization system is said to satisfy the Beck-Chevalley

Property if for every pullback diagram

and all m ∈ sub(X), one has

φ(ψ−1(m)) ∼= g−1(f(m)) .

Taking g = n to be in M, one readily sees that the Frobenius Reciprocity Law

is a particular case of he Beck–Chevalley Property. In fact, one has (cf. [26]):

1.5 Proposition. The (E ,M)-factorization system satisfies the Beck–

–Chevalley Property if and only if E is stable under pullback.

Proof: One follows the same argumentation as in 1.3 (2)⇒(3)⇒(1), using

the diagram
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1.6. Stability of E under pullback is guaranteed in particular when E is a

surjectivity class, that is: if there exists a class P of objects in X such that a

morphism f : X → Y in X belongs to E exactly when every P ∈ P is projective

w.r.t. f (so that every morphism y : P → Y factors as f · x = y).

1.7. For every Y ∈ X , the comma category (or sliced category) X/Y of

morphisms with codomain Y (of which sub(Y ) is a full subcategory) inherits

the factorization system from X : let EY and MY denote the class of morphisms

in X/Y whose underlying X -morphisms belong to E and M, respectively; then

X/Y has a proper (EY ,MY )-factorization system and isMY -complete whenever

X is M-complete. Furthermore, if E is a surjectivity class in X , then EY is a

surjectivity class in X/Y : the needed class PY of objects in X/Y is given by all

morphisms in X with codomain Y and with domain in P.

Note that the subobject lattice sub(f) of f ∈ X/Y (with f : X → Y in X ) is

isomorphic to the subobject lattice sub(X) of X ∈ X .

2 – Closure operators

2.1. (Cf. [9]) A closure operator c of X with respect to M is given by a

family of maps cX : sub(X)→ sub(X) (X ∈ X ) such that

1. c is extensive (m ≤ cX(m) for all m ∈ sub(X));

2. c is monotone (m ≤ n ⇒ cX(m) ≤ cX(n) for all m,n ∈ sub(X));

3. every morphism f : X → Y is c-continuous, that is: f(cX(m)) ≤ cY (f(m))

for all m ∈ sub(X), or, equivalently, cX(f−1(n)) ≤ f−1(cY (n)) for all

n ∈ sub(Y ).
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Due to 1, every m : M → X in M factors as

M
γm
−→ cX(M)

cX(m)
−→ X ,

and due to 2 and 3, this factorization is functorial; hence, whenever one has

f ·m = n · f ′ in X with m,n ∈M, then there is a unique morphism f ′′ rendering

the diagram

commutative. In other words, with 2 = {· −→ ·} andM2 the full subcategory of

X 2 with object classM, a closure operator is equivalently described by a pointed

endofunctor of M2 which commutes with codomain functor M2 → X .

2.2. A subobject m ∈ sub(X) is c-closed if m ∼= cX(m) (so that γm is iso),

and it is c-dense if cX(m) is iso. More generally, a morphism f : X → Y is c-dense

if f(1X) is c-dense. WithMc and Ec we denote the class of all c-closed subobjects

and of all c-dense morphisms, respectively. It follows from the functoriality of

the closure operator that the (E c,Mc)-diagonalization property holds in X , but

morphisms in X may not have (Ec,Mc)-factorizations (cf. [9]).

Mc and Ec have the same closedness and stability properties which we have

mentioned for M and E in 1.1 except closedness under composition. (Also, in

general,Mc is left-cancelable only w.r.t. monomorphisms, so thatm·n ∈Mc with

m monic implies n ∈ Mc.) Failure of closedness under composition is directly

linked to failure of (Ec,Mc)-factorizability, as we shall see next.

2.3. A closure operator c is idempotent if cX(m) is c-closed for every m ∈

sub(X), and it is weakly hereditary if γX(m) is c-dense for every m ∈ sub(X),

X ∈ X . The following properties are shown in [9] and [11]:

1. If c is idempotent, then Ec is closed under composition, and if c is weakly

hereditary, then Mc is closed under composition.

2. One may have both Ec andMc closed under composition, but with c neither

idempotent nor weakly hereditary.
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3. The following are equivalent:

i. morphisms can be (Ec,Mc)-factored,

ii. c is idempotent and Mc is closed under composition,

iii. c is weakly hereditary and Ec is closed under composition,

iv. c is idempotent and weakly hereditary.

2.4. If z : Z → X has a retraction (so that there is a morphism p with

p · z = 1), then the closure cZ(m) of any m ∈ sub(Z) can be computed as

z−1(cX(z·m)). One calls a closure operator c hereditary if cZ(m) ∼= z−1(cX(z·m))

holds for all m : M → Z and z : Z → X in M. It was shown in [11] that c is

hereditary if and only if c is weakly hereditary and the class E c is left-cancelable

w.r.t. M, i.e., m · f ∈ Ec with m ∈M holds only if f ∈ Ec.

2.5. Closure operators w.r.t.M are preordered pointwise: c ≤ d iff cX(m) ≤

dX(m) for all m ∈ sub(X), X ∈ X . Infima and suprema of families of closure

operators exist to the extent infima and suprema of subobjects exist and are

formed “pointwise”. Since idempotency is stable under meet and since weak

hereditariness is stable under join, a closure operator c has an idempotent hull

ĉ and a weakly hereditary core č whenever X is M-complete. One can prove:

Mĉ = Mc, E č = Ec, ĉ is weakly hereditary if c is, and č is idempotent if c is

(cf. [11]). If X is M-wellpowered, then ĉ and č can be obtained by transfinite

iteration of c (see [9] for details); one usually writes c∞ and c∞ in this case.

2.6. For a small family (Xi)i∈I of objects in X and any subset J ⊆ I, let

XJ :=
∏
i∈J Xi and denote by πJ : XI → XJ the obvious projection. A closure

operator c is said to satisfy the finite structure property of products (FSPP) if

for all m,x ∈ sub(XI) one has x ≤ cXI
(m) whenever πF (x) ≤ cF (πF (m)) holds

for every finite subset F ⊆ I (cf. [11]). Equivalently this means that

(∗) cX(m) ∼=
∨

F finite

π−1F (cXF
(πF (m)))

for every m ∈ sub(X).

2.7. Keeping the notation of 2.6 we observe that the morphisms πF present

the product XI as an inverse limit of the finite products XF . The purpose of

FSPP is to guarantee that this presentation is also available for c-closures, in the

following sense. Given m : M → X in M, c-continuity of πF gives a morphism

τF rendering the diagram
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commutative, for every finite F ⊆ I, naturally in F ; now one easily shows:

2.8 Proposition. A closure operator c satisfies FSPP if and only if

(∗∗) cXI
(M) ∼= lim

←−
F

cXF
(πF (M))

for all m : M → XI in M.

Proof: Given a compatible family (αF : A → cXF
(πF (M))), one first ob-

tains an arrow b : A→ XI
∼= lim
←−

XF with πF · b = cXF
(πF (m)) ·αF for all F and

then morphisms βF : A → π−1F (cXF
(πF (M))) through which b factors. Hence

(∗) implies (∗∗). Conversely, given a morphism b which factors through every

π−1F (cXF
(πF (M))) by (a necessarily unique arrow) βF , the family (βF ) is auto-

matically compatible. Now (∗∗) shows that b must factor through cXI
(M).

2.9. A closure operator c of X w.r.t. M induces a closure operator cY

w.r.t. MY for every Y ∈ X : for every m : h → f in MY with f : X → Y ,

let cYf (m) := cX(m) : f · cX(m) → f , i.e., closures are formed as in X . If c

is idempotent or (weakly) hereditary, the same is true for cY . Also FSPP is

inherited, provided c is hereditary, as we shall show next.

2.10 Proposition. For a hereditary closure operator c of X with FSPP and

for every Y ∈ X , also the induced closure operator cY of X/Y has FSPP.

Proof: For a small family (fi : Xi → Y )i∈I of objects in X/Y and any

subset J ⊆ I, the product of (fi)i∈J in X/Y is given by its multiple pullback

gJ : UJ → Y in X , and this can be constructed by first forming the product

(qJi : XJ → Xi)i∈J in X and then the joint equalizer uJ : UJ → XJ of (fi · q
J
i )i∈J

in X ; one then has gJ = fi · q
J
i · uJ for all i ∈ J . For every finite subset F ⊆ I,

the projection vF : gI → gF in X/Y is given by the X -morphism vF : UI → UF
with uF · vF = πF · uI and πF as in 2.6.

Let us now assume vF (x) ≤ cUF
(vF (m)) for x,m ∈ sub(UI). One then has:

πF (uI ·x) ∼= uF ·vF (x) ≤ uF · cUF
(vF (m)) ≤ cXF

(uF ·vF (m)) ∼= cXF
(πF (uI ·m)) .
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FSPP for c yields uI · x ≤ cXI
(uI ·m), hence

x ≤ u−1I (cXI
(uI ·m)) ∼= cUI

(m)

since c is hereditary. This proves FSPP for cY .

2.11. Our standard example is the category X = T op of topological spaces

with its (surjective, embedding)-factorization structure and its natural Kura-

towski closure operator, which is idempotent and hereditary and satisfies FSPP.

3 – Closure-preserving morphisms

3.1. Let c be a closure operator of X w.r.t. M. A morphism f : X → Y in

X is c-preserving if f(cX(m)) ∼= cY (f(m)) for all m ∈ sub(X). In this case f(−)

maps c-closed subobjects to c-closed subobjects, and this property is equivalent

to c-preservation in case c is idempotent, but not in general.

3.2 Proposition.

(1) Every isomorphism of X is c-preserving, and c-preserving morphisms are

closed under composition.

(2) Let the composite g · f be c-preserving. Then f is c-preserving if g ∈

M, and g is c-preserving if f ∈ E with E stable under pullback along

M-morphisms.

(3) (a) Every c-preserving morphism in M is a c-closed subobject.

(b) If c is weakly hereditary, then every c-closed subobject is a c-preserving

morphism; in fact, weak hereditariness is not needed if the subobject

has a retraction.

(c) If c is idempotent and if every c-closed subobject is a c-preserving

morphism, then c is weakly hereditary.

(4) If c is hereditary and if E is stable under pullback along M-morphisms,

then every pullback of a c-preserving map along an M-morphism is

c-preserving; in fact, hereditariness is not needed if the pullback of the

given M-morphism has a retraction.

Proof: (1) is trivial. (2) For f : X → Y , g : Y → Z with g · f c-preserving,
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in case g ∈M one has

cY (f(m)) ∼= cY (g
−1(g(f(m))))

≤ g−1(cZ(g(f(m))))

∼= g−1(g(f(cX(m)))) ∼= f(cX(m))

for all m ∈ sub(X), as desired. In case f ∈ E with E as in 1.3 one concludes

similarly
cZ(g(n)) ∼= cZ(g(f(f

−1(n))))

∼= g(f(cX(f−1(n))))

≤ g(f(f−1(cY (n)))) ∼= g(cY (n)) .

(3) Let m : M → X be in M. If m is c-preserving, then it preserves in

particular the closure of 1M , hence m ∼= cX(m). Conversely, let m be c-closed

and assume c to be weakly hereditary. Then, for every k : K → M , in the

factorization

K
γm·k−→ cX(K)

cX(m·k)
−→ X ,

the morphism γm·k is c-dense, with cX(m · k) ≤ cX(m) ∼= m. Hence the functo-

riality of c shows cX(m · k) ≤ m · cM (k), as desired. If m has a retraction, the

use of weak hereditariness of c can be avoided, due to the first statement of 2.4.

This completes the proof of (a) and (b). Finally, under the hypotheses of (c), the

morphism n := cX(m) : N → X is c-preserving, hence

n · cN (γm) ∼= cX(n · γm) = cX(m) = n .

Consequently, cN (γm) is iso, and the proof of the weak hereditariness is complete.

(4) For f : X → Y in X and n : N → Y in M, we must show that f ′ :

f−1(N) → N is c-preserving. But for every k : K → f−1(N) in M, we may

apply the Frobenius Reciprocity Law to m := cX(n′ · k) with n′ = f−1(n) and

obtain
cN (f ′(k)) ∼= n−1(n(cN (f ′(k))))

≤ n−1(cY (f(n
′ · k)))

∼= n−1(f(cX(n′ · k)))

∼= f ′((n′)−1(m)) .

If c is hereditary or if n′ has a retraction, (n′)−1(m) ∼= cf−1(N)(k), and this

completes the proof.

We shall apply these rules in Section 5 below.
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4 – Hausdorff separation

4.1. Let c be a closure operator of X w.r.t. M. An object A ∈ X is

c-Hausdorff if for all u, v : X → A in X and m ∈ sub(X) with u ·m = v ·m, also

cX(m) ·u = cX(m) · v. By Haus(c) we denote the full subcategory of c-Hausdorff

objects in X .

Recall that an arbitrary family σ = (pi : A → Ai)i∈I of morphisms in X

with common domain is monic (or a mono-source) if for all u, v : X → A in X ,

pi ·u = pi ·v for all i ∈ I always implies u = v. A full subcategory A of X is closed

under mono-sources if Ai ∈ A for all i ∈ I implies A ∈ A, for every mono-source

σ in X .

4.2 Proposition. (Cf. [3])

(1) Haus(c) is closed under mono-sources in X , in particular under all lim-

its in X . Consequently, Haus(c) is extremally-epireflective in X if X is

E-cowellpowered.

(2) An object A of X is c-Hausdorff if and only if the diagonal morphism

δA : A→ A×A is c-closed.

(3) Haus(c) = Haus(ĉ) if X is M-complete.

Proof: (1) For a mono-source σ as in 4.1, and for u, v : X → A and

m ∈ sub(X), assume u · m = v · m. Then (pi · u) · m = (pi · v) · m implies

(pi ·u)·cX(m) = (pi ·v)·cX(m) whenever Ai ∈ Haus(c), hence u·cX(m) = v·cX(m)

since σ is monic.

Reflectivity of Haus(c) in X follows from the General Adjoint Functor Theo-

rem (see [1] and 7.2 below).

(2) The diagonal δA is the equalizer of the product projections p1, p2 :A×A→A.

If A is c-Hausdorff, one has p1·c(δA) = p2·c(δA), hence c(δA) ≤ δA by the equalizer

property. Consequently, δA is c-closed.

Conversely, let δA be c-closed and assume u ·m = v ·m for u, v : X → A and

m ∈ sub(X). Then the diagram
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commutes, and the functoriality of c (cf. 2.1) yields a morphism t : cX(M) → A

with δA · t = 〈u, v〉 · cX(m), hence u · cX(m) = t = v · cX(m).

(3) Follows from (2) since Mc =Mĉ (cf. 2.5).

4.3. A morphism f : A → B of X is c-Hausdorff if f is cB-Hausdorff as an

object of X/B. This simply means that for all u, v : X → A in X andm ∈ sub(X)

with u ·m = v ·m and f · u = f · v, one has u · cX(m) = v · cX(m); equivalently,

the diagonal morphism δf : A → Ker f = A ×B A is c-closed. Trivially, if A is

c-Hausdorff, every f : A → B is c-Hausdorff, and every monomorphism of X is

c-Hausdorff. Moreover:

4.4 Lemma. For the commutative diagrams

let the extended source (f, pi)i∈I be monic. Then, if each fi is c-Hausdorff, also

f is c-Hausdorff.

Proof: For u, v : X → A and m ∈ sub(X) with f ·u = f · v and u ·m = v ·m

one has fi · pi · u = fi · pi · v, hence pi · u · cX(m) = pi · v · cX(m) for each i ∈ I.

Since also f · u · cX(m) = f · v · cX(m), with the mono-assumption one concludes

that u · cX(m) = v · cX(m).

4.5 Proposition. The class of c-Hausdorff morphisms in X is left-cancelable,

closed under limits and stable under (multiple) pullback. It is also closed under

composition if c is weakly hereditary.

Proof: For the first statement, apply the lemma to the diagrams

For the second statement, consider c-Hausdorff morphisms f : A → B and g :

B → C and assume g · f · u = g · f · v and u · m = v · m for u, v : X → A

and m ∈ sub(X). Since g is c-Hausdorff, f · u · cX(m) = f · v · cX(m) follows.
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With γm : M → Y := cX(M) as in 2.1 one then concludes u · cX(m) · cY (γm) =

v ·cX(m) ·cY (γm) since f is c-Hausdorff. But when c is weakly hereditary, cY (γm)

is iso, and u · cX(m) = v · cX(m) follows.

4.6. In the standard example X = T op with the usual closure, the

c-Hausdorff objects are the Hausdorff spaces, and a continuous map f : A → B

is c-Hausdorff if for any u, v ∈ A with u 6= v and f(u) = f(v) one has disjoint

neighbourhoods U, V of u, v, respectively. Hence we have the same notion of

T2-separation for maps as the one used in [25] and in the recent paper [29].

5 – Compactness and perfectness

5.1. Let c be a closure operator of X w.r.t. M. An object X ∈ X is

c-compact if the product projection pY : X × Y → Y is c-preserving for every

object Y ∈ X . By Comp(c) we denote the full subcategory of c-compact objects

in X , and we put

CompHaus(c) = Comp(c) ∩Haus(c) .

5.2 Proposition.

(1) If X in X is c-compact and m : M → X in M is c-closed, with c weakly

hereditary, thenM is c-compact; in fact, weak hereditariness is not needed

if m has a retraction.

(2) For X c-compact and Y c-Hausdorff, every morphism f : X → Y is

c-preserving.

(3) For f : X → Y in E , with E stable under pullback, if X is c-compact, so

is Y .

(4) Comp(c) is closed under finite products in X .

(5) If c is weakly hereditary, then CompHaus(c) is closed under finite limits

in X .

(6) Comp(c) ⊆ Comp(ĉ) if X is M-complete.

Proof: (1) The projection M × Y → Y decomposes as

M × Y
m×1
−→ X × Y −→ Y ,

with both morphisms c-preserving; in fact, m × 1 is c-closed (cf. 2.2), hence

c-preserving by 3.2(3)(b).
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(2) The morphism f factors as

X
〈1X ,f〉
−→ X × Y −→ Y

with both morphisms c-preserving; in fact, the graph of f is c-closed since it is

the pullback of the diagonal of Y which is c-closed (cf. 4.2(2)):

(3) For every object Z, the projection X × Z → Z factors as

X × Z
f×1
−→ Y × Z −→ Z .

As a pullback of f , the morphism f ×1 belongs to E . Hence the cancellation rule

3.2(2) yields c-preservation of the projection Y × Z → Z.

(4) For X,Y c-compact and any object Z, the projection (X × Y ) × Z → Z

factors as

X × (Y × Z) −→ Y × Z −→ Z ,

with both factors c-preserving. The terminal object T of X is trivially c-compact

since the projection T × Z → Z is iso for every Z.

(5) According to (4) and 4.2(1), CompHaus(c) is closed under finite products

in X . For every c-Hausdorff object A, in any equalizer diagram

M
m
−→ X

f
−→
−→
g
A

of X , one has f · cX(m) = g · cX(m), hence m ∼= cX(m) is c-closed. Consequently,

if X ∈ CompHaus(c), also M ∈ CompHaus(c), by (1) and 4.2(1).

(6) is trivial.

5.3. A morphism f : A → B in X is c-compact if f is cB-compact as an

object of X/B. Since products in X/B are given by pullback, c-compactness of

f simply means that f is stably c-preserving , i.e., in every pullback diagram
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in X , f ′ is c-preserving. The morphism f is called c-perfect if it is c-compact and

c-Hausdorff.

There is an immediate connection between c-compact objects and c-compact

morphisms:

5.4 Proposition. If in the pullback diagram above Y and f are c-compact,

then also X is c-compact. In particular, a c-compact morphism is c-preserving

and has c-compact fibres.

Proof: When crossing the pullback diagram above with 1Z for any object

Z, we obtain the pullback diagram

Since f × 1 is a pullback of f , also f ′ × 1 is a pullback of f and therefore

c-preserving. When composing it with the c-preserving projection Y × Z → Z,

we see that also the projection X × Z → Z is c-preserving, as desired.

Fibres of f are pullbacks as above with Y the terminal object, which is

c-compact.

Next we collect some basic properties of c-compact morphisms.

5.5 Proposition.

(1) Every isomorphism is c-compact, and every c-closed morphism in M is

c-compact if c is weakly hereditary.

(2) The class of c-compact morphisms in X is stable under pullback and closed

under composition and under the formation of finite direct products.

(3) Let the composite g · f be c-compact. Then:

(a) f is c-preserving if g is c-Hausdorff;
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(b) f is c-compact if g is a monomorphism;

(c) g is c-compact if f ∈ E , with E stable under pullback.

Proof: (1) For the second statement, observe that Mc is stable under pull-

back and apply 3.2(3).

(2) Since pullback diagrams compose, the first two statements are trivial. The

direct product f1 × f2 : X1 ×X2 → Y1 × Y2 of two c-compact morphisms f1, f2
in X can be presented as the (fibred) product of f ′1, f

′
2 ∈ X/Y1 × Y2, with f

′
i the

pullback of fi along the product projection Y1 × Y2 → Yi (i = 1, 2)

Since f ′1, f
′
2 are c-compact, 5.2(4) (applied to X/Y1×Y2) gives the c-compactness

of f1 × f2.

(3)(a) and (c) follow from 5.2(2) and (3), while (b) follows from the pullback

stability of c-compact morphisms:

5.6 Corollary. The class of c-perfect morphisms in X contains all isomor-

phisms, even all c-closed morphisms of M if c is weakly hereditary. It is stable

under pullback, left-cancelable w.r.t. monomorphisms and closed under the for-

mation of finite direct products. It is also closed under composition if c is weakly

hereditary.

Proof: Combine 4.5 and 5.5.

5.7 Corollary. For f : X → Y in E c-compact, with E stable under pullback

along M-morphisms, X ∈ Haus(c) implies Y ∈ Haus(c).
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Proof: Consider the commutative diagram

in which δX and f × f are c-preserving due to 4.2(2), 3.2(3) and 5.5(2). Now

apply 3.2 again to conclude that δY is c-closed.

We conclude this section by giving two criteria which are useful when checking

c-compactness for morphisms and for objects in concrete cases.

5.8 Proposition. Let c be hereditary and E stable under pullback along

M-morphisms. Then a morphism f : X → Y is c-compact if and only if f × 1Z :

X × Z → Y × Z is c-preserving for every object Z.

Proof: The pullback f ′ : W → Z of f along a morphism h : Z → Y may be

obtained in two steps, as follows:

The upper diagram is a pullback diagram since the lower and the whole diagram

are pullbacks. Hence, if f × 1 is c-preserving, also f ′ is c-preserving, by 3.2(4).

5.9 Corollary. Under the hypotheses of 5.8, every morphism f : X → Y

with X c-compact and Y c-Hausdorff is c-compact.

Proof: The morphism f in X can be considered a morphism



TOPOLOGY IN A CATEGORY: COMPACTNESS 415

in X/T , with T the terminal object of X and with u c-compact and v c-Hausdorff

(see 1.7). As pullbacks of u and v in X , the projections p : X × Z → Z and

q : Y ×Z → Z are c-compact and c-Hausdorff, respectively, for every Z ∈ X . By

5.2(2), the morphism

is c-preserving in X/Y , hence also in X . Now 5.8 applies.

5.10. For c idempotent, let us call a sink (gi : Gi → Y )i∈I in X c-final if any

m ∈ sub(Y ) is c-closed whenever each g−1i (m) is c-closed. A class G of objects in

X is c-generating in X if for every object Y there is a c-final sink with codomain

Y and with all domains in G.

5.11 Proposition. Let c be idempotent, let E be stable under pullback, and

let G be a c-generating class of objects in X . Then an object X in X is c-compact

if the projection X ×G→ G is c-preserving for every G ∈ G.

Proof: Let Y be in X and pick a c-final sink (gi : Gi → Y )i∈I . For every

i ∈ I, we have a pullback diagram

By the Beck–Chevalley Property 1.5, for every m ∈ sub(X × Y ), g−1i (p(m)) ∼=
pi((1×gi)

−1(m)). Therefore, since each pi is c-preserving and since (gi) is c-final,

c-closedness of m yields c-closedness of p(m). Since c is idempotent, this suffices

to conclude c-preservation of p.

5.12. In case c is also hereditary, it is sufficient in 5.11 to assume G to

be c-subgenerating , in the following sense: for every object Y ∈ X there is a

morphism Y → Z in M and a c-final sink with codomain Z and domains in G.

This follows immediately from 5.11 and 3.2(4).
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5.13. In the standard example X = T op with c the usual closure, c-compact

objects are the usual compact spaces, due to the Kuratowski–Mrówka Theorem

(cf. [13]). As stably-closed maps, the c-compact morphisms are the proper maps

in the sense of Bourbaki [2], which are equivalently described as closed maps with

compact fibres; such maps are called compact in [33] and [29]. Many authors call

such maps perfect, while Engelking [13] requires Hausdorffness of the domain

of the map. Hence the notion of perfectness adopted here lies in between the

no-separation-at-all notion and Engelking’s terminology. The properties proved

here in general give the standard properties for compact spaces and perfect maps,

with the important exceptions of the product theorems by Tychonoff and Froĺık,

which follow next.

5.14 Remark. In general, c-compactness of a morphism is not equiva-

lently described by the necessary conditions of being c-preserving and having

c-compact fibres (cf. 5.4). Simply consider any c-preserving f : X → Y which is

not

c-compact and find any morphism h : Y → Z not in E . Then the X/Z mor-

phism

is c-preserving, and the condition of having c-compact fibres is vacuously satisfied,

since a fibre of h would have to be given by a section of h, forcing h to belong to

E .

Not even the hypothesis that pullbacks of morphisms V → Y with V

c-compact along f have again c-compact domain would make a c-preserving mor-

phism f : X → Y c-compact, in general. To see this, again pass to the sliced

category X/Z, with X = T op, Z a two-point indiscrete space, and h a constant

map.

6 – Tychonoff’s and Froĺık’s Theorem

6.1. We continue to consider a closure operator c of X w.r.t. M as well as

objects Y , Xi ∈ X , i ∈ I. Keeping the notation of 2.6/2.7, for every m : M →

XI × Y in M, we have a commutative diagram
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with projections p, pF , πF = πF ×1Y and induced morphisms e, eF , τF for every

finite subset F ⊆ I. We observe that the morphisms πF present XI × Y as an

inverse limit of the objects XF ×Y , and the morphisms τF assume the same role

under FSPP (see 2.8).

If all objects Xi are c-compact, then also XF is c-compact for every finite

set F ⊆ I by 5.2(4), hence pF is c-preserving. But the latter property means

equivalently that eF belongs to E . We say that c and E have the inverse-limit

stability property of products (ILSPP) if eF ∈ E for all F ⊆ I implies e ∈ E . In

this terminology, one obviously has:

6.2 Proposition. If c and E have FSPP and ILSPP, then Comp(c) is closed

under direct products in X .

In the presence of FSPP and the Axiom of Choice, ILSPP can be obtained as

follows:

6.3 Lemma. Let E be a surjectivity class (cf. 1.6). Then, under the Axiom

of Choice, FSPP implies ILSPP.

Proof: We may assume that the indexing system I is given by an ordinal

number κ; for notational purposes we distinguish between κ and the set κ = {β :

β < κ}. Extending the notation of 6.1 naturally, for all α ≤ γ ≤ κ one has a

commutative diagram
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For every y : P → c(p(M)), with P ∈ P and P as in 1.6, and every γ ≤ κ,

we shall construct a morphism yγ with eγ · yγ = y; for γ = κ, this then shows

e = eκ ∈ E and finishes the proof.

In case γ = 0, eγ is (like pγ) an isomorphism, hence y0 = e−10 · y does the job.

In case γ = α+ 1 is a successor, the projection

πγα : Xγ × Y ∼= Xα ×Xα × Y → Xα × Y

is c-preserving (due to the c-compactness of Xα), hence τ
γ
α belongs to E ; con-

sequently, the existing morphism yα factors as yα = τγα · yγ , hence eγ · yγ =

eα · τ
γ
α · yγ = eα · yα = y. In case γ is a limit ordinal, the existing morphisms yα

induce a morphism x : P → Xγ × Y such that

pγ · x = c(p(m)) · y and qγβ · x = qαβ · c(πα(m)) · yα

for all β < γ, with α = β + 1 and with qγβ : Xγ × Y → Xβ denoting a product

projection. We now want to show that x factors through c(πγ(m)), by a morphism

yγ with eγ · yγ = y. For that it suffices to show x̂ :=x(1P ) ≤ c(πγ(m)). In fact,

since c satisfies FSPP, it is enough to consider a finite set F ⊆ γ and show

πγF (x̂) ≤ cXF
(πγF (πγ(m))) ∼= cXF

(πF (m)) .

But since γ is a limit ordinal, one can find a successor ordinal α < γ with F ⊆ α.
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Continuity of παF then gives

πγF (x̂)
∼= παF (π

γ
α(x̂))

∼= παF (c(πα(m)) · yα(1P ))

≤ παF (c(πα(m)))

≤ cXF
(παF (πα(m))) ∼= cXF

(πF (m)) ,

as desired. This completes the proof.

6.2 and 6.3 give immediately:

6.4 Tychonoff’s Theorem. If E is a surjectivity class and c has FSPP,

under the Axiom of Choice Comp(c) is closed under direct products in X .

With 4.2(1) and 5.2(5) we conclude:

6.5 Corollary. Under the assumptions of 6.2 or of 6.4, CompHaus(c) is

closed under limits in X whenever c is weakly hereditary.

We can now apply 6.4 to the sliced category X/Y and obtain:

6.6 Froĺık’s Theorem. Let E be a surjectivity class and c be a hereditary

closure operator with FSPP. Then the direct product
∏
i fi :

∏
iXi →

∏
i Yi of

a family fi : Xi → Yi (i ∈ I) of c-compact (c-perfect) morphisms is c-compact

(c-perfect).

Proof: We simply extend the proof of 5.5(2) given in the finite case to infinite

families, as follows. The pullback f ′i : Pi → Y =
∏
j Yj of fi along the projection

pi : Y → Yi is c-compact. Proposition 2.10 allows us to apply 6.4 to the sliced

category X/Y and cY in lieu of X and c. Hence the fibred product of (f ′i)i∈I is

c-compact; but this is exactly the morphism
∏
i fi. The assertion for c-perfect

morphisms follows with 4.5.

6.7. The classical theorems in T op on products of compact spaces and perfect

maps follow immediately from the categorical theorems presented in this section.

We remark that in T op inverse limits commute with the (usual) closure c

(ILCC), i.e.,

if (X, (πi : X → Xi)) is the inverse limit of (Xi) and m : M → X

belongs to M, then

cX(M) ∼= lim
←−

cXi
(πi(M)) ,

(see [13], Prop. 2.5.6); hence FSPP is a particular instance of ILCC (see 2.8).
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By contrast, the following generalization of ILSPP to arbitrary inverse limits:

if (X, (πi : X → Xi)) is an inverse limit and (ei : Xi → Y ) is a

compatible family of morphisms in E , then the induced morphism

e : X → Y belongs to E ,

which we call the inverse-limit stability property (ILSP), does no longer hold true

in T op. But ILSP remains true in Loc (see 9.6 below and [38], 2.3). Consequently,

since ILCC and ILSP for any closure operator c of X make Comp(c) closed under

inverse limits in X , this property holds in Loc (see [38] for a slightly different

argumentation), while it fails for T op.

7 – Stone–Čech compactification for objects and morphisms

Throughout this section let c be an idempotent and weakly hereditary closure

operator with FSPP, and E is assumed to be a surjectivity class (but see Remark

7.6 below). We assume the Axiom of Choice.

7.1. A full subcategory A of X is called c-cowellpowered if every A ∈ A

has only a small set of non-isomorphic c-dense morphisms with domain A and

codomain in A; in other words, if the comma category A/(E c ∩ MorA) has a

small skeleton.

An easy application of the “General Adjoint Functor Theorem” gives:

7.2 Theorem. If Haus(c) is c-cowellpowered, then CompHaus(c) is c-dense-

reflective in Haus(c).

Proof: For H ∈ Haus(c), consider a representative system of non-isomorphic

c-dense morphisms fi : X → Yi with Yi ∈ CompHaus(c) (i ∈ I) and form the

induced map f : X →
∏
i∈I Yi, which factors through the c-closed subobject

βX := c(f(X))→
∏

i∈I

Yi

by a c-dense map βX : X → βX, since c is weakly hereditary and idempotent.

Note that βX is c-compact and c-Hausdorff, by 6.5 and 5.2(1).

An arbitrary morphism g : X → A ∈ CompHaus(c) factors through the

c-dense morphism g′ : X → c(g(X)), which must be isomorphic to some fi and

must therefore factor through βX . The resulting factorization of g is unique since

βX is c-dense and A is c-Hausdorff.
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7.3. A classH of morphisms in X is called c-cowellpowered if, for every object

Y ∈ X , the full subcategory H/Y of the comma category X/Y with objects in

H is cY -cowellpowered.

A morphism g : A→ B in X , is called c-antiperfect if it is orthogonal to every

c-perfect morphism, that is: if for every commutative square

with k c-perfect there is a unique morphism w with w · g = u and k · w = v.

7.4 Theorem. If c is hereditary and if the class of c-Hausdorff morphisms

is c-cowellpowered, then every c-Hausdorff morphism f : X → Y factors as

X
βf
−→ X

βf
−→ Y

with βf c-perfect and βf c-antiperfect. The restriction to c-Hausdorff morphisms

can be dropped if X is E-cowellpowered.

Proof: With H and K the classes of c-Hausdorff and c-perfect maps in

X , respectively, an application of 7.2 gives that, for every Y ∈ X , K/Y is

(cY -dense-)reflective in H/Y . Hence, with βf the (K/Y )-reflection, we need

to show only that the reflexion morphism βf is in fact c-antiperfect.

Given a commutative square as in 7.3, with g replaced by βf , we first form the

pullback P of k and v and obtain an induced morphism t rendering the diagram
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commutative. With k also k′ is c-perfect, hence also l :=(βf) · k′ : P → Y is

c-perfect. The reflection property of βf then gives a unique morphism s : X → P

with s · βf = t and l · s = βf , hence k′ · s = 1.

This implies v′ · s · βf = v′ · t = u and k · v′ · s = v · k′ · s = v, hence v′ · s is a

suitable “diagonal” for the original square.

Let now d : X → U be any morphism with d · βf = u and k · d = v. The

pullback property then yields a morphism e : X → P with v′ ·e = d and k′ ·e = 1.

We must show e = s in order to conclude d = v′ · s. But e satisfies the defining

equations for s: trivially, l · e = βf · k′ · e = βf , and from

k′ · e · βf = βf = k′ · t and v′ · e · βf = d · βf = u = v′ · t

one concludes e · βf = t.

If X is E-cowellpowered, then K/Y is EY -reflective in X/Y by 4.2(1), hence

K/Y is reflective in X/Y , and we can proceed as before.

7.5. For X = T op with c the Kuratowski closure operator, Theorem 7.2

gives the Stone–Čech compactification of a Hausdorff space: the condition of

c-cowellpoweredness is trivially satisfied since the size of a Hausdorff space Z

with a dense subset X cannot exceed 22
card X

. More generally, the class of

c-Hausdorff morphisms in T op is c-cowellpowered. In fact, if f : X → Y is

the restriction of a c-Hausdorff morphism g : Z → Y to a dense subspace X of

Z, then cardZ ≤ cardY × 22
card X

; simply note that there is an injective map

φ : Z → Y × PPX
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which assigns to z the pair with first component g(z) and second component

{U ∩X : U nhod of z in Z}. Hence Theorem 7.4 gives the Stone–Čech compact-

ification of a continuous map, see [33], [29].

7.6 Remark. Theorems 7.2 and 7.4 rely on the validity of FSPP and the

assumption that E be a surjectivity class only in so far as these conditions are

needed to prove Theorem 6.4. Hence, these conditions can be dropped whenever

one is able to prove the productivity assertion 6.4 by some other means such as

6.2.

8 – Henriksen–Isbell characterization of perfect morphisms

8.1. Let c be a closure operator such that CompHaus(c) is reflective in

Haus(c). Keeping the notation of 7.2, one defines X ∈ Haus(c) to be c-Tychonoff

if βX : X → βX belongs to M; equivalently, if X is embeddable into some

compact Hausdorff object. By T ych(c) we denote the full subcategory of Haus(c)

of c-Tychonoff objects. Categorical routine shows:

8.2 Proposition. If CompHaus(c) is Ec-reflective in Haus(c), then

CompHaus(c) is (Ec ∩ M)-reflective in T ych(c) and T ych(c) is E-reflective in

Haus(c).

Proof: The first statement holds true by definition of c-Tychonoff object,

and for the second statement one just confirms that in the (E ,M)-factorization

βX = (X
e
−→ Z

m
−→ βX) ,

one has βZ isomorphic to m ∈M, so that e is the T ych(c)-reflexion of X.

In order to characterize c-perfect morphisms of c-Tychonoff objects, we need

the following important lemma, the proof of which demonstrates again the power

of being able to switch between X and its slices:

8.3 Lemma. A c-compact morphism f : M → Y in X cannot be factored

through a c-dense extension (= subobject)m : M → X withX c-Hausdorff unless

m is an isomorphism.

Proof: Suppose we have a factorization f = g · m with g : X → Y and

m ∈ Ec ∩M. Then we have a c-dense morphism



424 M.M. CLEMENTINO, E. GIULI and W. THOLEN

in X/Y with f c-compact and g c-Hausdorff which, by 5.2(2), must also be

c-closed. Hence m is an isomorphism.

8.4 Theorem. Let E be stable under pullback alongM-morphisms, and let

c be a hereditary closure operator such that CompHaus(c) is c-dense-reflective in

Haus(c). For a morphism f : X → Y in X with X,Y ∈ T ych(c), the following

statements are equivalent:

(i) f is c-compact;

(ii) f is c-perfect;

(iii) f cannot be factored through a proper c-dense extension X → Z with Z

c-Hausdorff;

(iv)

is a pullback diagram.

Proof: Since every morphism with c-Hausdorff domain is c-Hausdorff, i) and

ii) are trivially equivalent.

i)⇒iii) was shown in 8.3.

iii)⇒iv) With f the functorial extension of f , form the pullback diagram

and consider the unique morphism m : X → Z with g ·m = f and n ·m = βX .

Since βX ∈ M and βY ∈ M, also m ∈ M and n ∈ M. Moreover, since βX is
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c-dense with c hereditary, also m is c-dense; in fact,

cZ(m) ∼= n−1(cβX(βX)) ∼= n−1(1βX) ∼= 1Z .

As a pullback in Haus(c), Z is c-Hausdorff, so that m must be an isomorphism

under hypothesis iii).

iv)⇒i) By 5.9, f is c-compact, hence also its pullback f .

8.5. In the standard example X = T op with the usual closure operator, the

necessary conditions for c-compact morphisms of being c-preserving and having

c-compact fibres (cf. 5.4) are known to be also sufficient. Hence 8.4 gives the

classical characterization of perfect maps of Tychonoff spaces as given by [23]

and [24].

9 – Examples

9.1. Topological spaces

As mentioned previously, an application of the general results in this paper

to the usual (Kuratowski-)closure operator of T op gives the basic theorems on

compact spaces and perfect maps. Other closure operators of T op and of some of

its supercategories (like the category of pretopological spaces (=Čech topological)

spaces) have been considered in [8]. Here we restrict ourselves to some additional

observations.

(1) The (Kuratowski-)compact spaces can be characterized as the compact

objects with respect to closure operators that are much finer than the

usual closure. In fact, with the compact closures k and k′ defined by

kX(M) =
⋃{

M ∩K : K ⊆ X compact
}
,

k′X(M) =
⋃{

M ∩K : K ⊆ X compact
}

for all X and M ⊆ X, we obtain the following.

Theorem. For any space X, the following conditions are equivalent:

(i) X is compact,

(ii) X is k-compact,

(iii) X is k′-compact,
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(iv) X is k̂-compact,

(v) X is k̂′-compact.

Proof: i)⇒ii) For M ⊆ X × Y with any space Y , consider y ∈

kY (p(M)). We must find x ∈ X such that (x, y) ∈ kX×Y (M). There

is a compact subset K ⊆ Y such that y ∈ p(M) ∩K. Since X × K is

compact, it is sufficient to find x ∈ X with (x, y) ∈M ∩X ×K. If there

were no such x, then for all x ∈ X we would have neighbourhoods Ux, Vx
of x, y, respectively, such that

(Ux × Vx) ∩ (X ×K) ∩M = ∅ .

Since X is compact, we may then choose x1, ..., xn ∈ X with X =⋃n
i=1 Uxi

. With V =
⋂n
i=1 Vxi

3 y we obtain a point z ∈ V ∩ p(M) ∩K.

Hence there is w with (w, z) ∈ M , which must belong to some Uxi
.

Consequently,

(w, z) ∈ (Uxi
× Vxi

) ∩ (X ×K) ∩M ,

a contradiction.

ii)⇒i) Assume that X is not compact and let (xα)α∈A be a net with

no cluster point in X. The set (A,≤) may be assumed to have a first

element. Let Y = A ∪ {∞} have the topology with base

[α,→) ∪ {∞} , α ∈ A .

It makes Y a compact T0-space. For M = {(xα, α) : α ∈ A} ⊆ X × Y

one has ∞ ∈ kY (p(M)) = kY (A) = A, but ∞ /∈ p(M), in particular

∞ /∈ p(kX×Y (M)), which contradicts ii).

ii)⇒iv) follows from 5.2(6).

iv)⇒i) Note that in ii)⇒i) we may replace k by any of its ordinal

powers (cf. [9]) and therefore by the idempotent hull of k.

The equivalence of i), iii), v) follows similarly.

Note that kX and k′X coincide for Hausdorff spaces X.

(2) The θ-closure defined by

θX(M) =
{
x ∈ X : (∀U neighbourhood of x) U ∩M 6= ∅

}
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satisfies FSPP. The θ-compact objects are precisely the H-closed spaces

in the sense of Alexandroff and Urysohn (which we treat here without

any separation condition; for Hausdorff spaces, the equivalence of i) and

iii) below was shown in [28]):

Theorem. For any space X, the following conditions are equivalent:

(i) X is H-closed (i.e., every open cover (Ai)i∈I of X admits a finite

subcollection (Aik)k=1,...,n such that
⋃
{Aik ; k = 1, ..., n} = X);

(ii) X is θ-compact;

(iii) X is θ̂-compact;

(iv) every filter F on X has θ-adherence points (that is,
⋂
{θF ;

F ∈ F} 6= ∅).

Proof: i)⇒ii) Let X,Y ∈ T op, with X H-closed, and letM ⊆ X×Y

and y ∈ Y \p(θM). Then, for each x ∈ X, (x, y) /∈ θM , which means that

there are open neighbourhoods Ux of x and Vy(x) of y in X such that

(Ux × Vy(x)) ∩ M = ∅. The family (Ux)x∈X is an open cover of X;

consequently, there are Ux1
, Ux2

, ..., Uxn such that
⋃
{Uxk

; k = 1, ..., n} =

X. Now, Wy =
⋂
{Vy(xk); k = 1, ..., n} is a closed neighbourhood of y in

Y , and, by assumption, ((
⋃n
k=1 Uxk

) ×Wy) ∩M = (X ×Wy) ∩M = ∅.

The last equality implies Wy ∩ p(M) = ∅, hence y /∈ θ(p(M)).

ii)⇒iii) follows from 5.2(6).

iii)⇒iv) Assume that F = {Fi : i ∈ I} is a filter on X with no

θ-adherence points. Consider the space Y = X ∪ {∞}, ∞ /∈ X, where

every x ∈ X is discrete and the basic neighbourhood of ∞ is {∞} ∪

(
⋂n
k=1 Fik). Then X ×X is θ-closed in X × Y , while p(X ×X) = X has

∞ as θ-adherence point in Y .

iv)⇒i) Assume that X is not H-closed, and let {Ai; i ∈ I} be an open

cover of X with no finite subcollection whose closures cover X. Then the

family F = {X\Ai; i ∈ I} is an (open) filter. For each x ∈ X, let Aix be

such that x ∈ Aix . Then Aix ∩ (X\Aix) = ∅, hence x is not θ-adherent to

F .

Consequently, Theorem 6.4 gives the Chevalley–Frink product theo-

rem [5] for H-closed spaces, again without any separation condition.
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(3) The sequential closure σ defined by

σX(M) =
{
x : x is a convergence point of a sequence in M

}

is hereditary and satisfies FSPP for countable indexing sets I.

Theorem. For any space X, the following conditions are equivalent:

(i) X is sequentially compact (i.e., every sequence in X has a con-

vergent subsequence),

(ii) X is σ-compact,

(iii) X is σ̂-compact,

(iv) the projection X×IN∞ → IN∞ is σ-closed (with IN∞ the Alexan-

droff compactification of the discrete IN).

Proof: i)⇒ii) is well known, and the equivalence of ii)⇒iv) can be

derived with the help of 5.11.

Since in Theorem 6.4 one may restrict the cardinality of the indexing

set I throughout, the validity of FSPP for countable indexing sets gives

the countable productivity of sequentially compact spaces. Moreover,

since σ does not satisfy FSPP in general and since sequentially compact

spaces are not productive, this example shows that FSPP is essential for

the validity of 6.4. (Also the condition that E be a surjectivity class is

essential for 6.4; see 9.7 below.)

9.2. Birkhoff closure spaces

Finite additivity of the Kuratowski closure in T op (∅ = ∅,M ∪N =M∪N) is

certainly a fundamental property when defining topological spaces. It is therefore

surprising that this property seems to play no role in the categorical treatment of

separation and compactness. However, if one drops the finite additivity require-

ment from the definition of “space”, the notions of Hausdorff separation and

compactness become trivial for objects and are still easy for morphisms. More

precisely, a closure space (X,F) is a set X with a family F of (“closed”) sub-

sets of X which is closed under arbitrary intersections; a map of closure spaces

is continuous if inverse images of closed sets are closed. This defines the cat-

egory BCS which, exactly like T op, has a (surjective, embedding)-factorization

structure and a natural closure operator c that is idempotent, hereditary and sat-

isfies FSPP. But (already finite) products in BCS behave totally different from

T op: M ⊆ X × Y is c-closed iff M = pX(M) × pY (M) with c-closed factors.
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Hence every object X is c-compact, but X is c-Hausdorff only if cardX ≤ 1. The

c-compact morphisms in BCS are exactly the c-preserving maps, while

c-Hausdorff morphisms are simply injective maps. The Stone–Čech compacti-

fication of an injection is given by the c-closure of its image.

9.3. Uniform spaces

In the category Unif of uniform spaces and uniformly continuous maps, con-

sider the usual topological closure. The functor “induced topology” Unif → T op

preserves direct products, hence topologically compact spaces are compact ob-

jects in Unif. Conversely, observe that in the Kuratowski–Mrówka Theorem, one

can restrict oneself to zerodimensional Hausdorff spaces as “test spaces”, and

such spaces are in particular uniformizable. Hence compact objects in Unif are

topologically compact. Also Hausdorffness takes on the usual topological mean-

ing.

Likewise, perfect morphisms in Unif are exactly the topologically perfect

maps, since the “test spaces” Z in 5.8 may be restricted to compact Hausdorff

spaces (cf. [13], 3.7.15).

9.4. Projection spaces

We present a category with an idempotent closure operator which, like the

σ-closure in T op, is finitely additive and hereditary, but for which even the

countable Tychonoff Theorem fails, because of failure of the countable FSPP.

The objects of Pro are unary algebras (X, (αn)n∈IN) whose operations satisfy

αn · αm = αmin{n,m} for all n,m ∈ IN; morphisms are homomorphisms. With re-

spect to the (surjective, injective)-factorization system, one considers the closure

operator c given by

cX(M) =
{
x ∈ X : (∀n ∈ IN) αn(x) ∈M

}

(cf. [18]). Calling an object discrete if all operations are identity morphisms,

one easily shows that the discrete 2-point object D2 is c-compact, but that no

infinite discrete object is c-compact. Consequently, the discrete object Dω
2 is not

c-compact. It is interesting to observe that, as in the previous example, one has

a concrete functor Pro → T op (since the closure operator c may be extended

from subalgebras to all subsets and is then finitely additive, hence it defines a

topology). But unlike Unif → T op, this functor does not preserve products.
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9.5. Topological groups

In the category T opGrp of topological groups and continuous homomorphisms

with the usual topological closure, topologically compact groups are certainly cat-

egorically compact in the sense of 5.1, but it is not known whether the converse

proposition holds. Nevertheless, Theorem 6.4 is applicable and gives that the

product of categorically compact groups is again categorically compact — a re-

sult that has been established independently and with topological methods by

Dikranjan and Uspenskij [12].

Compact morphisms must be closed and must have a compact kernel, but

again it is not known whether the converse proposition holds true.

9.6. Locales

That the Kuratowski–Mrówka characterization of compact objects remains

valid in the category Loc of locales (= the dual of the category Frm of frames,

i.e., of complete lattices with x∧
∨
yi =

∨
x∧yi) was shown in [34] (using choice)

and in [38] (without choice), while compact morphisms in Loc have been fully

characterized in [38] and [39]. As mentioned previously, the usual closure operator

satisfies FSPP and ILSPP, hence 6.2 gives the Tychonoff Theorem in Loc.

9.7. [J. Adámek, private communication]

The following example shows that even in the presence of FSPP the Tychonoff

Theorem may fail when E fails to be a surjectivity class.
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Let the non-trivial E-morphisms be those denoted by −→→ and the non-trivial

M-morphisms be those denoted by ↪→. Consider the idempotent and hereditary

closure operator c defined by

c(zn · dn) = zn ,

c(zω) = zω ,

c(zω · dω ·m) = zω · dω .

To see that the productivity of c-compactness fails, consider the product Xω of

(Xn)n∈IN. For each n ∈ IN, Xn is c-compact, but Xω is not c-compact, since

p : Xω × Z0 = Zω → Z0 is not c-preserving:

p(c(dω ·m)) = p(dω) = d0 6= 1Z0
= c(d0) = c(p(dω ·m)) .
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